Skip to main content

Table 2 Decision results based on the NLNWGA operator by choosing different indeterminate ranges for I in NLNs

From: Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making

I

NLNWGA

Ranking

I [−0.7, 0]

E(\( \bar{l}_{1} \)) = 0.6285, E(\( \bar{l}_{2} \)) = 0.6470, E(\( \bar{l}_{3} \)) = 0.6887, E(\( \bar{l}_{4} \)) = 0.6956

u 4 u 3 u 2 u 1

I [−0.5, 0]

E(\( \bar{l}_{1} \)) = 0.6369, E(\( \bar{l}_{2} \)) = 0.6518, E(\( \bar{l}_{3} \)) = 0.6968, E(\( \bar{l}_{4} \)) = 0.7039

u 4 u 3 u 2 u 1

I [−0.3, 0]

E(\( \bar{l}_{1} \)) = 0.6452, E(\( \bar{l}_{2} \)) = 0.6566, E(\( \bar{l}_{3} \)) = 0.7050, E(\( \bar{l}_{4} \)) = 0.7122

u 4 u 3 u 2 u 1

I [−0.1, 0]

E(\( \bar{l}_{1} \)) = 0.6535, E(\( \bar{l}_{2} \)) = 0.6614, E(\( \bar{l}_{3} \)) = 0.7131, E(\( \bar{l}_{4} \)) = 0.7205

u 4 u 3 u 2 u 1

I = 0

E(\( \bar{l}_{1} \)) = 0.6577, E(\( \bar{l}_{2} \)) = 0.6638, E(\( \bar{l}_{3} \)) = 0.7172, E(\( \bar{l}_{4} \)) = 0.7247

u 4 u 3 u 2 u 1

I [0, 0.1]

E(\( \bar{l}_{1} \)) = 0.6619, E(\( \bar{l}_{2} \)) = 0.6662, E(\( \bar{l}_{3} \)) = 0.7213, E(\( \bar{l}_{4} \)) = 0.7288

u 4 u 3 u 2 u 1

I [0, 0.3]

E(\( \bar{l}_{1} \)) = 0.6702, E(\( \bar{l}_{2} \)) = 0.6710, E(\( \bar{l}_{3} \)) = 0.7294, E(\( \bar{l}_{4} \)) = 0.7371

u 4 u 3 u 2 u 1

I [0, 0.5]

E(\( \bar{l}_{1} \)) = 0.6786, E(\( \bar{l}_{2} \)) = 0.6758, E(\( \bar{l}_{3} \)) = 0.7376, E(\( \bar{l}_{4} \)) = 0.7454

u 4 u 3 u 1 u 2

I [0, 0.7]

E(\( \bar{l}_{1} \)) = 0.6869, E(\( \bar{l}_{2} \)) = 0.6806, E(\( \bar{l}_{3} \)) = 0.7457, E(\( \bar{l}_{4} \)) = 0.7537

u 4 u 3 u 1 u 2