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Background
Boundary value problems (BVP) at resonance have been studied in many papers for 
ordinary differential equations (Feng and Webb 1997; Guezane-Lakoud and Frioui 2013; 
Guezane-Lakoud and Kılıçman 2014; Hu and Liu 2011; Jiang 2011; Kosmatov 2010, 
2006; Mawhin 1972; Samko et al. 1993; Webb and Zima 2009; Zima and Drygas 2013), 
most of them considered the existence of solutions for the BVP at resonance making 
use of Mawhin coincidence degree theory (Liu and Zhao 2007). In Guezane-Lakoud and 
Kılıçman (2014), Han investigated the existence and multiplicity of positive solutions for 
the BVP at resonance by considering an equivalent non resonance perturbed problem 
with the same conditions. More precisely, he wrote the original problem u′′ = f (t,u) as

under the conditions β ∈
(

0, π
2

)

 and f : [0, 1] × [0,∞[→ R is continuous and 
f (t,u) ≥ −β2u. This result has been improved by Webb et  al., in Samko et  al. (1993) 
where the authors investigated a similar problem with various nonlocal boundary 
conditions.

In a recent study Mawhin (1972), Nieto investigated a resonance BVP by an other 
approach, that we will apply to a fractional boundary value problem to prove the exist-
ence of solutions.

The goal of this paper is to provide sufficient conditions that ensure the existence of 
solutions for the following fractional boundary value problem (P)

u′′ + β2u = f (t,u)+ β2u = g(t,u)

(1)cD
q
0+
u(t) = f

(

t,u(t),u′(t)
)

, 0 < t < 1,
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where f ∈ C([0, 1]× R× R,R), 2 < q < 3, cDα
0+

 denotes the Caputo’s fractional deriva-
tive. The problem (P) is called at resonance in the sense that the associated linear homo-
geneous boundary value problem

has u(t) = ct2, c ∈ R as nontrivial solutions. In this case since Leray-Schauder continu-
ation theory cannot be used, we will apply some ideas from analysis. Although these 
techniques have already been considered in Mawhin (1972) for ordinary differential 
equation but the present problem (P) is different since the nonlinearity f depends also on 
the derivative and the differential Eq. (1) is of fractional type.

Fractional boundary value problems at resonance have been investigated in many 
works such in Bai (2011), Han (2007), Infante and Zima (2008), where the authors 
applied Mawhin coincidence degree theory. Further for the existence of unbounded 
positive solutions of a fractional boundary value problem on the half line, see Guezane-
Lakoud and Kılıçman (2014).

The organization of this work is as follows. In Sect. 2, we introduce some notations, 
definitions and lemmas that will be used later. Section 3 treats the existence and unique-
ness of solution for the perturbed problem by using respectively Schaefer fixed point 
theorem and Banach contraction principal. Then by some analysis ideas, we prove that 
the problem (P) is solvable. Finally, we illustrate the obtained results by an example.

Preliminaries
In this section, we present some Lemmas and Definitions from fractional calculus the-
ory that can be found in Nieto (2013), Podlubny (1999).

Definition 1  If g ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional integral 
is defined by

Definition 2  Let α ≥ 0, n = [α] + 1. If g ∈ Cn[a, b] then the Caputo fractional deriva-
tive of order α of g defined by

exists almost everywhere on [a, b] ([α] is the integer part of α).

Lemma 3  For α > 0, g ∈ C([0, 1],R), the homogenous fractional differential equation 

has a solution 

where, ci ∈ R, i = 0, . . ., n− 1, here n is the smallest integer greater than or equal to α.

(2)u(0) = u′(0) = 0, u′′(0) = 2u(1),

cD
q
0+
u(t) = 0,u(0) = u′(0) = 0, u′′(0) = 2u(1),

Iαa+g(t) =
1

Ŵ(α)

∫ t

a

g(s)

(t − s)1−α
ds.

cDα
a+g(t) =

1

Ŵ(n− α)

∫ t

a

g (n)(s)

(t − s)α−n+1
ds,

cDα
a+g(t) = 0

g(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1,
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Lemma 4  Let p, q ≥ 0, f ∈ L1[a, b]. Then Ip
0+
I
q
0+
f (t) = I

p+q
0+

f (t) = I
q
0+
I
p
0+
f (t) and 

cD
q
0+
I
q
0+
f (t) = f (t), for all t ∈ [a, b].

Now we start by solving an auxiliary problem.

