# Table 1 Iterative values of AK, Vatan Two-step, Thakur New and Picard-S iteration processes for mapping $$T(x)=\frac{x}{2},$$ where $$\alpha _{n}=\beta _{n}=\frac{1}{4},$$ for all n

AK Vatan Two-step Thakur New Picard-S
$$x_{0}$$ 0.9 0.9 0.9 0.9
$$x_{1}$$ $$8.6133\times 10^{-2}$$ $$1.7227\times 10^{-1}$$ $$2.1797\times 10^{-1}$$ $$2.1797\times 10^{-1}$$
$$x_{2}$$ $$8.2432\times 10^{-3}$$ $$3.2973\times 10^{-2}$$ $$5.2789\times 10^{-2}$$ $$5.2789\times 10^{-2}$$
$$x_{3}$$ $$7.889\times 10^{-4}$$ $$6.3112\times 10^{-3}$$ $$1.2785\times 10^{-2}$$ $$1.2785\times 10^{-2}$$
$$x_{4}$$ $$7.55\times 10^{-5}$$ $$1.208\times 10^{-3}$$ $$3.0963\times 10^{-3}$$ $$3.0963\times 10^{-3}$$
$$x_{5}$$ $$7.2256\times 10^{-6}$$ $$2.3122\times 10^{-4}$$ $$7.499\times 10^{-4}$$ $$7.499\times 10^{-4}$$
$$x_{6}$$ $$6.9151\times 10^{-7}$$ $$4.4257\times 10^{-5}$$ $$1.8162\times 10^{-4}$$ $$1.8162\times 10^{-4}$$
$$x_{7}$$ $$6.618\times 10^{-8}$$ $$8.471\times 10^{-6}$$ $$4.3985\times 10^{-5}$$ $$4.3985\times 10^{-5}$$
$$x_{8}$$ $$6.3336\times 10^{-9}$$ $$1.6214\times 10^{-6}$$ $$1.0653\times 10^{-5}$$ $$1.0653\times 10^{-5}$$
$$x_{9}$$ $$6.0615\times 10^{-10}$$ $$3.1035\times 10^{-7}$$ $$2.5799\times 10^{-6}$$ $$2.5799\times 10^{-6}$$
$$x_{10}$$ $$5.801\times 10^{-11}$$ $$5.9402\times 10^{-8}$$ $$6.2483\times 10^{-7}$$ $$6.2483\times 10^{-7}$$