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Abstract

We investigate the numerical solutions of the DGLAP evolution equations at the LO
and NLO approximations, using the Laguerre polynomials expansion. The theoretical
framework is based on Furmanski et al’s articles. What makes the content of this paper
different from other works, is that all calculations in the whole stages to extract the
evolved parton distributions, are done numerically. The employed techniques to do the
numerical solutions, based on Monte Carlo method, has this feature that all the results
are obtained in a proper wall clock time by computer. The algorithms are implemented
in FORTRAN and the employed coding ideas can be used in other numerical computa-
tions as well. Our results for the evolved parton densities are in good agreement with
some phenomenological models. They also indicate better behavior with respect to
the results of similar numerical calculations.

Keywords: DGLAP evolution equations, Evolved parton densities, Laguerre expansion,
Monte Carlo method

Background

In the theory of strong interaction, the lepton—nucleon deep-inelastic scatterings (DIS)
could lead us to get the required information for nucleon structure function. The DIS
processes form the backbone of our knowledge for the parton densities, which are
indispensable for analyses of hard scattering processes at proton—(anti-)proton collid-
ers. Moreover, many experimental groups (Bloom et al. 1969; Breidenbach et al. 1969;
Abbott et al. 1979) have observed the scaling behavior of the proton structure function
in DIS (Bjorken 1969). This observation established the quark-parton model as a valid
framework for interpreting DIS data; the DIS processes can be expressed in terms of
universal parton densities. In Quantum Chromodynamics (QCD), structure functions
are defined as convolutions of the universal parton momentum distributions inside the
proton with the coefficient functions, which contain information about the boson—par-
ton interaction. At large momentum transfers, Q> > 0, the perturbative calculations of
the coefficient functions predict a logarithmic dependence of the proton structure func-
tions on Q” to higher orders in a,. Thus, measurements of the structure functions allow
precision tests of perturbative QCD. The standard and the basic tools for theoretical
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investigation of DIS structure functions are the DGLAP evolution equations (Gribov
and Lipatov 1972; Dokshitzer 1977; Altarelli and Parisi 1977).

There exist several analytical and numerical methods to solve DGLAP evolution equa-
tions. What we present in this article, is a solution which is based entirely on numerical
analyses of these equations, forming a series of Laguerre polynomials with respect to the
y = In(1/x) variable, where x is the fraction of proton momentum carried by the parton,
The Laguerre series converges very quickly and it can easily be truncated with a reason-
able precision.

In this article, we assume that reader is familiar with the required relations and the
theoretical frameworks based on which the DGLAP evolution equations are working.
So, at different sections of this article, we are mostly focused on presenting numeri-
cal investigations which would finally yield the evolved parton densities at energy scale
Q> In each section of the paper, we not only introduce the required theoretical expres-
sions but also explain how to use them in practice to do our numerical calculations. The
Monte Carlo algorithms which we construct are such as to make the wall clock time by
computer in a proper time. The numerical patterns which we develop in this paper can
also be used for other numerical investigations.

The organization of this paper is as following. In section “A short overview of the
theoretical framework” we give a short overview on the evolution of parton densities,
using DGLAP equations. The theoretical framework is based on using Laguerre poly-
nomial expansions. In section “Basic tools, Monte Carlo solutions” the general struc-
ture of Monte Carlo algorithm is introduced. The required functions and subroutines are
also introduced there. They can be requested via E-mail, a.mirjalili@yazd.ac.ir, from the
authors. Then we use them to build the related Monte Carlo algorithm to get the numer-
ical solutions for DGLAP evolution equations. The results are presented for the evolved
parton densities at the end of section “Basic tools, Monte Carlo solutions” and also in
sections “The programs and the results” and “Conclusion’, based on the numerically
Monte Carlo algorithm. The results are in good agreement with the results of CTEQ and
GRYV parameterization groups. Finally, we give our conclusion in section 6.

A short overview of the theoretical framework
In high energy physics, the parton densities at the Q? scale can be obtained, employing
the DGLAP evolution equations. These equations can be used to describe Bjorken viola-
tion in deep inelastic scattering (DIS). There are many different ways to solve DGLAP
equations numerically. One of them is to use the Laguerre polynomial expansion which
we employ to get the solution of non-singlet and singlet sectors of parton densities. To
numerically achieve the evolved parton densities, we initially need to reach high levels of
precision. The Laguerre polynomial expansion are rapidly convergent for medium values
of x and at all energy scales. At very lowx, say x < 0.001, these polynomials are numeri-
cally instable due to rapid rising of the splitting moments.

Following, we have provided the required definitions and conventions for the above
mentioned numerical calculations:
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Running coupling constant
The Q? dependence of the strong coupling constant a(Q?), considering the renormaliza-

tion group equation, is given by:

Q dQZa(QZ) = —a(QHB[«(@)] ()
where

_ _ o o \2

) =po+b (1) +. @)

in which 3, and 3; are universal scheme independent coefficients and are given by:

4
Po = ECG - gTRVlfy .
34 , 10 @)
ﬂl = ?CG — ?Can — ZCFVlf,

and Cg =N, Cg = 2N , Tp=735 1 where Nand ny refers respectively to the number of
quark colors and flavors. The solution of 5- QCD evolution equation, Eq. (1), at the next-
to-leading order (NLO) approximation is given by:

2 2 2
@) 2 1 . BiInlnQ?/ A o( 1 ) @

21 BolnQ2/AZ| B2 InQ?/A? In? Q2/ A2

The cutoft parameter A, is determined by fitting the experimental data which at the NLO
approximation is lower than 250 MeV.

DGLAP evolution equations

Considering the contribution of quark-antiquark pair in evolution of quark densities,
one would find out that for each quark flavor i with i = 1...2n, summing over all quark
and antiquark flavors, using the notations of Furmanski and Petroznio (1982a, b) we
would have

0" =a+3 ¢ '=4'=a-7 ¢V =3= Zq(+) (5)

Following that by defining

1, Q) = 40 Q) —

7q(+) (.?C, QZ), (6)
'f
and the new combination of splitting functions by Ellis et al. (1996):
_pO @ pm XN Dy 4
Pira) =P + PO + () PP @+, )

the evolved DGLAP equations will be appeared in the following forms:

@t O = (QZ)P 5 2(Q) ® 47 (x, QY
sz t ’ i ’ ’ (8)
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(QZ)

Q sz 166 Q%) = TPy (,0(QY) ® (e, Q) ©)
0 <q<+><x, Q2)> _ @ (qu@c, Q) Py, Q2)> o <q<+>(x, ) )
sz G(x, QZ) 2 qu (x¢ QZ) ng (x’ QZ) G(x’ QZ)
(10)

where @ symbol is indicating the following convolution integral:

2o(3)a0)= [ Fooa(3)
® = —p| - = — - 11
p(x) ® q(x) /x 4v q(y) : yp(y)q S (11)

Similar expansion like Eq. (7) exists for the different elements of the related matrix of
splitting function. The advantage of using Eqs. (8—10) are that we are able to extract the
sea quark densities at any energy scale Q? separately for each quark flavor rather than to
get an average quantity for sea quark densities.

