Skip to main content

Table 2 Comparing the performance of the SLENP with that of TSSA

From: A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem

     SLENP TSSA
Instance Size LB BKS Best %DEV best T best Avg Tavg(s) Best %DEV best Avg T avg
ft06 6 × 6 55 55 55 0.000 0 55 0.005
ft10 10 × 10 930 930 930 0.000 0.455 930 9.224 930 0.000 930 3.8
ft20 20 × 5 1165 1165 1165 0.000 0.48 1165 2.727
la19 10 × 10 842 842 842 0.000 0.13 842 0.776 842 0.000 842 0.5
la21 15 × 10 1046 1046 1046 0.000 5.3 1046.7 15.216 1046 0.000 1046 15.2
la24 15 × 10 935 935 935 0.000 10.29 936.5 20.360 935 0.000 936.2 19.8
la25 20 × 10 977 977 977 0.000 6.2 977 13.699 977 0.000 977.1 13.8
la27 20 × 10 1235 1235 1235 0.000 9.08 1235 31.980 1235 0.000 1235 11.7
la29 20 × 10 1152 1152 1162 0.868 86.64 1163.5 40.024 1153 0.087 1159.2 63.9
la36 15 × 15 1268 1268 1268 0.000 3.4 1268.3 12.937 1268 0.000 1268 9.9
la37 15 × 15 1397 1397 1397 0.000 1.97 1397 9.181 1397 0.000 1402.5 42.1
la38 15 × 15 1196 1196 1196 0.000 4.35 1198.6 14.836 1196 0.000 1199.6 47.8
la39 15 × 15 1233 1233 1233 0.000 1.31 1233.6 19.099 1233 0.000 1233.8 28.6
la40 15 × 15 1222 1222 1224 0.164 6.57 1226.6 15.926 1224 0.164 1224.5 52.1
abz5 10 × 10 1234 1234 1234 0.000 0.58 1234 3.545
abz6 10 × 10 943 943 943 0.000 0.12 943 0.151
abz7 20 × 15 656 656 662 0.915 39.04 664 64.822 658 0.305 661.8 85.9
abz8 20 × 15 645 665 668 0.451 106.52 672.4 55.935 667 0.301 670.3 90.7
abz9 20 × 15 661 678 688 1.475 98.7 689.5 35.820 678 0.000 684.8 90.2
orb01 10×10 1059 1059 1059 0.000 0.7 1059.6 5.961 1059 0.000 1059 3.5
orb02 10×10 888 888 888 0.000 0.14 888 0.475 888 0.000 888.1 6.4
orb03 10×10 1005 1005 1005 0.000 0.365 1005 7.415 1005 0.000 1012.5 13.8
orb04 10×10 1005 1005 1005 0.000 0.155 1006.2 7.580 1005 0.000 1008.3 14.3
orb05 10×10 887 887 887 0.000 1.23 887 12.093 887 0.000 888.6 6.6
orb06 10×10 1010 1010 1010 0.000 0.23 1010.9 9.165 1010 0.000 1010 8.5
orb07 10×10 397 397 397 0.000 0.14 397 0.284 397 0.000 397 0.5
orb08 10×10 899 899 899 0.000 2.26 899 6.020 899 0.000 902.5 7.2
orb09 10×10 934 934 934 0.000 0.18 934 0.509 934 0.000 934 0.4
orb10 10×10 944 944 944 0.000 0.15 944 0.176 944 0.000 944 0.3
yn1 20×20 826 884 892 0.905 66.63 897.7 40.040 884 0.000 891.3 106.3
yn2 20×20 861 907 911 0.441 1.78 913.4 62.312 907 0.000 911.2 110.4
yn3 20×20 827 892 900 0.897 59.85 903.1 42.178 892 0.000 895.5 110.8
yn4 20×20 918 968 982 1.446 49.81 986.8 56.047 969 0.103 972.6 108.7
swv01 20×10 1407 1407 1437 2.132 115.33 1458.5 60.642 1412 0.355 1423.7 142.1
swv02 20×10 1475 1475 1505 2.034 92.27 1520 64.431 1475 0.000 1480.3 119.7
swv03 20×10 1369 1398 1426 2.003 82.68 1434 48.665 1398 0.000 1417.5 139.1
swv04 20×10 1450 1470 1511 2.789 66.47 1517.8 57.664 1470 0.000 1483.7 143.9
swv05 20×10 1424 1424 1475 3.581 45.461 1492.3 58.092 1425 0.070 1443.8 146.7
swv06 20×15 1591 1678 1730 3.099 43.94 1738.2 81.892 1679 0.060 1700.1 192.5
swv07 20×15 1446 1600 1632 2.000 88.79 1648 68.546 1603 0.188 1631.3 190.2
swv08 20×15 1640 1756 1807 2.904 147.39 1814.1 71.765 1756 0.000 1786.9 190
swv09 20×15 1604 1661 1701 2.408 126.12 1707.5 68.661 1661 0.000 1689.2 193.8
swv10 20×15 1631 1754 1812 3.307 122.66 1820.6 85.666 1754 0.000 1783.7 184.6