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Abstract 

Background:  Neuronatin (NNAT) is a paternal-inherited imprinted gene, first discovered in the rat neonatal brain, 
where it plays vital roles for neuronal growth, brain development, and metabolic regulation. The maternal imprint of 
NNAT has been identified in mice; however, the differentially methylated regions (DMRs) involved in the monoallelic 
expression of NNAT have not yet been investigated.

Results:  In this study, we confirmed expression of two isoforms of the NNAT (α and β) in the mice brain via quantita-
tive RT-PCR. Additionally, the methylation profile of the CpG island located in the NNAT gene locus was determined in 
the mice liver, brain, sperm, and the MII oocyte via bisulfite sequencing PCR.

Conclusion:  In summary, we provide the first evidence for tissue- and gamete-specific methylation patterns of CpG3 
that are located on exon 1, to be putative DMR of NNAT in mice.
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Background
Genomic imprinting leads to unequal expression of pater-
nal and maternal alleles in offspring, which is essential 
for normal embryogenesis, fetal growth, and functional 
postnatal behavior (Surani 1998; Li et al. 1999; Das et al. 
2013). The differentially methylated regions (DMRs) are 
established during gametogenesis and regulate the par-
ent-specific expression of imprinted genes. DMRs with 
allele specific methylation have also been used in cancer 
diagnosis (Ushijima 2005; Bonin et  al. 2016). Although 
125 imprinted genes have been identified in mice to date 
(according to the Gene imprint database; http://www.
geneimprint.com/), very little has been published about 
the DMRs of those imprinted genes (Gu et al. 2014).
NNAT is a highly conserved imprinted gene among 

humans, mice, cattle, and pigs, containing two alterna-
tively spliced transcripts (α and β) (Cheng et  al. 2007; 

Schulz et  al. 2009). Previous studies have revealed the 
parental-specific expression of NNAT to be associated 
with the methylation status of the CpG island located in 
the NNAT promoter sequence of pigs (Chen et al. 2014; 
Gu et al. 2014) and rabbits (Duan et al. 2015). A second 
intronic DNA sequence within the mouse NNAT with a 
length of 250 bp was defined as putative DMR and was 
revealed to act as a transcriptional activator in Dros-
ophila (Sowpati et al. 2008). In addition, the hyper meth-
ylation of human NNAT frequently occurs in pediatric 
acute leukemia and Wilms Tumors (Kuerbitz et al. 2002; 
Hubertus et al. 2013).

All of these previously published findings suggest that 
there is no definite DMR of NNAT in mice. With this 
background, we sought to identify the DMRs of mice 
NNAT via quantitative real-time PCR (q-PCR) and 
bisulfite sequencing PCR (BSP) analyses.

Results and discussion
In this study, we proposed a model of two NNAT iso-
forms (α and β) using GenBank and Ensembl databases. 
Furthermore, putative DMRs of NNAT (CpG 1 and 
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CpG 2, CpG 3, CpG I2) were identified via compara-
tive sequencing analysis and methyprimer (Fig. 1a). The 
results of q-PCR and RT-PCR demonstrated high expres-
sion of both of the transcripts (α and β) in the brain of 
mice, but not in their liver, which is consistent with the 
UniGene database (Fig.  1b, c). Previous studies have 
found two transcripts of NNAT that are widely expressed 
in most of tissues, including in livers and kidneys of cattle 
(both fetal and adult) and in 2-month-old pigs (Zaitoun 
and Khatib 2006; Cheng et al. 2007), suggesting different 
NNAT expression profiles between species.

To identify the DMR of mice NNAT, methylation pro-
files of CpG 1, CpG 2, CpG 3, and CpG I2 were deter-
mined in both the brain and the liver using BSP. The 
results revealed hypermethylation of CpG1 (Fig. 2a vs. e), 
CpG2 (Fig. 2b vs. f ), and CpG I2 (Fig. 2d vs. h) in both 
brain and liver. However, we found tissue-specific meth-
ylation patterns of CpG3 in the brain (29.33%) and liver 
(66%) (Fig.  2c vs. g). These results point towards the 
methylation status of CpG3 accounting for the expression 
difference of NNAT in liver vs. brain. In addition, tissue-
specific methylation patterns revealed CpG3 (located 
on exon 1) to be a putative DMR of the NNAT in mice 
(Fig. 2c).

Generally, DNA methylation patterns of imprinted 
genes were established in both sperm and oocyte, which 
were reprogrammed subsequent after fertilization 
(Seisenberger et al. 2013). To identify the gamete-specific 
methylation pattern of CpG3 in mice NNAT, the DNA 
methylation profile of CpG3 in sperm and oocyte was 
determined via BSP. The results reveal hypomethylation 

in sperm (10%) and hypermethylation in MII oocytes 
(90%) (Fig. 3). In summary, the gamete-specific methyla-
tion patterns suggest that the imprinting marks of NNAT 
are established by a sex-specific mechanism, confirming 
CpG3 as the DMR of NNAT.