Lemma 5  Let 2 < q < 3 and y ∈ C[0, 1]. The linear fractional boundary value problem

has a solution if and only if Iq
0+
y(1) = 0, in this case the solution can be written as

where

Proof  Applying Lemma 3 to (3) we get

Differentiating both sides of (6), it yields

The first condition in (3) gives c0 = c1 = 0, the second one implies that Iq
0+
y(1) = 0, 

hence (3) has solution if and only if Iq
0+
y(1) = 0, then the problem (3) has an infinity of 

solutions given by

Now we try to rewrite the function u. We have

then

substituting c by its value in (9) we obtain

(3)

{

cD
q
0+
u(t) = y(t).

u(0) = u′(0) = 0, u′′(0) = 2u(1),

(4)u(t)− t2u(1) =
1

Ŵ(q)

∫ 1

0

H(t, s)y(s)ds,

(5)H(t, s) =







(t − s)q−1 + t2(1− s)q−1, s ≤ t,

t2(1− s)q−1, t ≤ s.

(6)u(t) = I
q
0+
y(t)+ c0 + c1t + c2t

2.

(7)u′(t) = I
q−1

0+
y(t)+ c1 + 2c2t,

(8)u′′(t) = I
q−2

0+
y(t)+ 2c2.

(9)u(t) = I
q
0+
y(t)+ c2t

2.

u(1)− u′′(0) = −I
q
0+
y(1)+ c

c = I
q
0+
y(1)+ u(1)

u(t) = I
q
0+
y(t)+ t2I

q
0+
y(1)+ t2u(1)

=
1

Ŵ(q)

∫ 1

0

H(t, s)y(s)ds + t2u(1),
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Hence the linear problem can be written as

where H(t, s) =

{

(t − s)q−1 + t2(1− s)q−1, s ≤ t,

t2(1− s)q−1, t ≤ s.
 The kernel H(t,  s) is continuous 

according to both variables s, t on [0, 1]× [0, 1] and is positive. � �

Consequently the nonlinear problem (1) is transformed to the integral equation

Define a new function v(t) = u(t)− t2u(1). To find a solution u we have to find v and 
u(1). Note vc(t) = u(t)− t2c, we try to solve for every vc the problem

if vc is a solution of (11) with c = u(1) then u is a solution of (1).

Existence and uniqueness results
Let E be the Banach space of all functions u ∈ C1[0, 1] into R, equipped with the norm 
�u� = max

(

�u�∞,
∥

∥u′
∥

∥

∞

)

 where �u�∞ = maxt∈[0,1] |u(t)|. Denote by L1([0, 1],R) 
the Banach space of Lebesgue integrable functions from [0, 1] into R with the norm 
∥

∥y
∥

∥

L1
=

∫ 1

0

∣

∣y(t)
∣

∣dt. Define the integral operator T : E → E by

and the corresponding perturbed operator Tc : E → E by

Theorem 1  Assume that there exist nonnegative functions g, h, k ∈ L1
(

[0, 1],R∗
+

)

 and 
0 ≤ α < 1 such that

Then the map Tc has at least one fixed point v∗ ∈ E.

We apply Schaefer fixed point theorem to prove Theorem 1.

Theorem 2  Let A be a completely continuous mapping of a Banach space X into it self, 
such that the set {x ∈ X : x = �Ax, 0 < � < 1} is bounded, then A has a fixed point.

Proof of Theorem 1  By Arzela-Ascoli Theorem we can easly show that Tc is a completely 
continuous mapping.

u(t)− t2u(1) =
1

Ŵ(q)

∫ 1

0

H(t, s)y(s)ds,

(10)u(t)− t2u(1) =
1

Ŵ(q)

∫ 1

0

H(t, s)f (s,u(s),u′(s))ds.

(11)vc(t) =
1

Ŵ(q)

∫ 1

0

H(t, s)f (s, vc(s)+ cs2, v′c(s)+ 2cs)ds,

(12)Tu(t) = t2u(1)+
1

Ŵ(q)

∫ 1

0

H(t, s)f
(

s,u(s),u′(s)
)

ds,

(13)Tcv(t) =
1

Ŵ(q)

∫ 1

0

H(t, s)f
(

s, v(s)+ cs2, v′(s)+ 2cs
)

ds.