Equations (8—10) can be written in terms of the new variable ¢t = _ﬂ% In azgz; so as:
(o
4wt = (P(O)(x)+ —R_(x) + - )®q§‘)(x, ), (12)
D)= (PP + SR+ ) @ i) (13)
dt 1 ’ Vv 27_[ 14 ’ )
d ) (+)
a (a7 x1) 0) q 7 x,1)
dt(G(x, t) ) (P 0+ R(x) e ) @ <G(x, £) ) (14
where
pV P po
Ri(x) = (x) — 260 — Py (), (15)
_ pW(g — P po
R(x) = P (x) P (x). (16)
2Bo

Solutions of Egs. (10-12) will lead us to the evolved valence, sea and gluon densities at
different energy scales.

Evolution operators

Defining g(x) = q(t = 0,x) as parton density at initial energy scale Q,, the evolved
valence density will be obtained by

o tw=Etn e . an

For the y; function we will have

Xi(t,x) = E4(t,x) ® Xi(x), (18)
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and for the gluon and singlet distributions, we will have:
o) g+
gt _ q7 )
( G(t,x) ) =Eex® ( G ) (19)

In Eq. (19), the first term on the right hand side is the evolution operator which for the
singlet and gluon densities has the following matrix form:

_ E (t, x) E (trx)
E(t,x) = (EZZ(t’x) Eg(t,x) ) (20)

Substituting Eqgs. (17-19) in Egs. (12-14) will lead us to:

dp (t,x) = (P(O)(x) + 2R +) ® E+(t,x) 1)
dt L=y 27 * £
d o
_ (0)
ZE@x) = (P () + o —RGx) + ) ® E(t,x). (22)

We should note that evolution operators satisfy the following initial conditions

where I In Eq. (23) refers to the unit matrix with dimension 2.

Laguerre expansion
The Laguerre polynomials can be represented by an alternative form as Arfken and
Weber (2005):

n

n xk nn—1x%> nn—1)m—-2)x°
Ln(x)z;;><k>(_l)kk!:1_”x+ a2 3! bt @

These polynomials have the following properties:

1. The generating function of these polynomials is indicated by:

efxz/ (1-2)

1—z -

> Lu®)z™, 2l < 1. (25)

n=0

g(xr Z) =

2. They satisfy the following recursive relation:

1 L, — L,
L1 (8 = 2Ln(®) — Ly (x) — ) n(’fi : 1) 26)

3. These polynomials possess a closure property under the convolution integral:
Ly(2) ® Lin(2) = Lytm(2) — Lytm+1(2)- 27

4. They also satisfy the following orthonormal condition, using the weight function e™:

ood LWLy (¥) = S
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Ghasempour Nesheli et al. SpringerPlus (2016) 5:1672

Since the polynomials form a complete set, any function can be expanded in terms of
them:

F(y) = Fulm(®), (29)

m=0
Following that we will have:
o0
Fu= [ e La0Fo). (30)
0

Based on the completeness property, any two arbitrary functions A(y) and B(y) can be
expanded in terms of Laguerre polynomials:

AG) =) Auln(®), BO) =) Buls(y). 31)
n=0

n=0

Assuming C(y) = A(y) @ B(y) = >_ney CuLn(y) and using the closure property, given
by Eq. (27), the following relations can be obtained between the expansion coefficients

n n
Co=) Aibyi=Y Biani (32)
i=0 i=0

where

aj=A;—A;i1, A1=0,

b;=B;—B,_1, B_1=0. (33)

If we wish to use the Laguerre polynomials to get the evolved parton densities, we
should change the interval of the y variable from (0, co) to (0, 1). Therefore, we need to
change the variables as in the following

x=e7, dx = —xdy,
y:1(000), x:(10)—s —(01). (34

Following that the orthonormal condition, given by Eq. (30), can be written as

1 1 1
/ dxLy, | In— |L,(In— | = S (35)
0 X X

Now the expansion of an arbitrary function F(x) would take the form
> 1
F(x) = F.L,(In- ),
() ;} nln ( n x) (36)

so as for expansion coefficient, F,, we can write

1
F, = / dxL, (ln 1>F(9c). 37
0 X
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Ghasempour Nesheli et al. SpringerPlus (2016) 5:1672

Now we are equipped with the required relations to extract the evolution operators
for parton densities in terms of the Laguerre polynomials which will be done in next
subsection.

Evolution operator for the non-singlet density: LO approximation
At the leading order (LO) approximation, Eq. (21) for the non-singlet evolution operator
can be written as

d
gE(_O) (t,x) = PO (x) @ E9 (¢, %), (38)

Substituting Eqs. (32, 33) in Eq. (38), we arrive at

pO =B 80, P =0 &

d S

S (E0®) = > puED @, (40)
m=0

By using the initial condition, given by Eq. (23), for non-singlet sector, the general

solution is

n (k) .k

(0) Ayt
EP@®) =0ty = (41)

k=0 ’
where
n—1
0 k

A;O) =1, A;kﬂ) = ZPE:—)iAz(‘ ), (42)

i=k

By substituting Eq. (42) in Eq. (41), the evolution operator for the non-singlet sector at
the LO approximation is determined and we can obtain parton densities at energy scale
Q? based on Eq. (17).

Evolution operator for the non-singlet density: NLO approximation
We intend now to obtain the solution of the following differential equation

A tx) = (P(O)(x) + 2R (x)) ® E_(t,%) (43)
ar v o —6%,

where R_is determined by Eq. (15). We can write the following Laguerre expansion for
R_

> 1
R_(x) =) RyL, <1n x) (44)
n=0

Similar Laguerre expansions exist for E_(¢,x) which by substituting in Eq. (43), using
Egs. (32, 33) we will arrive at

Page 7 of 40
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d - (0) o(f)
%(En(t)) = Z (Pn—m + %rnm)Em(t); (45)
m=0
where
ri=Ri—Ri—1, R ;=0 (46)

Now at the NLO approximation for E,(t), we can write

E.(t) = EQt) + AED ). (47)
To simplify the calculation we present AE,(ql) (t) by S,(¢). Therefore Eq. (45) can be writ-
ten as
d d - a(t)
) _ ©) (0)
Z(EP®)+ TS0 =Y (pnm + ann_m> (EQ®+5u®).  (@s)

m=0

Using Eq. (40) and the initial condition, given by Eq. (23), we will get

— a(0) &
Su(t) = —%%ﬂ“() > iEX (). (49)
i=0

In summary, the E,(¢) term up to NLO approximation would have the following form

a(t) — a(0)
En(t) = EP(t) — % TE,(})(t), (50)
where
©, << ALk 1
EQ@ =ty T BP0 =Y raiE0 ). 51)
k=0 ’ i=0

As in the LO approximation, by substituting Eq. (50) in the related expansion for
E_(t, x), the evolution operator for the non-singlet sector at the NLO approximation is
determined and finally the parton densities at any energy scale can be obtained by using
Eq. (17).