Conclusions
Here, we studied the expression patterns of two isoforms 
of mice NNAT (α and β), and identified the CpG3 of mice 
NNAT (located on exon 1) as putative DMR.The data 
revealed hypermethylation of exon 1 to be associated 
with the silencing of mice NNAT, suggesting the NNAT 
gene transcriptional status to be correlated with the 
methylation status of exon 1, while being independent of 
both intron and 5′ UTR.

Methods
Tissue samples
The brain and liver were collected from two-month old 
ICR mice and immediately stored in liquid nitrogen until 
further use. Spermatozoa and MII oocytes were har-
vested using previously published protocols (Chen et al. 
2014).

RT‑PCR and quantitative real‑time PCR (q‑PCR)
Total RNA from liver and brain (n = 5) was isolated with 
TRNzol-A+ reagent (TIANGEN, Beijing, China) accord-
ing to manufacturer’s instructions. The cDNA was syn-
thesized with DNAse I (Fermentas, Shanghai, China) 
treated total RNA via the BioRTcDNA First Stand Syn-
thesis Kit (Bioer Technology, Hangzhou, China).

Fig. 1  Gene structure and expression analysis of NNAT in mice. a Structure of the mice NNAT locus. NNAT features two alternatively spliced tran-
scripts (α- and β-form). Protein coding regions are shown as black, filled boxes. Circles indicate CpG islands located in NNAT and analyzed via BSP. Q: 
Primers for q-PCR; RT: Primers for RT-PCR; b RT-PCR was used to detect the expression of two alternatively spliced isoforms in both brain and liver.  
c Gene expression of NNAT in brain and liver determined via q-PCR. Data are shown as Mean ± SEM (n = 6), *p < 0.05, **p < 0.01, ***p < 0.001



Page 3 of 5Xu et al. SpringerPlus  (2016) 5:2018 

The BioEasy SYBR Green I Real Time PCR Kit (Bioer 
Technology, Hangzhou, China) was used to perform 
q-PCR, using the BIO-RAD Iq5 Multicolor Real-Time 
PCR Detection System. The reaction conditions were as 
follows: 95  °C for 3 min, followed by 40 cycles of 95  °C 
for 10 s for DNA denaturation, 60 °C for 15 s for primer 
annealing, and 72 °C for 30 s for extension. Relative gene 
expression normalized to β-actin was determined via 

the 2−ΔΔCT formula. All experiments on gene expression 
were performed in triplicate. The gene expression data 
was presented as mean ± SEM. Primers used for q-PCR 
and RT-PCR are listed in Table 1.

Bisulfite sequencing PCR
Bisulfite sequencing PCR (BSP) was performed to deter-
mine methylation of NNAT CpG islands. The CpGenome 

Fig. 2  DMR identification of NNAT in mice. The methylation status was analyzed via BSP: The results are depicted for CpG 1 in brain a and liver e, for 
CpG 2 in brain b and liver f, for CpG 3 brain (c) and liver (g), and for CpG 3 in brain (d) and liver (h). Open and closed circles indicate unmethylated 
and methylated CpG sites, respectively. Numbers in parentheses represent the methylated CpG sites relative to all counted CpG sites

Fig. 3  Gamete-specific methylation status of CpG 3. The methylation status of CpG 3 was analyzed via BSP for MII oocyte (a) and sperm (b). Open 
and closed circles indicate unmethylated and methylated CpG sites, respectively. Numbers in parentheses represent the methylated CpG sites rela-
tive to all counted CpG sites
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TM Turbo Bisulfite Modification Kit (Millipore, Jaffrey, 
NH, USA) was used for bisulfate treatment of genomic 
DNA of both liver and brain according to the manufac-
turer’s instructions. Bisulfite-treatment of the DNA of 
sperms (n = 1 × 103) and matured oocytes (n = 100) was 
done according to the instructions of the EZ DNA Meth-
ylation-Direct™ Kit (Zymo Research,CA). Nested PCR 
was used to amplify CpG islands, followed by T-vector 
cloning (positive clones, n = 10) and subsequent sequenc-
ing analysis. The BSP primers are listed in Table 2.

Statistical analysis
Data were analyzed using student’s t-tests via SPSS 22.0 
software (SPSS Inc., Chicago, IL, USA) and a p  <  0.05 
was considered as statistically significant. DNAman and 
online software tools Methprimer (http://www.urogene.
org/methprimer/) and Bio Analyzer (http://biq-analyzer.
bioinf.mpi-inf.mpg.de/tools/MethlationDiagrams/index.
php) were used for the methylation analysis.

Abbreviations
NNAT: neuronatin; PCR: polymerase chain reaction; qPCR: quantitative real-
time PCR; BSP: bisulfite sequencing PCR; DMR: differentially methylated region; 
RT-PCR: reverse transcription PCR.
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