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Background
Based on the work of Antczak (2005) on the V-r-invex functions, Zalmai (2013a) gen-
eralized and investigated some multi-parameter generalizations of the parametri-
cally sufficient efficiency results under various Hanson–Antczak-type generalized 
(α,β , γ , ξ , ρ, θ)-V-invexity assumptions for the semi-infinite multi-objective fractional 
programming problems. Recently, Verma (2013a, 2014) has explored and investigated 
some results on the multi-objective fractional programming based on new ǫ-optimal-
ity conditions, and second-order (�, η, ρ, θ)-invexities for parameter-free ǫ-efficiency 
conditions. Based on the on-going research advances in several areas of multi-objec-
tive programming, we observe that the field of the semi-infinite nonlinear multi-objec-
tive fractional programming problems seems to be still less explored compared to the 
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general area of mathematical programming. For more details, we refer the readers to 
Antczak (2005, 2009), Ben-Israel and Mond (1986), Brosowski (1982), Chen and Hu 
(2009), Craven (1981), Daum and Werner (2011), Ergenç et al. (2004), Fiacco and Kor-
tanek (1983), Giorgi and Guerraggio (1996), Giorgi and Mititelu (1993), Glashoff and 
Gustafson (1983), Goberna and López (1998, 2001), Gribik (1979), Gustafson and Kor-
tanek (1983), Hanson (1981), Hanson and Mond (1982), Henn and Kischka (1976), Het-
tich (1976), Hettich and Kortanek (1993), Hettich and Zencke (1982), Jess et al. (2001), 
Jeyakumar and Mond (1992), Kanniappan and Pandian (1996), López and Still (2007), 
Martin (1985), Miettinen (1999), Mititelu (2004, 2007), Mititelu and Postolachi (2011), 
Mititelu and Stancu-Minasian (1993), Mond and Weir (1981), Neralić and Stein (2004), 
Pini and Singh (1997), Reemtsen and Rückmann (1998), Reiland (1990), Sawaragi et al. 
(1986), Verma (2013a, b, 2014, 2016), Weber (2002), Weber et al. (2008a, b, 2009), Weber 
and Tezel (2007), White (1982), Winterfeld (2008), Yu (1985), Zalmai (1998, 2013a, b, c).

In this paper, we plan to introduce the new notion of the random exponential Han-
son–Antczak type (α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-invexity, which generalizes most of the 
existing notions in the literature, and then establish some results on random function 
h(·, ·, ·) to the context of a class of asymptotically sufficient efficiency conditions in semi-
infinite multi-objective fractional programming.

Now we consider the following semi-infinite multi-objective fractional programming 
problem based on the random exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-invexity:

subject to

where p, q, and r are positive integers, X is a nonempty open convex subset of Rn 
(n-dimensional Euclidean space) for each j ∈ q ≡ {1, 2, . . . , q} and k ∈ r, Tj and Sk are 
compact subsets of complete metric spaces for each i ∈ p, fi and gi are real-valued func-
tions defined on X, for each j ∈ q, Gj(·, t) is a real-valued function defined on X for all 
t ∈ Tj, for each k ∈ r, Hk(·, s) is a real-valued function defined on X for all s ∈ Sk, for 
each j ∈ q and k ∈ r, Gj(x, ·) and Hk(x, ·) are continuous real-valued functions defined, 
respectively, on Tj and Sk for all x ∈ X, and for each i ∈ p, gi(x) > 0 for all x satisfying 
the constraints of (P).

As a matter of fact, all the parametric sufficient efficiency results established in this 
paper regarding problem (P) can easily be modified and restated for each one of the fol-
lowing seven special classes of nonlinear programming problems;

(P) Minimize ϕ(x) =
(

ϕ1(x), . . . ,ϕp(x)
)

=

(

f1(x)

g1(x)
, . . . ,

fp(x)

gp(x)

)

(1)Gj(x, t) ≦ 0 for all t ∈ Tj , j ∈ q,

(2)
Hk(x, s) = 0 for all s ∈ Sk , k ∈ r,

x ∈ X ,

(P1) Minimize
x∈F

(

f1(x), . . . , fp(x)
)

;

(P2) Minimize
x∈F

f1(x)

g1(x)
;

(P3) Minimize
x∈F

f1(x),
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where F (assumed to be nonempty) is the feasible set of (P), that is,

subject to

where fi and gi, i ∈ p, are as defined in the description of (P), G̃j , j ∈ q, and H̃k , k ∈ r, 
are real-valued functions defined on X;

where G is the feasible set of (P4), that is,

Furthermore, we introduce the random function h(·, ·, ·) defined on the probability space 
(�,F ,P), which is the second order and define some new types of invexities regarding 
randomness and provide some asymptotic sufficient efficiency results for problem (P) 
under various generalized (α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-invexity assumptions with the ran-
dom function h(·, ·, ·).