Evolution operator for the singlet and gluon densities
This subsection contains two parts. At first, the solutions for the singlet sector, ¢'*), and
gluon densities are introduced. At the next step, using the solution for singlet sector and

the y; distribution, it is possible to get the solution for qfr) which is defined by Eq. (5).
(+)

Then, by accessing the valence distribution from the previous subsection and the g;
distribution, sea quark distributions for individual flavors will be obtained. More details
of these calculations are as followed.

In order to be able to extract sea quark densities, at first Eq. (9) should be solved and in

terms of evolution operator, we will have [see Eq. (21)]:

Ly (t,x) = (p“’)(x)+iR (x)~|—~~) ® EL(t,%) (52)
ar T v ot A

Page 8 of 40
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The solution of this equation at the LO approximation is like the non-singlet case. At
the NLO approximation, we should just do the following replacements with respect to

the non-singlet case:
pP_ — P, E_—E, R_ — Ry. (53)

At the next step, Eq. (14) for singlet and gluon densities should be solved which at LO

and NLO approximations could be done as follows:

LO approximation
At LO approximation, for related evolution operator, we have [see Eq. (22)]

d < EQ (1) E;?(t,x)) (PR @ PR ESD (t,%) Eé§><t,x>>. (54)

dt\ EQt,x) EQ (6% | (Pég)(x) Pg(g’(x)> (Eg(g)(t,x) Eg) (t,%)

The matrix evolution operator in Eq. (54) can be expanded in terms of Laguerre poly-
nomials, so as

(0) (0) ol (0) )

EXt,x)  ERQ(tx) Engq(t)  Engg(t) 1
"o %) => - (0) o | Ln (ln ) (55)
qu (t, %) Egg (&, %) En,gq(t) En,gg(t) x

n=0

The general solution for elements of the matrix evolution, by analytical consideration
of moments, is as follows:

EQ(t,5) = e1(s) €1 4 ey(s) 20, (56)

where ey, ey are projection matrix operators with the following properties

er(s) +exs) =1, M) er(s) + ) exs) =PO(s), els)gis) = jeils).  (57)
A, (s) and A,(s) are eigenvalues of the PO (s) matrix which are given by

M) =i=- <:CF + g”fTR> (58)

and due to momentum conservation at each vertex of parton splitting, we will have
A,(1) = 0 (Furmanski and Petroznio 1982a, b).

Considering the Laguerre expansion of evolution operator and also the splitting func-
tion in the Matrix form and Eq. (22) which connect these two expansions to each other,

we will arrive at:

n

tk
EV0 =31 (A% + BPe). (59)
k=0 "~

In Eq. (59), the Af,,k) and B,Sk) coefficients are two dimensional matrix which are

obtained from the following recurrence relations (Furmanski and Petroznio 1982a, b)

AP =e), BY =¢, (60)

Page 9 of 40
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(k+1) (k) n—1 (0) (k)
A + A, n>0,
{ ¢ Y, 1)

Vl
(1) _ /le B(k)+2” 1 (0) B<k) k=0,1,2,...,n—1.

i=k P

In deriving theses recurrence relations, Eq. (32) is used. Based on Eq. (57) the required
matrix quantities in Eq. (61) are given by

e1=ei1(1), ex=eal),

1 1 62
=P, e= (P + 1) = —er +1. (62)
At the beginning we need the initial values for Aﬁ,k) and B,(qk) which are given by
0) 1 n (n)
A, —eg——(ela — (=1)"ey b, )
(63)
BO —¢ + — T (el al — (=1)"e, bﬁ,”)),
where
-1
At =jeraP + 3 pP 4P, al =0,
(64)

1
pEHD = g 0 +Z” pQ.B0, 0 g

Substituting the coefficients Ai,k) and Bg,k) in Eq. (59) and the result of the related
Laguerre expansion for the matrix evolution operator, the operator is obtained and we
are able to use Eq. (19) to evolve singlet and gluon densities at higher energy scales.
Equations (19, 20) at the LO approximation can be represented by:

gD t,%) = EQ (t,%) @ 3P (x) +E;§) t,%) ® G(x)
{ G(t,x) = E§q>(t, @GPV +EY (6,0 ® G@) (6

Using Eq. (65), we can obtain gluon and singlet distribution, ¢*), and then using the
evolved valence quark (non-singlet) and y; distributions, Eqs. (17, 18), the sea distribu-
tions at the LO approximation will be obtained [see Egs. (5, 6)]

1 1
= — e o) 14
6]z—2<XL+nfq —4q; > (66)

NLO approximation
The evolution operator in Eq. (22) at the NLO approximation is written as:

a(?)

E(t,x):E(O)(t,x)+ E(l)(t x). (67)

The LO contribution, E© (¢, x), is given by Eq. (59) and for the NLO contribution we
should use the following relations (Furmanski and Petroznio 1982a, b)

ENe) =EP® -2, 00 +ED, 0,  EYe=E%® =0, (68)

Page 10 of 40
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where E¥ can be obtained from E\, using the following integral:

t
EW () = / dre PN EP ¢ — ) RED (@) 6(n—i—j—k). 69)
0 ik

where R; is the expansion coefficients of R(x) in terms of Laguerre polynomials so as
> 1
Rx)=» R,L,(In-|.
(x) nzzo nLn < n x)

The sum in Eq. (69) should be used, considering the condition which is given by Dirac
Delta function, thatisn =i +j + k.

As before by accessing as well to the non-singlet and y; densities, using Egs. (19, 50, 59,
68) the sea quark densities at the NLO approximation can be extracted

Now equipped by the required theoretical framework, based on Laguerre polynomial
expansion, we will be able to get numerical results for the parton densities at any energy
scale.

Basic tools, Monte Carlo solutions

Here, we fully describe the numerical solutions of DGLAP evolution equations, using
the FORTRAN programing language. At first, we introduce the general representations
of programs, functions and subroutines which we are using in all our FORTRAN codes.
The programs are divided into two parts, including the LO and NLO approximations;
and each part contains a non-singlet and a singlet section. We then present the obtained
numerical results by depicting the related parton densities at Q* = 4, 50 and 200 GeV>.
We also compare our results with the related results from CETQ and GRSV phenom-
enological groups. Comparisons with other numerical results have also been carried out.

Functions, subroutines and main programs

We write the required codes in FORTRAN 90 language to solve numerically the DGLAP
evolution equations. The basic method to solve the integrals is to use Monte Carlo simu-
lations. The only generic subroutine used is Ran3 which generates random numbers. All
the other subroutines and function are written by us. We first introduce the functions
and subroutines written by us and we will then illustrate the compiled programs in dif-
ferent sections.

Run3(idum) function

This function generates random numbers with uniform distribution between 0 and 1
based on Park-Miller method and Knuth suggested corrections. Each negative integer
number can be considered as the input idum. The generation of this input should not
be changed when we call them subsequently. The order of the period interval of this
generation is 10% (Press et al. 1996). The random numbers are generated in the interval
[a, b], using Ran3 function base on the following formula

y = a+ (b — a)Ran3(idum). (70)
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Using Eq. (70) repeatedly, we can see that the generated numbers have uniform distri-
bution and therefore we can use them to perform Monte Carlo integrations.

