Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Table 2 Computation of the entropy analysis for different kinetics

From: The analysis of a reactive hydromagnetic internal heat generating poiseuille fluid flow through a channel

\(H=1,G=1,Br=10,\alpha =0.1,\Omega =0.1\)
  \(N_1\) \(N_2\) \(\phi =\frac{N_1}{N_2}\) \(Be=\frac{1}{1+\phi }\)
y \(m=-2\) \(m=0\) \(m=0.5\) \(N_2\) \(m=-2\) \(m=0\) \(m=0.5\) \(m=-2\) \(m=0\) \(m=0.5\)
\(-1\) 0.3366 0.6505 0.8605 0.580026 1.7234 0.8917 0.6741 0.3672 0.5286 0.5974
\(-0.75\) 0.1664 0.3703 0.5282 0.309902 1.8619 0.8368 0.5901 0.3494 0.5444 0.6289
\(-0.5\) 0.0688 0.1685 0.2499 0.186529 2.7105 1.1070 0.7465 0.2695 0.4746 0.5726
\(-0.25\) 0.0166 0.0429 0.0653 0.136751 8.2356 3.1844 2.0949 0.1083 0.2390 0.3231
0 0 0 0 0.123866 \(\infty\) \(\infty\) \(\infty\) 0 0 0
0.25 0.0166 0.0429 0.0653 0.136751 8.2356 3.1844 2.0949 0.1083 0.2390 0.3231
0.5 0.0688 0.1685 0.2499 0.186529 2.7105 1.1070 0.7465 0.2695 0.4746 0.5726
0.75 0.1664 0.3703 0.5282 0.309902 1.8619 0.8368 0.5901 0.3494 0.5444 0.6289
1 0.3366 0.6505 0.8605 0.580026 1.7234 0.8917 0.6741 0.3672 0.5286 0.5974