The rest of the paper is organized as follows. Some introductory and basic concepts 
are introduced and studied in “Preliminaries” section along with introduction of the 
exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-invexities under the random function 
h(·, ·, ·), which generalizes HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-invexities. In “Asymptotic suf-
ficiency conditions” section, we discuss some sufficient efficiency conditions where we 
formulate and prove several sets of sufficiency criteria under a variety of the exponen-
tial type HA(α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-invexities with the random function h(·, ·, ·) that 
are placed on certain vector-valued functions whose entries consist of the individual as 
well as some combinations of the problem functions. “Concluding remarks” section con-
cludes the paper with final remarks on the obtained results and their future applications 
to other fields of research.

Preliminaries
In this section, we first introduce the concepts of the general probability theory and the 
exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-invexities under the random function 
h(·, ·, ·), and then recall some other related auxiliary results instrumental to the problem 
on hand.

(3)

F = {x ∈ X : Gj(x, t) ≦ 0 for all t ∈ Tj , j ∈ q, Hk(x, s) = 0 for all s ∈ Sk , k ∈ r};

(P4) Minimize

(

f1(x)

g1(x)
, . . . ,

fp(x)

gp(x)

)

(4)G̃j(x) ≦ 0, j ∈ q, H̃k(x) = 0, k ∈ r, x ∈ X ,

(P5) Minimize
x∈G

(

f1(x), . . . , fp(x)
)

;

(P6) Minimize
x∈G

f1(x)

g1(x)
;

(P7) Minimize
x∈G

f1(x),

(5)G =
{

x ∈ X : G̃j(x) ≦ 0, j ∈ q, H̃k(x) = 0, k ∈ r
}

.
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Random variables and probability theory

In this subsection, we review the fundamental concepts of the probability theory on 
which the function h(·, ·, ·) can be defined. We first define here the probability space and 
filtered probability space as the followings;

Definition 1  A probability space is a triple (�,F ,P), where

(a)	� � is a set of all events which is called sample space. Elements of � are denoted by ω 
and are sometimes called outcomes.

(b)	F  is a σ-algebra (or σ-field), i.e., a nonempty collection of subsets of � that satisfy
(i)	 if A ∈ F  then Ac ∈ F , and
(ii)	 if Ai ∈ F  is a countable sequence of sets then ∩iAi ∈ F .

(c)	� P: F → [0, 1] is a function with P(�) = 1 and such that if E1,E2, . . . ∈ F  are dis-
joint, 

Definition 2  Let (�,F ,P) be a probability space. A filtration on (�,F ,P) is an increas-
ing family (Ft)t≥0 of σ-algebra of F . In other words, for each t, Ft is a σ-algebra included 
in F  and if s ≤ t, Fs ≤ Ft . A probability space (�,F ,P) endowed with a filtration (Ft)t≥0 
is called a filtrated probability space.

Filtration have been a feature of the theory in the literature of the stochastic processes 
and mathematical fiance and advanced probability field such as stochastic control the-
ory, martingales, semi-martingales, stopping times or Markov processes. In this paper, 
we restrict the concept filtrated probability space to investigate some results regarding 
the function h as defined by the martingale processes or Markov chain in the future 
work. In the followings, we define the random variables and study the concepts of the 
first and second moments of random variables.

Definition 3  A random variable X is a measurable function from a probability space 
(�,F ,P) to the reals, i.e., it is a function

such that for every Borel set B,

Furthermore, we define a function on Borel sets by

Let X be a random variable. We define the expectation of X, denoted by E(X), by

(6)P





∞
�

j=1

Ej



 =

∞
�

j=1

P(Ej).

(7)X : � → (−∞,∞)

(8)X−1(B) = {ω ∈ � : X(ω) ∈ B} ∈ F .