Monte Carlo integration This method of integration is used to obtain the definite inte-
grals which are based on generating random numbers. There are generally two different
ways to do this kind of integration (Press et al. 1996).

I Averaged Monte Carlo integration

For function, flix) in the [a, b] interval, by getting the averaged function, f, its integra-
tion can be obtained as follows:

b
/ f@)ydx =(b - a)f. (71)

To calculate the averaged function, we first generate N random number with uniform
distribution in the [4, b] interval and then we get the averaged function, f, according to
N
Z Z,‘:Lf(xi) (72)

o = EEE

Therefore, Eq. (71) can now be written as (see Fig. 11)
’ ; 73
| s ~o - al. 73)
a

II. Monte Carlo integrations, based on pair point method

In the first step, the random number,x;, is generated uniformly in the [4, b] interval
[using Eq. (70)]. In the second step, the random number, y,, is generated in the [0, c]
interval in which ¢ > fiax and f,,, is the maximum value of the function fin the [a, b]
interval. Therefore, we achieve pairs of numbers (x;, y;) in a rectangle with b — a and ¢
dimensions. By repeating the generation processes in the first and second steps N times,

fx)

|
Fig. 1 1 Anarbitrary function, f and its averaged value. Il The generated pair number
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N pairs of numbers will be generated in the rectangle. According to Fig. 21II, if we count
m pairs of numbers which are below fix), we then have:

b m
/ f@dx ~ (b= aye (74)

We should note that for negative values of y,, we decrease one unit from m and con-
sider the absolute value of the function, f, to produce the related pair. This method is
more appropriate for huge complex integrals and by increasing the number of repeating
processes, N, we get a better solution. After specified iterations, we get to a converged
solution and we would not need to add to the number of repetitions.

Laguerre function, xlag(N,y,nmax)
The function xlag(N,Y,nmax) will give us numerical values for the Laguerre function at
each order. By accessing the Laguerre function at two successive orders n and n — 1,
the Laguerre function at the order n + 1 will be obtained using the following relation
(Arfken and Weber 2005):

(1 +x)Ly(x) — Ly—1(x)

Lpy1(x) = 2L, (%) — Ly—1(%) — P . (75)

Subroutine intp0(p0,ymin,ymax,ndat,nmax)

This subroutine will produce the Laguerre expansion coefficient of the splitting function,
using Monte Carlo integration. The input of this subroutine is the splitting function and
the output is an array which contains the subtraction of subsequent expansion coeffi-
cients and is denoted by p0.

Subroutine intR(R,ymin,ymax,ndat,nmax)

This subroutine will produce the expansion coefficients of a combined splitting function
at the NLO approximation in each order, using the Monte Carlo integration. The input
of this subroutine is the splitting function and the output is an array which contains the
subtraction of the subsequent expansion coefficients and is denoted by rn.

Splitting functions, FPnO(n,x,nmax),...
The outputs of these functions are the numerical values of splitting functions which are
multiplied by Laguerre coefficient in which the existing singularities are removed by the
plus prescription method. The plus prescription takes advantage the following relation
(Greiner et al. 1996):
/1 e J® [ f@—fD) 76)
0

A-x4 Jo 1—x

Function EOLag(y0,ELO,nmax)

Considering the Laguerre expansion for the evolution operator which was introduced in
subsection “Laguerre expansion’, the numerical values for this function can be obtained
at each order of Laguerre expansion in terms of ¢ and x variables.
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Functions ginq(z), ...

These functions are related to the parton densities at initial energy scale Q(Z) = 2.56 GeV?
and their combinations which could be found in Lai et al. (1997). These functions are
calculated using the generated random numbers, based on the Monte Carlo program.
The results of two CTEQ4L and CETQ4M fitting groups are used to give us the initial
parton densities at LO and NLO approximations respectively.

Function Zeta(is)
This function is defined by Ellis et al. (1996)

21
(6= o 77)
k=1

Function S2(Y)
The S2(Y) function is defined by Ellis et al. (1996)

2
So(x) = —2Lis(—x) + %Inz(x) —2In(x) In(1 +x) — %. (78)

where Li,(x) as a dilogarithm function can be approximated by:

x2 3

. * 1l—-y x x
le(x)=—/0 dy7=ﬁ+?+§+m Jor|x| < 1. (79)

The other required functions and subroutines will be introduced in the respective
sections.

The programs and the results
All programs are written in four parts:

Non-singlet sector at the LO approximation

In this case, we ate concerned with the evolution of valence quarks. So according to
notations of section “DGLAP evolution equations’, we just need to consider the DGLAP
equation for qi(f). To achieve this numerical solution, we do the following:

1. First, we should calculate numerically the expansion coefficients of splitting func-
tions, using Eq. (37) where we choose the upper limit of summation in Eq. (36)
equals to 30. To avoid the singularities which do exist in the splitting functions, we
take into account the splitting function while we multiply the function with x rather
than themselves and in the end, we display x times the parton densities. Therefore,
the expansion coefficients are obtained via the following relation:

1
PO = / dxL,(In (i))xpﬁ”(x), (80)
0

in which (Furmanski and Petronzio 1980):

1+ «2

- +

+ 35(1—x)>, (81)
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The contribution of Dirac delta function in Eq. (81) is given by:

1 1 3 3
5P = / dxLy(In ())XCF3(1 —x)=-Cr=2. (82)
0 x)" 2 2

Considering the rest of Pg) ) (x), the final result for Eq. (80) would be:

1 1 14 x2
PO —C / dxL,(In( = — = 4+ sPO.
M T A xL, | In x x(l o + 0P, (83)

By applying the plus prescription,Eq. (76), the final result for P,(qo) is given by:

L, (ln (}C))x(l +x2) —2
1—-wx)

1
PO — ¢ / dx +2. (84)
0

The integral in Eq. (84) is done numerically, using the pair point method [see Eq. (74)].
The result of integral is given by intp0 subroutine. The outputs of the program which
contain the differences between two subsequent expansion coefficients will be saved
in an array called p0(O:nmax) [see Eq. (39)].

2. Now using Eq. (42) it is possible to calculate numerically the matrix A. The sum
which is relating to A matrix in Eq. (42) is calculated in sumA(A,p0O, nmax) subrou-
tine, where p0 is the output of intp0 subroutine. Therefore A in sumA(A,pO,nmax)
subroutine is a two dimensional array which is presented by A(0 : kmax, 0 : #zmax)

in our program.

Therefore, the sum in Eq. (42) can be calculated by doing three loops over I, k and n
indices. The last index, I, contains by itself an additional sum. All these steps are per-
formed in sumA(A, p0, nmax) subroutine. The general solution for the A matrix is as

follows:
n=0 n=1 n=2
k=0 1 1 1
0 0 0
k=1 0 pg) pé)—i—p(l) . .
A= k= 0 0 [ 50 L P (85)

1. Now by considering the A matrix from step 2, and p0 from the first step, it is possible
to numerically calculate the evolution operator at LO approximation, using Eq. (41).

The related program is given by ELOn(ELO,A,p0,nmax) subroutine in which the vari-
able tat the LO approximation has been defined:

2 . aro(@
tto=——In

Bo " aro(Q)’ (86)

where

oy 4w 1
ao(Q7) = 5 7ln (%> 87)
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The required quantities in the definition of ¢ can be found in Gluck et al. (1998) [see

Eq. (3)].

