Skip to main content

Table 1 Comparison between the numerical frequency \(\omega\), the approximate frequency obtained by present method (given in Eq. 13) and other existing frequencies (Hamdan and Dado 1997; Wu et al. 2003) for \(\alpha = \beta = 1\) as well as several large amplitudes

From: An analytical coupled technique for solving nonlinear large-amplitude oscillation of a conservative system with inertia and static non-linearity

A

Numerical frequency \(\omega_{e}\)

Hamdan and Dado (1997) (error%)

Wu et al. (2003) (error%)

Present method (error%) \(\omega_{0}\)

\(\omega_{0}\)

\(\omega_{1}\)

\(\omega_{0}\)

\(\omega_{1}\)

5

1.34288

1.20953

1.24841

1.20953

1.32217

1.37581

9.93

7.04

9.93

1.54

2.45

10

1.38928

1.22074

1.26285

1.22074

1.35084

1.40388

12.13

9.10

12.13

2.77

1.05

15

1.40138

1.22295

1.26570

1.22295

1.35672

1.40955

12.73

9.68

12.73

3.19

0.58

20

1.40632

1.22373

1.26671

1.22373

1.35883

1.41158

12.98

9.92

12.98

3.38

0.38

25

1.40883

1.22409

1.26718

1.22409

1.35981

1.41252

13.11

10.05

13.11

3.48

0.26

30

1.41029

1.22429

1.26743

1.22429

1.36035

1.41304

13.19

10.13

13.19

3.54

0.20

50

1.41261

1.22458

1.26781

1.22458

1.36113

1.41379

13.31

10.25

13.31

3.65

0.08

100

1.41375

1.22470

1.26797

1.22470

1.36147

1.41411

13.37

10.31

13.37

3.70

0.03

200

1.41408

1.22473

1.26801

1.22473

1.36155

1.41419

13.39

10.33

13.39

3.72

0.00

500

1.41419

1.22474

1.26802

1.22474

1.36157

1.41421

13.40

10.33

13.40

3.72

0.00

1000

1.41421

1.22474

1.26802

1.22474

1.36157

1.41421

13.40

10.33

13.40

3.72

0.00

  1. The absolute relative error has been also computed