Skip to main content
Fig. 7 | SpringerPlus

Fig. 7

From: A pressure-reversible cellular mechanism of general anesthetics capable of altering a possible mechanism for consciousness

Fig. 7

Route through which the externally applied pressure is transduced for the pressure reversal of anesthesia. Externally applied pressure get transduced to the cerebrospinal fluid (CSF) through the perilymph and cochlear aqueduct. This pressure gradient from CSF reaches the extracellular matrix (ECM) space through the glymphatic system (paravascular space). The pressure gradient gets transduced through the extracellular matrix space and result in displacement of the anesthetic molecules from the lipid membranes to the ECM and finally to the paravenular space and to the venous system. Both the close inter-postsynaptic membrane contacts and the reversible membrane hemifusions established in the presence of the anesthetics reverse back to the ground state. As the anesthetics get displaced, non-specific semblances induced through non-specific inter-postsynaptic functional LINKs will get proportionately reduced. This will bring back the normal conformation to the C-semblance as demonstrated in Fig. 4. Top right On the left side are two synapses with abutted postsynaptic membranes (dendritic spines) B and D in the presence of anesthetics forming an inter-postsynaptic functional LINK. Note the red color of the region of inter-postsynaptic functional LINK. On the right side is the state after pressure reversal of the inter-postsynaptic functional LINK. Inter-postsynaptic hydrophilic region forms again when anesthetic molecules are removed

Back to article page