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Abstract 

Background:  We describe the design, the construction and performance of a narrow band ortho-mode transducer, 
currently used in the 5 GHz polarimetric receiver of the Galactic Emission Mapping project.

Results:  The ortho-mode transducer was designed to achieve a high degree of transmission within the 400 MHz of 
the GEM band around the 5 GHz (4.8–5.2 GHz). It is composed of a circular-to-square waveguide transition, a septum 
polarizer, a thin waveguide coupler and a smooth square-to-rectangular waveguide transition with custom wave-
guide bends to the output ports.

Conclusion:  Our simulations and measurements show a very low level of cross-polarization of about −60 dB and a 
good impedance match for all three ports (S11; S22; S33 < −30 dB) with only 0:25 dB of insertion loss offset across the 
400 MHz (4.8–5.2 GHz) of the reception bandwidth.
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Background
The key component of most polarimeters is the ortho-
mode transducer (OMT), which splits the orthogonal 
polarization modes of the incoming sky radiation into 
two or more balanced RF chains. There are many ways 
to build an OMT [see Bøifot (1991) for a review], but 
all of them require a careful analysis of the symmetries 
of the propagation modes inside the square, rectangular 
and circular waveguide sections of any particular type of 
OMT design. The main requirement for an OMT used 
in radioastronomy experiment dedicated to reveal polar-
ized patterns of the Galactic radio continuum, like the 
Galactic Emission Mapping (GEM) project (Torres et al. 
1996), is a high isolation between the output ports across 
the intended bandwidth. A cross-talk between the output 
ports of the OMT can generate several undesired features 
in the radio sky map, invalidating the survey. Other prop-
erties of the OMT, like return loss and insertion loss off-
sets, will also affect the sky map, in particular by reducing 
its pixel sensitivity.

The main goal of the GEM project is to characterize 
the Galactic emission in total intensity and polarization 
between 408  MHz and 10  GHz, by producing astro-
physical foreground templates to decontaminate Cosmic 
Microwave Background Radiation maps (see Tello et  al. 
(2013) for recent results at 2300  MHz). Galactic emis-
sion in the GEM frequency bands at 5 and 10  GHz is 
dominated by synchrotron radiation. In these bands, the 
radio emission has a high degree of linear polarization 
and interstellar Faraday effects are still negligible. Thus, 
these characteristics make those bands a choice of prime 
importance to improve the foregrounds impact on sur-
veys of cosmological significance like those produced by 
Planck satellite mission (Bouchet and Gispert 1999; Ade 
et al. 2014; Adam et al. 2016) and those planned for the 
next generation CMB space missions like the ESA CoRE 
proposal (de Zotti et  al. 2016). The GEM data at 5 and 
10  GHz can also provide useful constraints together 
with the absolutely calibrated Galactic data from the 
ARCADE balloon experiment (Fixsen et al. 2011). In this 
article we describe an OMT that can be classified as Sep-
tum-Branching OMT class 1, following the classification 
presented in (Bøifot 1991; Uher et al. 1993). It was devel-
oped for a pseudo-correlation polarimeter, suitable for a 
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bandwidth of 400 MHz centered at 5 GHz and having a 
measured sensitivity of about 1:6 mk/√s (Bergano et al. 
2007).

The OMT should have its best performance in the 
GEM band (4.8–5.2 GHz). It is coupled to a corrugated 
feed horn. This system has been used in the focal plane 
of a Cassegrain 5.5  m dish antenna, which continu-
ously rotate to map the polarized Southern sky from an 
observational site in Brazil. The observations started in 
2006. GEM is followed by a sister counterpart (GEM-P) 
aiming the coverage of the Northern sky  (Barbosa et al. 
2006; Tello et al. 2013). Other important surveys include 
the C-Band All Sky Survey (CBASS) (Irfan et  al. 2015; 
King et al. 2010) that is currently acquiring data, having 
achieved a first Northern Sky intensity survey at 5 GHz 
(Irfan et al. 2015). The OMT for the CBASS instrument 
is described in Grimes et al. (2007) and achieves a perfor-
mance similar to the GEM’s OMT described here.

Design and methods
Initially, a classical RF design approach, developed at 
UC Berkely and similar to CBASS (Grimes et  al. 2007) 
was followed. However, due to its poor polarization 
purity performance, most likely due to a manufacturing 
problem, and the lack of space in the 5-m antenna hub 
(already filled with ancillary systems of the receiver) it 
was necessary to design a new OMT, more compact and 
easier to mount between the horn and the receiver. This 
in turn required additional performance fine tuning and 
several finite-element simulations (see Fig. 1). 