1.

The convolution integral in Eq. (17) would now take the form:

1
¢ tn) =E (tx)®§ " x) = / E_ (t, ;) 7> (y)’jy, (88)

or alternatively:

1
g, :/ E_<t,x> 5 @, 89
q; '(t,x) ; ) [yq, (y)} )2 (89)

since in the CETQ4 parameterization (Lai et al. 1997), the initial densities are pre-
sented as x times the parton densities. Considering the Laguerre expansion of evolu-
tion operator, Eq. (89) can be written as:

1 nmax 1 dy
=) _ (0) ~(—)
q; (%) = / E(OLn| —— [yq» (Y)} = 90

i ; ngo n n x/y i yz ( )
where Eﬁ,o) (t) is given by Eq. (41). How to use it in the numerical calculation was
described in previous step. In Eq. (90) yZ]f_)(y) represents the initial parton densities
at energy scale Qg = 2.56 GeV2. The numerical solution of Eq. (90) is brought into
the main part of program. For this propose we first need to perform a loop over x in
the interval, say [0.001, 1] with the step 0.001 and then do the integration over y for
each value of x.

We perform the integration using the pair point method [Eq. (74)] which is speci-

fied in the program by the index pair This program is run at three energy scales
Q?* = 4, 50, 200 GeV? where the wall clock time depends on the produced random
numbers. The output of the program is labeled “Our result” The results are depicted in
Figs. 2, 3 and compared with CTEQ (Lai et al. 1997) and GRV (Gluck et al. 1995) param-
eterization groups.

Non-singlet sector at NLO approximation

In this case we should numerically solve Eq. (12) at the NLO approximation. We first

need to calculate R_ which was defined by Eq. (15). This section, like the previous one,

can be divided to four parts.

1. The required splitting functions at NLO approximation are could be found in Fur-

manski and Petronzio (1980), Herrod and Wada (1980). Whenever it is needed we
use the plus prescription technique to remove the singularities in the calculations
[see Eq. (76)]. To obtain the Laguerre expansion coefficients, all the splitting func-
tions should be multiplied by xL,(In 1/x) and then we need to perform numerical
integration as we did before [Eq. (80)]. It is required to separately perform the inte-
gration resulted from Dirac delta function in the splitting functions. These integrals
together with the integrals whose singularities have been removed and also the rest
of results, will produce the following functions which we need to run the program:

xRnglag, xP0qqlag, xPlnglag, PF, PA, xPGlag, fPG, xPNFlag, fPNF.

Page 17 of 40
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The subroutine which provides us with the Laguerre expansion coefficients of
P_, R_is called intpO(p0,rn,xmin,xmax,ndat,mmax). The contribution from Dirac
delta function in the splitting function can be expressed by:

1
5P = / dxL, <1n <1>) {CFs(l—x)<f L +6;(3)>
Jo X 2

Lercasa 1 e 6@ - CrTenpsl
+§pA(—x)ﬁ+§n—§() rTrne8(1 — x) +9n

3 1 17 11 2
=C? <§ - 5712 +6;(3)> + = CFCA<12 5 —? —6;(3)) CFTRn/< + 9712), 91)

8R,— =8P} _(x) — pr sPW© (x )_cp<—1n +6§(3)>
260 2
92)
+ e 17+— —6¢(3) | — CpTrn 1 2p —ﬁ(z)
g A 9 FIRTT 6 " 9 280

The numerical values, resulted from Egs. (91, 92) has been calculated in the intp0
subroutine. In continue, by adding all the contributions from the splitting function,
the related Laguerre expansion coefficients can be calculated as:

1
R, = / dxLy (ln <1>>xR_(x), 93)
0 X

R = <p;}§ - ‘;1 PO )) (94)
where P](\}S) " has been introduced in Ref. Furmanski and Petronzio (1980), Herrod and
Wada (1980).

The numerical solutions of Eq. (93) are calculated in the intp0 subroutine. The out-
puts of the subroutine are the differences between two subsequent coefficients of the
expansion which will be put in p0(0:nmax) and rn(0:nmax) as two dimensional arrays.

2. Now by accessing the two arrays p0(O:nmax) and rn(O:nmax) it is possible to cal-
culate the matrix A as before. The program does not need to be changed as we use
sumA(A,pO,nmax) again and we simply change its inputs.

3. In this step, considering the matrix A which was made in the second step and the val-
ues of p0 and rn which were calculated in the first step, it is possible to calculate the
expansion coefficients of evolution operators, 510) ®), Eﬁ,l)(t), E,(t) [see Egs. (50,
51)]. The related program is presented in ENLOn(ENLO,A,p0,rn,nmax) subroutine,
as it follows: At first the variable:

2 anio(Q?)
Lo = —— In INLOYS )
o= =g I o@D ©3)

should be used where the coupling constant at NLO approximation is given by:

a1 l_ﬁln(ln(Qz))
Bo In(2) Bi (%)

anro(Q*) = (96)
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The evolution operator at the NLO approximation in terms of the ¢ variable is written
as [see Eq. (50)]:

Bo @(Q*) — 2(Q})

B =B = o

ED@). 97)

After performing all the numerical calculations in the mentioned subroutine, the out-
put will be saved in a one dimensional array called ENLO.

1. This step is like step 4 of the previous part. The valence quark densities are obtained,
using the following convolution integral:

(¢, %) /1 ”fXE )L, |1 L [ =(=) (y)} dy
; X)) = n n| 1D —— i -
ql , —~ x/y yql y2 (98)
The expansion coefficients, E,(¢), can be obtained via:
x nmax 1
E_(t,-)= E,@)Ly|In—|. 99
- mon(o3y) >

Equation (99) is calculable with EOlag subroutine (see subsection “Function
EOLag(y0,ELO,nmax)”) where E_ is governed by Eq. (43) and since R_ and P_ are known,
the expansion coefficients, E,(z), are calculable.

To perform the integration in Eq. (98), we follow the previous method. The only dif-
ference is in the initial parton densities which would be the ones mentioned in Lai et al.
(1997)) but at NLO approximation. The results of running the programs for valence u
and d quark densities are depicted in Figs. 4, 5 and compared with the results from the
CTEQ (Lai et al. 1997) and GRV (Gluck et al. 1995) parameterization groups.

To indicate the reliability of our numerical calculations, we should provide their statis-
tical errors. This can be done, using the following relations:

NN
/fdx ~ (% — x1){f ) &+ (v —x1) M (99-a)

where “f” refers to related parton density. The last term in this equation indicated the
error of calculations where {f*) and (f)? are given respectively by:

(i) e ) (i)

In these relations N denotes to number of points where we used in the Mote Carlo
numerical integration.

As a result what we got for statistical errors of different valance densities at typical
value Q* = 50 GeV? and at the NLO approximation are as following:

xU, - %0.76, xD, — %0.33.
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As can be seen these errors are <1 % which indicates enough reliability of our calcu-
lations for valence densities. The complete information for the other statistical errors
at different energy scales for both LO and NLO approximations can be found in the
appendix.

