Skip to main content

Table 2 Decision results based on the NLNWGA operator by choosing different indeterminate ranges for I in NLNs

From: Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making

I NLNWGA Ranking
I [−0.7, 0] E(\( \bar{l}_{1} \)) = 0.6285, E(\( \bar{l}_{2} \)) = 0.6470, E(\( \bar{l}_{3} \)) = 0.6887, E(\( \bar{l}_{4} \)) = 0.6956 u 4 u 3 u 2 u 1
I [−0.5, 0] E(\( \bar{l}_{1} \)) = 0.6369, E(\( \bar{l}_{2} \)) = 0.6518, E(\( \bar{l}_{3} \)) = 0.6968, E(\( \bar{l}_{4} \)) = 0.7039 u 4 u 3 u 2 u 1
I [−0.3, 0] E(\( \bar{l}_{1} \)) = 0.6452, E(\( \bar{l}_{2} \)) = 0.6566, E(\( \bar{l}_{3} \)) = 0.7050, E(\( \bar{l}_{4} \)) = 0.7122 u 4 u 3 u 2 u 1
I [−0.1, 0] E(\( \bar{l}_{1} \)) = 0.6535, E(\( \bar{l}_{2} \)) = 0.6614, E(\( \bar{l}_{3} \)) = 0.7131, E(\( \bar{l}_{4} \)) = 0.7205 u 4 u 3 u 2 u 1
I = 0 E(\( \bar{l}_{1} \)) = 0.6577, E(\( \bar{l}_{2} \)) = 0.6638, E(\( \bar{l}_{3} \)) = 0.7172, E(\( \bar{l}_{4} \)) = 0.7247 u 4 u 3 u 2 u 1
I [0, 0.1] E(\( \bar{l}_{1} \)) = 0.6619, E(\( \bar{l}_{2} \)) = 0.6662, E(\( \bar{l}_{3} \)) = 0.7213, E(\( \bar{l}_{4} \)) = 0.7288 u 4 u 3 u 2 u 1
I [0, 0.3] E(\( \bar{l}_{1} \)) = 0.6702, E(\( \bar{l}_{2} \)) = 0.6710, E(\( \bar{l}_{3} \)) = 0.7294, E(\( \bar{l}_{4} \)) = 0.7371 u 4 u 3 u 2 u 1
I [0, 0.5] E(\( \bar{l}_{1} \)) = 0.6786, E(\( \bar{l}_{2} \)) = 0.6758, E(\( \bar{l}_{3} \)) = 0.7376, E(\( \bar{l}_{4} \)) = 0.7454 u 4 u 3 u 1 u 2
I [0, 0.7] E(\( \bar{l}_{1} \)) = 0.6869, E(\( \bar{l}_{2} \)) = 0.6806, E(\( \bar{l}_{3} \)) = 0.7457, E(\( \bar{l}_{4} \)) = 0.7537 u 4 u 3 u 1 u 2