Skip to main content

Copper oxide nanoparticles: Synthesis, toxic potential and modulation of astrocytic metabolism

To test for potential consequences of an exposure of brain cells to copper oxide nanoparticles (CuO-NPs), we have synthesized dimercaptosuccinate-coated CuO-NPs. These particles had a diameter of around 5 nm as determined by transmission electron microscopy but were dispersed as aggregate as demonstrated by their average hydrodynamic diameter in aqueous dispersion of 136 ± 4 nm. Exposure of cultured primary astrocytes to CuO-NPs increased the cellular copper levels and compromised the cell viability in a time- and concentration-dependent manner. CuO-NPs in concentrations above 100 µM (6.3 µg copper/mL) severely affected the viability of the cells, as demonstrated by a lowered tetrazolium dye reduction capacity, a lowered cellular lactate dehydrogenase activity, a increased membrane permeability and the generation of reactive oxygen species. In contrast, exposure of astrocytes for 24 h with 100 µM CuO-NPs did hardly affect the viability of astrocytes but stimulated the glycolytic flux, increased the cellular glutathione content, stimulated the release of glutathione and elevated the level of the metal storing proteins metallothioneins. Presence of the intracellular copper chelator tetrathiomolybdate throughout the incubation with CuO-NPs protected the cells against the toxicity of CuO-NPs and prevented the stimulation of the glycolytic flux as well as the increased levels of metallothioneins. These data demonstrate that CuO-NPs can severely damage cultured astrocyes and that copper ions derived from sub-toxic concentrations of CuO-NPs strongly affected the metabolism of astrocytes.

Author information

Authors and Affiliations


Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulcke, F., Dringen, R. & Thiel, K. Copper oxide nanoparticles: Synthesis, toxic potential and modulation of astrocytic metabolism. SpringerPlus 4 (Suppl 1), P5 (2015).

Download citation

  • Published:

  • DOI:


  • Copper
  • Nanoparticles
  • Astrocytes