Singlet sector at the leading order
In the singlet sector, we encounter functions which possess a matrix form. According to
subsection “DGLAP evolution equations’, we should solve the Matrix evolution equa-
tion and also the equation for y;, Eq. (14), in order to obtain the sea quark densities. First,
the Gluon and ¢ densities are obtained. Then, using the g and y;, it is possible to get
the ¢ densities. And finally, having the valence and qi(ﬂ, the sea quark densities for any
separate flavor is extractable.

For this section, two separate programs have been written and we first take into
account the solution for the gluon density.

Gluon distribution at leading order
To get the solution for gluon densities, we should note that in almost all parts of the cal-
culations we would encounter matrix form. This section involves three steps.

1. First, we need to define the splitting function (Furmanski and Petronzio 1980; Herrod
and Wada 1980)

o (P9 pO PO pO® .
PO = ("9 a | =("W 1B |=POUEJE), IEJE=12  (100)
qu ng P21 P22

As can be seen, the splitting function is defined by a two dimensional array.

As before the expansion coefficients of the splitting function should be determined
which perform a three dimensional array:

1 1
PO = / dxL,(In ())xp(o) (%),
0 x

PO = pOn, IE, JE).

(101)

Equation (101) is in fact a matrix form which should be applied for all the elements
in Eq. (100). It is obvious that we need to resort to the plus prescription technique to
overcome the singularities of integration in Eq. (101). The concerned integration has
been solved by the first method of numerical integration which is called the “averaged
method” [see Eq. (73)]. The numerical solution of the related integral is inserted in the
intp0(p0,el,e2,xmin,xmax,ndat,nmax) subroutine. The output of this subroutine is the
difference between the two subsequent expansion coefficients which is put in a one
dimensional array, named p0(0:nmax).

The projection operators e, and e, are finally given by Eq. (62):

1
el = ZP(O) (0,1E,JE) = el(IE,JE), ey = —e1 +1 = e2(IE,JE). (102)
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2. Secondly, we should computed the A and B matrices, given by Eq. (61). To define the
related arrays, we first consider the upper index (k) and then the lower index (n) and
then we proceed to the indices of the 2 x 2 projection matrices which are represented
by IE, JE symbols. So A and B construct 4 x 4 dimensional arrays which can be repre-
sented by:

A(0 : kmax, 0 : mmax, 2,2) — A(k, n,IE,JE),
B(0 : kmax, 0 : nmax, 2,2) — B(k, n,IE,JE). (103)

The limit of the arrays are specified in the left hand side of Eq. (103). The /E, JE symbol is
represented by 2 x 2 matrices.

Equations (61, 63, 64) are three recurrence relationships. To get the related solutions,
we first need to calculate them for n = 0. Therefore we will have:

{ai,o) =0 = a(()o)=0,

(104)
bO =0 = by =0,
a® =p0 =0, k>n

105

quk)zBﬁlk):O, k>n (105

AY =e, BY =ei, (106)

These are considered as the required constants in our calculations. To proceed, we
would consider # = 1; therefore, we would have

0
k+1 k 0 k) k=0 (1 0) (0 0
Y = deral + 3P0, A0 4 = p® 4P = pies
n=1 i=k
> o ) (107)
k+1 k 0 k) k=0 , 1 0) (0 0
B = Zies b + 30 p®, B K20 50— p0 B0 — p0,
i=k

0 1 1 1 0 1 0 0
Ag ) — ey — T(el ag ) _ (=Dley bi )> = Ag ) — ey — ’ (elpi )ez +egp§ >el)
—n=1 Al 1 ,
Bgo) =e+ o (61 ﬂil) —(=Dle, bi”) = BEO) =e+ 7 (611750)62 + 62[750)61)

(108)
k k 4 k) k=0
1 , (] =0 (1 0 0
A§+)=A€1A§)+Zpi_)i14l()—>A§)=)»61Ag)+p§)62
n=1 i=k
= o . (109)
k+1 k 0) pk) k=0 (1 , 0 0
B§ D —/leng ) +Zp§2i35 )—>B§ ) = —/Leng ) +p§ )el
i=k

The above relations can be extended to # > 1. So we can acquire all the required values
of A and B matrices. There are four A and B matrices which are given in the program by
IE, JE(qq, q8, g9, g8)- The general forms of the matrices are:
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A,B(k,n) =0, for k>n. (110)

All the calculation are performed in the ABELO(EO,p0,el,e2,nmax) subroutine. The
inputs of this subroutine are e;, e, and p0 matrices and the outputs are the Laguerre
expansion coefficients of the evolution operator, Eq. (59), at LO approximation, where
they are put in the three dimensional array EO(n,IE,JE).

3. By achieving the Laguerre expansion coefficients, the evolution matrix operator in the
Bjorken x space is calculable. Equation (55) is given by EOLag function which which is
called in the main program whenever is needed. We should note that at LO approxi-
mation, E* are equal toE”). The combinations which give us the required densities are

as follow:

0" =ai+a a =4’ =a-a = 4 =a +24 (111)
nf nf

dP == q"=> g +2a=q) +24u+q) +234+27 (112)
i=1 i=1

As before, the parton densities at initial energy scale Q3 = 2.56 GeV? are taken form
(Lai et al. 1997). The used density functions in the program are given by:

qing, qinl, qgind, qinqUb, qindb, qinSh, qinG

The first function is related to ¢'*). The second and the third ones are related to

valence quarks. The rest are related to sea quarks except the last one which is for the

gluon density.
~ 1 =~ ~ ~ ~
xd = E(x(alJru) +x(d—u)), (113)
~ 1 = ~ = ~
- 5(x(dﬂt) —x(d—u)), (114)
G =iyt dy 26+ d 45 (115)

The inputs of these functions are the generated random numbers by Monte Carlo
method which produce numerical values for the related parton densities at initial energy
scales. Since the density functions are appeared as xg, for 7 we will have:

%G =gy +xq) +2 Gy + %44 + xq5) (116)

Now, using the input density functions, the convolution integrals, Eq. (65) and the
function EOLag which is related to Eq. (55), it is possible to get the g™ and gluon densi-
ties as in the following:

i = [ 1 {meLf’;qun (02) pa o] + 3 B oL (n?) o) } D am
x n=0

2
n=0 y
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Gt = /xl {rga:XE;?g)q(t)Ln (ln %) {yé(ﬂ (y)} N Vlia:XE;?g)g(t)Ln (ln %) {)’GO’)} }dg

n=0 n=0 y
(118)

The integrals in Eqs. (117, 118) are obtained numerically based on the “average
method” [see Eq. (73)]. The above integrals are used in the main part of the program.
The results include ¢*) and gluon densities. We would require ¢ in further sections to
obtain the sea quark densities. The results of running the programs for gluon densities at
different energy scales are depicted in Fig. 6 compared to the results from the CTEQ (Lai
et al. 1997) and GRV (Gluck et al. 1995) parameterization groups.