Hence, a new design consisting of four sections was 
considered: a circular to-square waveguide transition; 
an aperture coupler with a septum; a smooth transition 
between square and rectangular waveguides; and a series 

of waveguide bends in both ports. The complete OMT 
assembly is shown in the wire frame model of the wave-
guide structure in Fig. 2, where the number labels indi-
cate the components of each section.

Each of the four sections is described below: the transi-
tion between the circular and the square waveguides was 
made using three λg  =  4 steps (where λg stands for the 
guided wavelength), whose actual length was optimized 
using numerical simulations based on finite-element analy-
sis (CST Microwave Studio—Computer Simulation Tech-
nology GmbH). The same code, henceforth the CST code, 
was used in the optimization of all parts of the OMT. Fig-
ure 1 shows two of the finite-element propagation simula-
tions to check polarization mode propagation and isolation.

The polarization splitter, the main component of the 
OMT, is shown in Fig. 3. It achieves its basic functional-
ity via a directional coupler and a septum. The directional 
coupler is shaped into a finite length coupling slot. A 
similar device, also called a T-Junction, is typically used 
to couple waveguides of similar cross-sections (Ludovico 
1999), whereas in our OMT we couple a square wave-
guide from one side to a rectangular WR187 waveguide 
on the other side. The CST code was used to find the 
optimal length, width and height of the slot. In fact, the 
optimal choice for the geometry of this slot was ideal to 
make a groove in the inside wall of the square waveguide 
(effectively reduced its thickness to 0.5 mm), where a rec-
tangular aperture (90.0 mm × 5.68 mm) was cleared. As 
shown in the literature (Uher et al. 1993), the phase dif-
ference introduced by this kind of coupling is 90°.

A sliding back-short closes the WR187 waveguide 
to enable the transmission tuning of the OMT during 
bench tests. The septum has its length proportional to 
the desired rejection level of higher order modes (Uher 

Fig. 1  Example of Finite-element simulations of mode propagation for two polarizations
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et  al. 1993), but it is limited by the maximum allowed 
physical size of the OMT inside the dish hub. The small 
available space of the dish hub, in the back of the antenna 
was a strong limiting factor, conditioning the adoption of 
design options similar to the CBASS’ OMT shape (long, 
cylinder like).

On the other hand, the septum width should be as 
small as possible to minimize the return loss of the mode 
that will propagate through it. Similarly, the shape of the 
septum was carefully chosen, starting with a rectangu-
lar septum, passing through a rift wedge-like design, and 
arriving finally at the arrow-like shape, shown in Fig.  3, 
to achieve the minimum return loss. In addition to the 
shape and dimensions of the septum, computer simula-
tions were needed to determine the position of the sep-
tum with respect to the slot.

Our optimal solution was that the tip of the septum had 
to be coincident with the end of the slot. The final width 
of the septum was 3 mm, and its length was 102.5 mm. 
After the septum, there is a smooth transition to trans-
form the square waveguide into a rectangular WR187 
waveguide. The length of this transition had to be small 
enough not to exceed the physical size of the OMT, but 
large enough to reach a maximum acceptable return loss 
of −40 dB. We achieved this condition by optimizing its 
length at 86  mm with the septum halfway through into 
the transition. Due to the physical space where the OMT 
was installed and the necessity to avoid higher modes of 
propagation and cross-talk between the ports, we had to 
extend the WR187 waveguides along several bends. For 
the waveguide of the coupled parallel port (number 11 in 
Fig. 2), we introduced a 45° E-plane bend; while for the 
waveguide extending from the smooth square-to-rec-
tangular transition (number 6 in Fig.  2), we introduced 
two 180° H-plane bends at both ends of a 90° E-plane 
bend. All these bends were designed with the aid of the 
CST code subject to a maximum tolerable return loss of 
−40 dB. The inner radius of the typical bend was found 
to be 23.15 mm for an E-plane bend and 18 mm for an 
H-plane bend. All sections of the OMT were machined 
from 6061 aluminium alloy; Fig.  4 shows its final 
construction.

