Skip to main content

Table 4 Calculation of the temporal correlation coefficient C for time series with identical unconnected components of different sizes and isolated nodes

From: Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network)

Snapshots

1st calculation step

2nd calculation step

3rd calculation step

\(t_{m} , t_{m + 1}\)

\(C_{i = 1} \left( {t_{m} , t_{m + 1} } \right) = \frac{1}{\sqrt 3 }\)

Method 1: \(C_{m} = \frac{1}{N}\mathop \sum \nolimits_{i = 1}^{N} C_{i} \left( {t_{m} , t_{m + 1} } \right) \approx 0.23\)

Method 2: \(C_{m} = \frac{1}{{\text{max} \left[ {N\left( {t_{m} } \right), N\left( {t_{m + 1} } \right)} \right]}}\mathop \sum \nolimits_{i = 1}^{N} C_{i} \left( {t_{m} , t_{m + 1} } \right) \approx 0.39\)

Method 3: \(C_{m} = \frac{1}{{\text{max} \left[ {A\left( {t_{m} } \right), A\left( {t_{m + 1} } \right)} \right]}}\mathop \sum \nolimits_{i = 1}^{N} C_{i} \left( {t_{m} , t_{m + 1} } \right) \approx 0.32\)

Method 1: \(C = \frac{1}{M - 1}\mathop \sum \nolimits_{m}^{M - 1} C_{m} \approx 0.47\)

Method 2: \(C = \frac{1}{M - 1}\mathop \sum \nolimits_{m}^{M - 1} C_{m} \approx 1.03\)

Method 3: \(C = \frac{1}{M - 1}\mathop \sum \nolimits_{m}^{M - 1} C_{m} \approx 0.66\)

\(C_{i = 2} \left( {t_{m} , t_{m + 1} } \right) = 1\)

\(C_{i = 3} \left( {t_{m} , t_{m + 1} } \right) = 0\)

\(C_{i = 4} \left( {t_{m} , t_{m + 1} } \right) = 0\)

\(C_{i = 5} \left( {t_{m} , t_{m + 1} } \right) = 0\)

\(C_{i = 6} \left( {t_{m} , t_{m + 1} } \right) = 0\)

\(C_{i = 7} \left( {t_{m} , t_{m + 1} } \right) = 0\)

\(t_{m + 1} , t_{m + 2}\)

\(C_{i = 1} \left( {t_{m + 1} , t_{m + 2} } \right) = 1\)

Method 1: \(C_{m + 1} = \frac{1}{N}\mathop \sum \nolimits_{i = 1}^{N} C_{i} \left( {t_{m + 1} , t_{m + 2} } \right) \approx 0.71\)

Method 2: \(C_{m + 1} = \frac{1}{{\text{max} \left[ {N\left( {t_{m + 1} } \right), N\left( {t_{m + 2} } \right)} \right]}}\mathop \sum \nolimits_{i = 1}^{N} C_{i} \left( {t_{m + 1} , t_{m + 2} } \right) \approx 1.67\)

Method 3: \(C_{m + 1} = \frac{1}{{\text{max} \left[ {A\left( {t_{m + 1} } \right), A\left( {t_{m + 2} } \right)} \right]}}\mathop \sum \nolimits_{i = 1}^{N} C_{i} \left( {t_{m + 1} , t_{m + 2} } \right) = 1\)

\(C_{i = 2} \left( {t_{m + 1} , t_{m + 2} } \right) = 1\)

\(C_{i = 3} \left( {t_{m + 1} , t_{m + 2} } \right) = 0\)

\(C_{i = 4} \left( {t_{m + 1} , t_{m + 2} } \right) = 0\)

\(C_{i = 5} \left( {t_{m + 1} , t_{m + 2} } \right) = 1\)

\(C_{i = 6} \left( {t_{m + 1} , t_{m + 2} } \right) = 1\)

\(C_{i = 7} \left( {t_{m + 1} , t_{m + 2} } \right) = 1\)