Sea quark densities at LO approximation

This section contains two parts and for each part we require a separate program. At first,
the equation which is related to y distribution is solved. Then using the valence (obtained
in 4.2) and ¢ densities which were obtained in subsection “Gluon distribution at lead-
ing order”, we would be able to extract sea and gluon densities. This subsection is divided

to two steps:

1. At this step we should first solve Eq. (9) for y; distribution. The related solution is
like the one for the non-singlet distribution (subsection “Non-singlet sector at NLO
approximation”) except that the replacement given by Eq. (53) should be carried out.

Therefore we will have [see Eq. (13)]

d o

Txitx) = (P ) + SR+ () ® it ), (119)
where

Ri(x) = <P1(\}S)+ - fﬂlopgy(x)) (120)

The analytical form for P](\}SH_ can be found in Furmanski and Petronzio (1980), Her-
rod and Wada (1980). In the written program we need to define two functions (xRpolag,
xP1polag) which should be replaced by previous ones in subsection “Non-singlet sector
at NLO approximation” (xRuglag, xP1nglag). The other stages, are just the same as the
ones in section “Non-singlet sector at NLO approximation”. Since we have used R, and
P, the obtained coefficients are E,. And after that, it would be possible to obtain the
X, £) distribution in Bjorken x-space by Eq. (18).

The initial ; densities for separated quark flavor will be obtained, using the Eq. (66) as
follows:

X ¥ = ity + 2x0 — %xé(ﬂ,

x3q = xdy, + 2xd — T (121)
X5 = 205 — é’“}(ﬂ'
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The above functions are added to the program by the following names:
xkhill, xkhid, xkhiS, qing, qinlU, qgind, qinlU, qinUb, qindb, qinSbh, qinG .

Having accesses to the initial parton densities from Lai et al. (1997), which are recog-
nized by the tilde symbol, we will get the y; densities for separate flavor as in the following:

Xult) = [} E(6,%) [yt + 291 — 235 | %,
~ = - d
Xa(t.%) = [ Ev( )|y, +29d — 17| &,

1 < T
Xs(6, %) = fx E. (¢, %) 2ys — éyq(*‘) y%

(122)

The integrals in Eq. (122) can be solved numerically, using the “average method” [see
Eq. (73)]. The results would be the y; distributions at different energy scales.

2. It is now possible to get the sea quark densities at different energy scales, using

Eq. (66):
1 1
xit = — (qu + —xq® — xuv): (123)
2 ny
| 1
xd = 3 (de + —xq™ — xdv>, (124)
ny
1 1
5 — +
xS = 2<xxs+nfxq( )>. (125)

The required densities in Egs. (123-125), including the valence (subsection “Non-sin-
glet sector at NLO approximation”), y; [Eq. (122)] and ¢ (subsection “Gluon distribu-
tion at leading order”) distributions have been obtained before. The results of running
the programs for sea quark densities at energy scales, Q* = 4, 50, 200 GeV? are depicted
in Figs. 7, 8 and 9 and compared with the results from CTEQ (Lai et al. 1997) and GRV
(Gluck et al. 1995) parameterization groups.

Singlet sector at the next leading order
As before this section includes two subsections:

Gluon densities at NLO approximation

The required Laguerre expansion coefficients for the evolution operator is given by
Eq. (97). The E,(,D(t) term in Eq. (97) is defined by Egs. (68, 69). The only quantity in
Eq. (69) which should be determined is R;. In the following, the gluon at NLO approxi-
mation can be calculated based on the following steps.

1. The calculation of R;is done by a subroutine called intR(R,xmin,xmax,ndat,nmax).
Evolution of gluon densities is done by Eq. (14) where PY(x) and R(x) in Eq. (16) are
defined by:

1) 51 D »a
Py Py Py Py
P —

= PW(E,JE), IE,JE=1,2
p pM) p p (126)
89 f44 21 22
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(b0 fa) (% )2 (o8 o .
Ry Rg Y p ) Tagg\ pO PO ) (127)
while matrix form for PO(x) is given by Eq. (100). As before, these matrices are
defined by two dimensional arrays. The analytical expression for the splitting func-
tion at NLO approximation can be found in Furmanski and Petronzio (1980), Herrod
and Wada (1980). The used functions in the program whose singularities have been
removed by plus prescription technique [Eq. (76)] are:
xRqqlag, xRqglag, xRgqlag, xRgglag, xP0qqlag, xPOqglag, xP0gqlag, xPOgglag, xPlqqlag,
xPlqglag, xPlgqlag, xP1gglag, xFqqlag, xFlqglag, xF2qglag, xF1gqlag, xF2gqlag, xF3gqlag,
xF1gglag, xF2gglag, xF3gglag, fF3gg, xP1polag, PF, PA, xPGlag, fPG, xPNFlag, fPNF.
The required integrals are done numerically in the intR subroutine. The output of the
program is put in three dimensional arrays which are called R(0:nmax,2,2).

2. At this step the evolution operator £ should be calculated; this has been done in
subsection “Gluon distribution at leading order”. The only difference is in the defini-
tion of the ¢ parameter which should be redefined at NLO approximation. The matri-
ces A and B which are used to get the evolution operator are like before. So in this
step we can use a program similar to what has been written in subsection “Gluon dis-
tribution at leading order”. This program contains the following functions and sub-
routine:

intp0, POqq, POqg, POgg, POgg, ABELO, NFAC, EOLag

After computing A and B matrices, as before we will have

ik
t ,
EX (tnro) =Y L;f,o (A;(qk) +B,(,k)e”NLO) (128)
k=0 ’

In this equation, we use different values for t and we denote Eq. (128) by the func-
tion: EOt(nBIBJBt,A,B,nmax). The inputs of this function are the indices of the 2 x 2
matrix elements, A and B matrices and the ¢ variable. The output of the function is
the numerical values of Laguerre expansion coefficients for evolution operator.

3. To get EY in Eq. (68) we should solve the integral in Eq. (69). For this purpose we
should first solve the sum in the integrand of this equation. So Eq. (69) can be written
as:

t
ED @) = / dt e %3 (ERE) (¢, 1), (129)
0
where

(ERE),(t,1) =Y E(t — DR E (1) 8(n—i—j— k). (130)
ij,k

The Er(,o) (t) terms can be calculated using the EOt function [see Eq. (128)]. The R; was

calculated before as the R(0:nmax,2,2) array (step.1) which can be considered as the

input of the program. So we should write a program which calculates the sum in

Eq. (130) by taking into account the Dirac delta function and also do the matrix multi-

plication. The details of the program can be found in the following subroutine:

SUMERE (n, to, tNLO, A, B, R, SEREqq, SEREqg, SEREgq, SEREgg, nmax).
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The outputs are the four elements of the matrix which are related to the sum in
Eq. (130).

