Skip to main content

Table 1 Decision results based on the NLNWAA operator by choosing different indeterminate ranges for I in NLNs

From: Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making

I NLNWAA Ranking
I [−0.7, 0] E(\( \bar{l}_{1} \)) = 0.6399, E(\( \bar{l}_{2} \)) = 0.6532, E(\( \bar{l}_{3} \)) = 0.6896, E(\( \bar{l}_{4} \)) = 0.6955 u 4 u 3 u 2 u 1
I [−0.5, 0] E(\( \bar{l}_{1} \)) = 0.6479, E(\( \bar{l}_{2} \)) = 0.6576, E(\( \bar{l}_{3} \)) = 0.6978, E(\( \bar{l}_{4} \)) = 0.7038 u 4 u 3 u 2 u 1
I [−0.3, 0] E(\( \bar{l}_{1} \)) = 0.6559, E(\( \bar{l}_{2} \)) = 0.6620, E(\( \bar{l}_{3} \)) = 0.7060, E(\( \bar{l}_{4} \)) = 0.7122 u 4 u 3 u 2 u 1
I [−0.1, 0] E(\( \bar{l}_{1} \)) = 0.6640, E(\( \bar{l}_{2} \)) = 0.6665, E(\( \bar{l}_{3} \)) = 0.7142, E(\( \bar{l}_{4} \)) = 0.7205 u 4 u 3 u 2 u 1
I = 0 E(\( \bar{l}_{1} \)) = 0.6680, E(\( \bar{l}_{2} \)) = 0.6687, E(\( \bar{l}_{3} \)) = 0.7183, E(\( \bar{l}_{4} \)) = 0.7247 u 4 u 3 u 2 u 1
I [0, 0.1] E(\( \bar{l}_{1} \)) = 0.6720, E(\( \bar{l}_{2} \)) = 0.6709, E(\( \bar{l}_{3} \)) = 0.7224, E(\( \bar{l}_{4} \)) = 0.7288 u 4 u 3 u 1 u 2
I [0, 0.3] E(\( \bar{l}_{1} \)) = 0.6801, E(\( \bar{l}_{2} \)) = 0.6753, E(\( \bar{l}_{3} \)) = 0.7306, E(\( \bar{l}_{4} \)) = 0.7372 u 4 u 3 u 1 u 2
I [0, 0.5] E(\( \bar{l}_{1} \)) = 0.6881, E(\( \bar{l}_{2} \)) = 0.6797, E(\( \bar{l}_{3} \)) = 0.7388, E(\( \bar{l}_{4} \)) = 0.7455 u 4 u 3 u 1 u 2
I [0, 0.7] E(\( \bar{l}_{1} \)) = 0.6961, E(\( \bar{l}_{2} \)) = 0.6842, E(\( \bar{l}_{3} \)) = 0.7470, E(\( \bar{l}_{4} \)) = 0.7538 u 4 u 3 u 1 u 2