(14)
∣

∣f (t, x, x)
∣

∣ ≤ k(t)|x|α + h(t)|x|α + g(t), ∀(t, x, x) ∈ [0, 1]× R
2,

(15)Ŵ(q)− (q + 1)
(∥

∥k
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

> 0.
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Now, let us prove that the set {v ∈ E : v = �Tcv, 0 < � < 1} is bounded. Endeed for 
� ∈ (0, 1) such that v = �Tc(v), we have

remarking that H(t, s) is continuous according to both variables s, t on [0, 1]× [0, 1], non-
negative and 0 ≤ H(t, s) ≤ 2 then using assumptions (14) and (15), we get

thus,

Let H ′(t, s) = Ht(t, s) =

{

(q − 1)(t − s)q−2 + 2t(1− s)q−1, s ≤ t,

2t(1− s)q−1, t ≤ s.
, then Ht(t, s) is  

continuous according to both variables s,  t on [0, 1]× [0, 1], nonnegative and 
0 ≤ Ht(t, s) ≤ q + 1. We have

Similarly we get

From (16) and (17) it yields

From here one can get

we conclude that v is bounded independently of �, then Schaefer fixed point theorem 
implies Tc has at least a fixed point. Hence equation

has at least one solution in E. The proof is complete. � �

v(t) =
�

Ŵ(q)

∫ 1

0

H(t, s)f (s, v(s)+ cs2, v′(s)+ 2cs)ds,

|v(t)| ≤
2�

Ŵ(q)

∫ 1

0

[

k(s)
∣

∣

∣
v(s)+ cs2

∣

∣

∣

α

+ h(s)
∣

∣v′(s)+ 2cs
∣

∣

α
+ g(s)

]

ds

≤
2

Ŵ(q)

[
∥

∥k
∥

∥

L1
(�v�∞ + |c|)α +

∥

∥h
∥

∥

L1

(
∥

∥v′
∥

∥

∞
+ 2|c|

)α
+

∥

∥g
∥

∥

L1

]

≤
2max

(∥

∥k
∥

∥

L1
,
∥

∥h
∥

∥

L1

)

Ŵ(q)
(�v� + 2|c|)α +

2

Ŵ(q)

∥

∥g
∥

∥

L1
,

(16)�v�∞ ≤
2max

(∥

∥k
∥

∥

L1
,
∥

∥h
∥

∥

L1

)

Ŵ(q)
(�v� + 2|c|)α +

2

Ŵ(q)

∥

∥g
∥

∥

L1
.

v′(t) =
�

Ŵ(q)

∫ 1

0

Ht(t, s)f (s, v(s)+ cs2, v′(s)+ 2cs)ds.

(17)
∥

∥v′
∥

∥

∞
≤

(q + 1)max
(∥

∥k
∥

∥

L1
,
∥

∥h
∥

∥

L1

)

Ŵ(q)
(�v� + 2|c|)α +

q + 1

Ŵ(q)

∥

∥g
∥

∥

L1
.

(18)�v� ≤
(q + 1)max

(∥

∥k
∥

∥

L1
,
∥

∥h
∥

∥

L1

)

Ŵ(q)
(�v� + 2|c|)α +

q + 1

Ŵ(q)

∥

∥g
∥

∥

L1
.

�v� ≤
Ŵ(q)

Ŵ(q)− (q + 1)max
(∥

∥k
∥

∥

L1
,
∥

∥h
∥

∥

L1

)

(

2|c| + 1+
q + 1

Ŵ(q)

∥

∥g
∥

∥

L1

)

,

(19)v(t) =
1

Ŵ(q)

∫ 1

0

H(t, s)f
(

s, v(s)+ cs2, v′(s)+ 2cs
)

ds.
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The uniqueness result is given by the following Theorem:

Theorem 3  Assume there exist nonnegative functions g , h ∈ L1([0, 1],R+)  such that for 
all x, y, x, y ∈ R, t ∈ [0, 1]one has

Then Tc has a unique fixed point v∗c  in E.

Proof  Let v and w ∈ E, then by (20) we get

thus

Similarly we get

consequently

where l = (q+1)
(

�g�L1+�h�L1
)

Ŵ(q) . The assumption (21) implies that l < 1, so the Banach 
contraction principle ensure the uniqueness of the fixed point. The proof is complete. ��

Let us remark that under the assumptions of Theorem  3, the map � : R → E, 
�(c) = v∗c is continuous. Moreover the map � : R → R, � = � ◦� ,�(c) = v∗c (1) is also 
continuous, where � : E → R, �(v) = v(1) and v∗c  is the unique fixed point of Tc.

Let us show that the problem (1–2) is solvable.

(20)
∣

∣f (t, x, x)− f (t, y, y)
∣

∣ ≤ g(t)
∣

∣x − y
∣

∣+ h(t)
∣

∣x − y
∣

∣,

(21)Ŵ(q)− (q + 1)
(
∥

∥g
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

> 0.

|Tcv(t)− Tcw(t)| ≤
1

Ŵ(q)

∫ 1

0

H(t, s)

×

∣

∣

∣
f (s, v(s)+ cs2, v′(s)+ 2cs)− f (s,w(s)+ cs2,w′(s)+ 2cs)

∣

∣

∣
ds

≤
1

Ŵ(q)

∫ 1

0

H(t, s)
(

g(s)|v(s)− w(s)| + h(s)
∣

∣v′(s)− w′(s)
∣

∣

)

ds

≤
2�v − w�

(∥

∥g
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

Ŵ(q)
,

(22)�Tcv − Tcw�∞ ≤
2
(∥

∥g
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

Ŵ(q)
�v − w�.

