Skip to main content

Table 1 Error results of finite difference method and Galerkin finite element method

From: A numerical solution of a singular boundary value problem arising in boundary layer theory

\(\beta \) \(\lambda \)
\(-\)0.10 \(-\)0.15 \(-\)0.18 \(-\)0.20 \(-\)0.25 \(-\)0.30
0 \(2.985\times {10^{-6}}\) \(3.433\times {10^{-6}}\) \(3.780\times {10^{-6}}\) \(4.051\times {10^{-6}}\) \(4.892\times {10^{-6}}\) \(5.427\times {10^{-6}}\)
0.1 \(3.010\times {10^{-6}}\) \(3.465\times {10^{-6}}\) \(3.818\times {10^{-6}}\) \(4.096\times {10^{-6}}\) \(4.976\times {10^{-6}}\) \(5.882\times {10^{-6}}\)
0.2 \(3.074\times {10^{-6}}\) \(3.543\times {10^{-6}}\) \(3.910\times {10^{-6}}\) \(4.202\times {10^{-6}}\) \(5.167\times {10^{-6}}\) \(6.962\times {10^{-6}}\)
0.3 \(3.174\times {10^{-6}}\) \(3.664\times {10^{-6}}\) \(4.051\times {10^{-6}}\) \(4.364\times {10^{-6}}\) \(5.452\times {10^{-6}}\) \(8.674\times {10^{-5}}\)
0.5 \(3.516\times {10^{-6}}\) \(4.076\times {10^{-6}}\) \(4.532\times {10^{-6}}\) \(4.913\times {10^{-6}}\) \(6.419\times {10^{-6}}\) \(1.540\times {10^{-5}}\)
0.7 \(4.270\times {10^{-6}}\) \(4.993\times {10^{-6}}\) \(5.609\times {10^{-6}}\) \(6.151\times {10^{-6}}\) \(8.662\times {10^{-6}}\) \(4.706\times {10^{-5}}\)
0.9 \(7.320\times {10^{-6}}\) \(8.807\times {10^{-6}}\) \(1.021\times {10^{-5}}\) \(1.157\times {10^{-5}}\) \(1.993\times {10^{-5}}\) \(1.303\times {10^{-4}}\)