4. In this step we first calculate the integral in Eq. (129) and we would obtain the related
Laguerre expansion. Then we do the loop over the order of Laguerre expansion since
we are going to calculate the integral in Eq. (129) at each order n. The 7 variable is
obtained by generating the random number, RAN3, in the interval [0, fnzo] so as
Press et al. (1996)

T = tno RAN 3 (idum) (131)

Now we give the random number to the SUMERE subroutine. Then we call this sub-
routine for each generated random number in which we are able to calculate the sum
in Eq. (130). To increase the precision of calculations we need to generate more ran-
dom numbers which consequently increase the wall clock time. The integrals can
be calculated, using the “average method” [see Eq. (73)]. We should note that four
integrals are calculated which are in fact the elements of the matrix evolution oper-
ator E5" (¢). The solutions of these integrals are put in the three dimensional array
Et1(—2:nmax,2,2) where the first two terms of this array for all elements of the 2 x 2
matrices are zero [see Eq. (68)].

We continue to calculate the required expression in Eq. (68). The E,(,D(t) term is
appeared as an array by the name EI(0:nmax,2,2). This array is put inside the n*”
loop. The term, relating to n = 0 is computed, using the first two terms which were
introduced in Eq. (68). The other terms, relating to the Laguerre expansion at NLO
approximation are obtained by iterating the loop over n, IE, JE indices.

In the end, using this subroutine and the function E0¢t which was obtained before,
we can calculate the related Laguerre expansion coefficients at the NLO approxima-
tion, based on Eq. (97). All the required mentioned tasks are gathered in a subroutine
called intE(En,A,B,R,ndat,nmax). This is the most important part of the program. The
outputs are the expansion coefficients of the evolution operator as 2 x 2 matrices.

5. Now by getting the Laguerre expansion for the evolution operators and the parton
densities at the initial energy scale Qj = 2.56 GeV?, we can obtain the evolved parton
densities at any desired energy scale. The process is like the one for the LO approxi-
mation. In this case we will have

00 [ {5 b (o) 0]+ et 02) po] |5
x n=0 n=0

(132)
6t = [ {%a:xfn,gqmn (0 2) 0] + - Eugrta(in2) 60 }‘;Z
x =0 n=0
(133)

The initial parton densities at the NLO approximations are taken from Lai et al.
(1997) which are designated in Eqgs. (132, 133) by tilde symbol. The list of the required
functions is:

qing, qinlU, qind, qinqgUb, qindb, qinSh, qinG

The integrals in Eqs. (132, 133) are numerically calculated, using the “average method”
[see Eq. (73)]. The solution of integrals is brought into the main part of the program.
The results are gluons and g* densities (singlet sector); the singlet densities will be
used in the next section to obtain the sea densities. The outputs of this program are
the evolved gluon densities at different energy scales which are depicted in Fig. 10 and
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are compared with the CTEQ (Lai et al. 1997) and GRV (Gluck et al. 1995) param-
eterization groups.

If we wish to calculate the statistical error for gluon density, we should resort to
Eq. (99-a). What we get for the required error at the typical energy scale Q* = 50 GeV? in
the NLO approximation is %1.78 which indicates good precision in our calculations for
gluon densities (for more information, see the “Appendix”).

Sea quark densities at the NLO approximation

The objective of this subsection is to obtain the sea quark densities at the NLO approxi-
mation. The entire procedure is like what we have been done for LO approximation (see
subsection “Sea quark densities at LO approximation”). The required relations to obtain the
sea quark densities are given by Egs. (123—125). Here, two programs should be run. The first
program gives the gluons [see Eqgs. (132, 133)]. The second program, which uses the results
of the first program (") and the results of the program which gave us the y; densities [see
Eq. (122) and Eq. (98)] that gave us the valence densities [qff), see Eq. (98)], would yield the
sea densities [see Eqgs. (123—125)] at different energy scales in the NLO approximation. The
results and the comparisons with the CTEQ (Lai et al. 1997) and GRV (Gluck et al. 1995)
parameterization groups are presented in Figs. 11, 12 and 13 for different quark flavors.

As can be seen from Fig. 13 our results for the strange sea quark densities are in good
agreement with the CETQ4 M and GRSV98NLO parameterization groups. The results
from Ref. Coriano and Savkli (1999) indicate completely different behavior with respect
to the fitting parameterization models as well as with respect to our results. This con-
firms the validity of our calculations for numerically obtaining the evolved parton
densities.

To provide the statistical error for the sea parton densities we need again to resort to
Eq. (99-a). The obtained errors at the typical energy scale Q*> = 50 GeV? for the NLO
approximation are as following (see appendix as well):

xld — %017, xD — %02, xS — %0.076.

Once again the small values for the statistical errors indicated enough precision of the
employed numerical integration to evolve the parton densities

Conclusion

In this paper, we have presented numerical solutions for the DGLAP evolution equa-
tions, based on the Laguerre polynomials expansion (Furmanski and Petroznio 1982a,
b). Although people can use other methods especially in the Mellin moment space, the
method which we used in this article has this specific feature that we do not need to
change the space of calculations. In fact, all the computations have been done in the
Bjorken x-space. We have tried to explain all the steps of performing the FORTRAN
codes which produce parton densities at high energy scales. Since we have just used
FORTRAN package, it means that all calculation have been done numerically. The main
program can be requested from the authors via the E-mail address: a.mirjalili@yazd.ac.ir.
The results are in good agreement with CETQ (Lai et al. 1997) and GRV (Gluck et al.
1995) parameterization groups. This confirms the validity of our numerical solutions
for the DGLAP evolution equations. Our results for parton densities are much better
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than what have been represented in Coriano and Savkli (1999) especially for sea strange
and gluon densities at the NLO approximation. Also the results are comparable with the
results of Kobayashi et al. (1995), Schoffel (1999). A very precise technique for achieving
numerical solutions for the DGLAP evolution equations can be found in Botje (2011).
Also, in Kumano and Nagai (2004), a comparison between different methods, including
the Laguerre polynomials expansion has been done which reveals how it is reliable to
use the Laguerre polynomials to get such solutions.

This method can be extended to evolve the polarized parton densities in a numerical
way which we hope to report them in future. Further, we can evolve nucleon structure
functions with two methods. One which is based on the Jacobbi polynomials expansion.
The other method is related to the evolved nucleon structure function, using the evolved
parton densities by Laguerre polynomials expansion as we have done in this article.
Comparing these two methods provides us with the opportunity to obtain the QCD cut
off parameter (Ghasempour Nesheli et al. 2015).
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Appendix

In the following tables, we listed the numerical values for the statistical error of all par-
ton densities at different energy scales. Tables 1 and 2 are related to the LO and NLO
approximations respectively.

Table 1 Numerical values for the statistical error of patron densities at the LO approxima-
tion

LO approximation

xq xu, (%) xd, (%) xg (%) XU (%) x (,_i (%) xs (%)
4 GeV? 0.699 0.313 2.05 0.186 0.197 0.077
50 GeV? 0.631 0.280 1.81 0.163 0174 0.079
200 GeV? 0.605 0.268 1.72 0.158 0.168 0.078

Table 2 Numerical values for the statistical error of patron densities at the NLO approxi-
mation

NLO approximation

xq xu, (%) xd, (%) xg (%) XU (%) x 6_1 (%) xs (%)
4 GeV? 0.760 0.329 1.78 0.168 0.196 0.076
50 GeV? 0.659 0.285 157 0.156 0.180 0.080

200 GeV? 0.626 0.270 1.46 0.150 0.172 0.079
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