(23)
∥

∥T ′
cv − T ′

cw
∥

∥

∞
≤

(q + 1)
(∥

∥g
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

Ŵ(q)
�v − w�,

�Tcv − Tcw� ≤
(q + 1)

(∥

∥g
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

Ŵ(q)
�v − w�

≤ l�v − w�,
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Theorem 4  Under the assumptions of Theorems 1 and  3 and if

uniformly on [0.1], then the problem (1–2) has at least one solution in E. ((u, v) → +∞, 
ie. u → +∞ and v → +∞).

Proof  The condition lim(u,v)→±∞ f (t,u, v) = ±∞ is assumed to avoid the case 
f (t,u(t),u′(t)) = y(t) where the problem may have no solution (in the case Iq

0+
y(1) �= 0). 

If we prove that limc→±∞�(c) = ±∞, then there exists c∗ ∈ R such that �(c∗) = 0 conse-
quently c∗ = uc∗(1) hence uc∗(t) = v∗c∗(t)+ t2c∗ is a solution of the nonlinear problem (1–2).

Now taking into account (18) we get limc→+∞
�v∗c�
c = 0. Since the norms of 

(

v∗c (s)+ cs2
)

 and 
(

v∗′c (s)+ 2cs
)

 growth asymptotically as c,   H(t, s) is nonnega-
tive and continuous and lim(u,v)→±∞ f (t,u, v) = ±∞, then from (19) it yields 
limc→±∞�(c) = ±∞. The proof is complete. � �

Example 5  The following fractional boundary value problem

is solvable in E.

Proof  We have q = 5
2
 and

where

some calculus give

Applying Theorem 1 we conclude that the map Tc has at least one fixed point v∗ ∈ E. 
Now we have

lim
(u,v)→±∞

f (t,u, v) = ±∞

(24)







cD
5
2

0+
u(t) =

�

1+t2
�

8

�

u
7
3

1+u2
+

(u′)
7
3

1+(u′)2

�

+ (1+ t)2, 0 < t < 1,

u(0) = u′(0) = 0, u′′(0) = 2u(1),

∣

∣f (t, x, x)
∣

∣ =

∣

∣

∣

∣

∣

(

1+ t2
)

8

(

x
7
3

1+ x2
+

x
7
3

1+ x2

)

+ (1+ t)2

∣

∣

∣

∣

∣

≤

(

1+ t2
)

8
|x|

1
3 +

(

1+ t2
)

8
|x|

1
3 + (1+ t)2

≤ k(t)|x|
1
3 + h(t)|x|

1
3 + g(t),

k(t) = h(t) =

(

1+ t2
)

8
, g(t) = (1+ t)2,

∥

∥k
∥

∥

L1
=

1

6
,

Ŵ(q)− (q + 1)
(∥

∥k
∥

∥

L1
+

∥

∥h
∥

∥

L1

)

= 0.16267 > 0.

∣

∣f (t, x, x)− f (t, y, y)
∣

∣

≤

(

1+ t2
)

8

∣

∣

∣

∣

∣

x
7
3

1+ x2
−

y
7
3

1+ y2

∣

∣

∣

∣

∣

+

(

1+ t2
)

8

∣

∣

∣

∣

∣

x
7
3

1+ x2
−

ȳ
7
3

1+ ȳ2

∣

∣

∣

∣

∣

≤ (0.8)

(

1+ t2
)

8

∣

∣x − y
∣

∣+ (0.8)

(

1+ t2
)

8

∣

∣x − y
∣

∣

= G(t)
∣

∣x − y
∣

∣+H(t)
∣

∣x − y
∣

∣,
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where G(t) = H(t) = (0.1)
(

1+ t2
)

, hence we get

In view of Theorem 3, Tc has a unique fixed point v∗c  in E. It is easy to see that

From the above discussion and Theorem 4 we conclude that the problem (24) is solv-
able in E. �

Conclusion
The goal of this paper was to provide sufficient conditions in order to ensure the exist-
ence of solutions for the following fractional boundary value problem

where f ∈ C([0, 1]× R× R,R), 2 < q < 3, cDα
0+

 denotes the Caputo’s fractional deriva-
tive. By using fixed point theorems we proved that the perturbed problem has a solution, 
then we also show that the original problem is solvable. An example is provided n order 
to illustrate the results.
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