(9)µX (B) = P{X ∈ B} = P[X−1(B)].

(10)E(X) =
∫

XdP,
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where the integral is the Lebesgue integral. In particular, the expectation of a random 
variable depends only on its distribution and not on the probability space on which it is 
defined. If X has a density F, then the measure µX is the same as f(x)dx, so we can write

where again the expectation exists if and only if

Furthermore, the second moment is defined by

The following are the concepts of independence.

Definition 4  (a)  σ-algebra F1,F2, . . . ,Fn are independent if whenever Ai ∈ Fi for 
i = 1, . . . , n we have 

(b)	 Random variables X1,X2, . . . ,Xn are independent if for every Borel sets Bi for 
i = 1, . . . , n we have 

The law of large numbers, which is a theorem proved about the mathematical model 
of probability, shows that this model is consistent with the frequency interpretation of 
probability and this theorem is the main idea to prove the main theorem in this paper.

Theorem  5  (Law of Large Numbers) Let X1,X2, . . . ,Xn be a sequence of independ-
ent random variables with common distribution function. Set µ = E[Xi] < ∞ and 
σ 2 = Var[Xi], and for Sn =

∑n
i=1 Xi, we have 

(a)    �Weak law of large numbers

(b)    �Strong law of large numbers

(11)E[X] =
∫ ∞

−∞

xf (x)dx,

(12)

∫ ∞

−∞

|x|f (x)dx < ∞.

(13)E[X2] =

∫ ∞

−∞

x2f (x)dx, and Var[X] = E[X − E(X)] = E[X2] − (E[X])2.

(14)P

(

n
⋂

i=1

Ai

)

=

n
∏

i=1

P(Ai).

(15)P

(

n
⋂

i=1

{Xi ∈ Bi}

)

=

n
∏

i=1

P(Xi ∈ Bi).

(16)lim
n→∞

P

(

ω :

∣

∣

∣

∣

Sn(ω)

n
− µ

∣

∣

∣

∣

≥ ǫ

)

= 0, ∀ǫ > 0.

(17)P

(

ω : lim
n→∞

Sn(ω)

n
= µ

)

= 1.
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Deterministic cases

Definition 6  Let f be a differentiable real-valued function defined on Rn. Then 
f is said to be η-invex (invex with respect to η) at y ∈ Rn if there exists a function 
η : Rn × Rn → Rn such that for each x ∈ Rn,

where ∇f (y) = (∂f (y)/∂y1, ∂f (y)/∂y2, . . . , ∂f (y)/∂yn) is the gradient of f at y, and 〈a, b〉 
denotes the inner product of the vectors a and b; f  is said to be η-invex on Rn if the 
above inequality holds for all x, y ∈ Rn.
Hanson (1981) showed (based on the role of the function η) that for a nonlinear pro-
gramming problem of the form

where the differentiable functions f , gi : Rn → R, i ∈ m, are invex with respect to the 
function η : Rn × Rn → Rn,  the Karush–Kuhn–Tucker necessary optimality conditions 
are also sufficient.

Let the function F = (F1, F2, . . . , FN ) : Rn → RN be differentiable at x∗. The following 
generalizations of the notions of invexity, pseudoinvexity, and quasiinvexity for vector-
valued functions were originally proposed in Jeyakumar and Mond (1992).

Definition 7  The function F is said to be (α, η)-V-invex at x∗ if there exist functions 
αi : Rn × Rn → R+\{0} ≡ (0,∞), i ∈ N , and η : Rn × Rn → Rn such that for each 
x ∈ Rn and i ∈ N ,

Definition 8  The function F is said to be (β , η)-V-pseudoinvex at x∗ if there exist func-
tions βi : Rn × Rn → R+\{0}, i ∈ N , and η : Rn × Rn → Rn such that for each x ∈ Rn,

Definition 9  The function F is said to be (γ , η)-V-quasiinvex at x∗ if there exist func-
tions γi : Rn × Rn → R+\{0}, i ∈ N , and η : Rn × Rn → Rn such that for each x ∈ Rn,

Recently, Antczak (2005) introduced the following exponential type of the class of 
V-invex functions.