The installation of the GEM polarimeter requires 
the OMT to match the throat section of a corrugated 
feed horn, which is supported at the vertex of the pri-
mary reflector by a latching mechanism. During routine 
observations, the OMT operates at room temperatures 
(~300  K), while feeding the cryogenic frontend of the 
polarimeter housed inside the antenna hub. Finally, Fig. 5 
summarizes the results of the computational analysis of 
the OMT in terms of the S-parameters (S11, S22, S33) 

Fig. 2  The 5 GHz GEM OMT: 1 the Multiple Injector Noise Source 
Assembly (MINSA) with circular WG13 waveguide; 2 three-step 
circular-to square transition; 3 flange between square waveguides; 
4 square waveguide with aperture directional coupler; 5 septum 
support pins; 6 smooth square to-rectangular transition; 7 first 
180 ± H-plane bend; 8 90 ± E-plane bend; 9 second 180 ± H-plane 
bend; 10 waveguide-to-coax adapter flanges; 11 parallel coupled 
port; 12 tuning back-short and 13 45 ± E-plane bend

Fig. 3  A cut-section view of the main part of the OMT body. Show-
ing: 1 the square waveguide; 2 the septum; 3 smooth square-to-
rectangular transition; 4 rectangular waveguide; 5 the aperture 
directional coupler and 6 tuning back-short
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along with some experimental points, obtained during 
bench tests, which we will describe in the following sec-
tion. Figure 6 depicts the workbench experimental meas-
urement setup.

Results
The bench tests were conducted at the INPEs’ Aerospace 
Engineering Division (DEA) laboratory with an Agilent 
E8362B network analyzer, adjusted with a calibration 
offset to remove the effect of the cables and their con-
nectors. The measurements of S parameters (basically 
insertion loss and return loss of the ports) were con-
ducted in two steps. First, we measured the impedance 
match of the 3-step circular-to-square waveguide tran-
sition using a circular waveguide-to coax adapter with a 
SMA probe in the place of the Multiple Injector Noise 
Source Assembly (MINSA) assembly shown in Fig. 2. A 
return loss of about −40 dB was found within 200 MHz 
of the proposed center frequency of 5 GHz. This return 
loss was accounted for as an additional calibration offset 
during the measurement of the overall return loss of the 
OMT. Second, using the above measurement as a calibra-
tion offset, we obtained a return loss below −30 dB for 
the entire OMT. The measurements for port 1 at 4.9, 5.0, 
and 5.1 GHz are plotted in Fig. 5 together with simulated 
profiles for the two possible polarization modes (labelled 
as S11 and S22). Similar return losses were obtained at 
the SMA probes of the rectangular waveguide-to-coax 
adapters labelled 10 in Fig. 2. During the tests, all open 
ports were filled with microwave absorbers. The experi-
mental points became indistinguishable from the simu-
lation curves for these two polarization modes once the 
tuning back-short was properly adjusted through several 
iterative steps.

In order to estimate the cross-talk between the out-
puts of the OMT, we coupled the network analyzer to the 
SMA probes of the waveguide-to-coax adapters at the 
output ports of the rectangular waveguides (10 in Fig. 2). 
The tests showed the level of cross-talk to be below 
−60 dB. The same upper limit to the level of cross-polar-
ization is reached if the polarized signal is transmitted 
from port 1 to the output port. The measurements also 
infer a total phase difference of 120° and an insertion loss 
offset in 0.25 dB between the output ports. These num-
bers reflect the use of long and curved rectangular wave-
guides in order to adjust the dimensions of the OMT to 
those of the receiver in the enclosing hub. In Fig.  6, we 
can check the measurement setup and Fig.  7 we can 
compare the measurements points against the simulated 
curves, after the iterative adjustments of the tuning back 
short.

Conclusion
A high isolation 5  GHz OMT was presented. Its design 
was the result of a process of optimization that involved 
no less than 96 different CAD models. The measured 
insertion loss offset for this OMT was about 0.25  dB 

Fig. 4  The newly manufactured GEM 5 GHz OMT. A coin is shown for 
reference

Fig. 5  Results for S-parameters from numerical simulations, for both 
polarization modes (shown as S11 and S22), and from bench meas-
urements (shown as Exp), using in both cases the square waveguide 
as input port
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between 4.8 and 5.2 GHz, with a cross-polarization level 
of about −60 dB. There is a total phase difference of 120° 
between the output signals, to be accounted for by phase 
shifters included in the RF chain of the polarimeter. 
These numbers, together with a return loss of −30  dB 
for all ports, satisfy all the requirements for polarization 
measurements with the GEM experiment, as well as for 

other experiments dedicated to survey the microwave 
polarized sky in the C-band.
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