Skip to main content

Table 2 Computation of the entropy analysis for different kinetics

From: The analysis of a reactive hydromagnetic internal heat generating poiseuille fluid flow through a channel

\(H=1,G=1,Br=10,\alpha =0.1,\Omega =0.1\)
  \(N_1\) \(N_2\) \(\phi =\frac{N_1}{N_2}\) \(Be=\frac{1}{1+\phi }\)
y \(m=-2\) \(m=0\) \(m=0.5\) \(N_2\) \(m=-2\) \(m=0\) \(m=0.5\) \(m=-2\) \(m=0\) \(m=0.5\)
\(-1\) 0.3366 0.6505 0.8605 0.580026 1.7234 0.8917 0.6741 0.3672 0.5286 0.5974
\(-0.75\) 0.1664 0.3703 0.5282 0.309902 1.8619 0.8368 0.5901 0.3494 0.5444 0.6289
\(-0.5\) 0.0688 0.1685 0.2499 0.186529 2.7105 1.1070 0.7465 0.2695 0.4746 0.5726
\(-0.25\) 0.0166 0.0429 0.0653 0.136751 8.2356 3.1844 2.0949 0.1083 0.2390 0.3231
0 0 0 0 0.123866 \(\infty\) \(\infty\) \(\infty\) 0 0 0
0.25 0.0166 0.0429 0.0653 0.136751 8.2356 3.1844 2.0949 0.1083 0.2390 0.3231
0.5 0.0688 0.1685 0.2499 0.186529 2.7105 1.1070 0.7465 0.2695 0.4746 0.5726
0.75 0.1664 0.3703 0.5282 0.309902 1.8619 0.8368 0.5901 0.3494 0.5444 0.6289
1 0.3366 0.6505 0.8605 0.580026 1.7234 0.8917 0.6741 0.3672 0.5286 0.5974