Skip to main content

Table 2 Comparison between the numerical frequency \(\omega\), the approximate frequency obtained by present method (given in Eq. 13) and other existing frequency (Hamdan and Dado 1997; Wu et al. 2003) for \(\alpha = \beta = 2\) as well as several large amplitudes

From: An analytical coupled technique for solving nonlinear large-amplitude oscillation of a conservative system with inertia and static non-linearity

A

Numerical frequency \(\omega_{e}\)

Hamdan and Dado (1997) (error%)

Wu et al. (2003) (error%)

Present method (error%) \(\omega_{0}\)

\(\omega_{0}\)

\(\omega_{1}\)

\(\omega_{0}\)

\(\omega_{1}\)

5

1.37132

1.21687

1.25786

1.21687

1.34073

1.39406

11.26

8.27

11.26

2.23

1.66

10

1.40006

1.22272

1.26541

1.22272

1.35613

1.40898

12.67

9.61

12.67

3.14

0.64

15

1.40707

1.22384

1.26685

1.22384

1.35913

1.41187

13.02

9.96

13.02

3.41

0.34

20

1.40986

1.22424

1.26736

1.22424

1.36020

1.41289

13.17

10.11

13.17

3.52

0.22

25

1.41127

1.22442

1.26760

1.22442

1.36069

1.41337

13.24

10.18

13.24

3.59

0.15

30

1.41207

1.22452

1.26773

1.22452

1.36096

1.41363

13.28

10.22

13.28

3.62

0.11

50

1.41335

1.22466

1.26791

1.22466

1.36135

1.41400

13.35

10.29

13.35

3.68

0.05

100

1.41397

1.22472

1.26799

1.22472

1.36152

1.41416

13.39

10.32

13.39

3.71

0.01

200

1.41414

1.22474

1.26801

1.22474

1.36156

1.41420

13.40

10.33

13.40

3.72

0.00

500

1.41420

1.22474

1.26802

1.22474

1.36157

1.41421

13.40

10.33

13.40

3.72

0.00

1000

1.41421

1.22474

1.26802

1.22474

1.36158

1.41421

13.40

10.34

13.40

3.72

0.00

  1. The absolute relative error has been also computed