Definition 10  A differentiable function f : X → Rk is called (strictly) ζi-r̃-invex  
with respect to η at u ∈ X if there exist functions η : X × X → Rn and 
ζi : X × X → R+\{0}, i ∈ k , such for each x ∈ X,

(18)f (x)− f (y) ≧ �∇f (y), η(x, y)�,

Minimize f (x) subject to gi(x) ≦ 0, i ∈ m, x ∈ Rn,

(19)Fi(x)− Fi(x
∗) ≧

〈

αi(x, x
∗)∇Fi(x

∗), η(x, x∗)
〉

.

(20)

〈

N
∑

i=1

∇Fi(x
∗), η(x, x∗)

〉

≧ 0 ⇒

N
∑

i=1

βi(x, x
∗)Fi(x) ≧

N
∑

i=1

βi(x, x
∗)Fi(x

∗).

(21)
N
∑

i=1

γi(x, x
∗)Fi(x) ≦

N
∑

i=1

γi(x, x
∗)Fi(x

∗) ⇒

〈

N
∑

i=1

∇Fi(x
∗), η(x, x∗)

〉

≦ 0.
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As the exponential type of the class of functions was considered in Antczak (2005) for 
establishing some sufficiency and duality results for a nonlinear programming problem 
with differentiable functions, and their nonsmooth analogues were discussed in Antc-
zak (2009), recently, Zalmai (2013a) introduced the Hanson–Antczak type generalized 
HA(α,β , γ , ξ , η, ρ, θ)-V-invexity, an exponential type framework, and then applied to a 
set of problems on fractional programming. As a result, Zalmai further envisioned a vast 
array of interesting and significant classes of generalized convex functions. Now we are 
ready to present the exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-invexities that gen-
eralize and encompass most of the existing notions available in the current literature. Let 
the function F = (F1, F2, . . . , Fp) : X → Rp be differentiable at x∗.

Definition 11  The function F is said to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-invex 
at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R, γi : X × X → R+,

ξi : X × X → R+\{0}, i ∈ p, z ∈ R
n, η : X × X → R

n, ρi : X × X → R, i ∈ p, and θ : X× 
X → R

n such that for all x ∈ X (x �= x∗) and i ∈ p,

where � · � is a norm on Rn and

with h : Rn × Rn → Rn differentiable.

Definition 12  The function F is said to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)- 
V-pseudoinvex at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R, γ :

(22)
1

r̃
er̃fi(x)(>) ≧

1

r̃
er̃fi(u)[1+ r̃ζi(x,u)�∇fi(u), η(x,u)�] for r̃ �= 0,

(23)fi(x)− fi(u) ≧ ζi(x,u)�∇fi(u), η(x,u)� for r̃ = 0.

(24)

1

α(x, x∗)
γi(x, x

∗)

(

eα(x,x
∗)[Fi(x)−Fi(x

∗)] − 1
)

(>) ≧
1

β(x, x∗)

〈

ξi(x, x
∗)∇zhi(x

∗, z), eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρi(x, x
∗)�θ(x, x∗)�2 if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X ,

(25)

1

α(x, x∗)
γi(x, x

∗)

(

eα(x,x
∗)[Fi(x)−Fi(x

∗)] − 1
)

(>) ≧
〈

ξi(x, x
∗)∇zhi(x

∗, z), η(x, x∗)
〉

+ ρi(x, x
∗)�θ(x, x∗)�2 if α(x, x∗) �= 0 and β(x, x∗) → 0 for all x ∈ X ,

(26)

γi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧
1

β(x, x∗)

〈

ξi(x, x
∗)∇zhi(x

∗, z), eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρi(x, x
∗)�θ(x, x∗)�2 if α(x, x∗) → 0 and β(x, x∗) �= 0 for all x ∈ X ,

(27)

γi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧
〈

ξi(x, x
∗)∇zhi(x

∗, z), η(x, x∗)
〉

+ ρi(x, x
∗)�θ(x, x∗)�2

if α(x, x∗) → 0 and β(x, x∗) → 0 for all x ∈ X ,

(28)
(

eβ(x,x
∗)η(x,x

∗) − 1

)

≡
(

eβ(x,x
∗)η1(x,x

∗) − 1, . . . , eβ(x,x
∗)ηn(x,x

∗) − 1
)

,
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X × X → R+, ξi : X × X → R+\{0}, i ∈ p, z ∈ R
n, η : X × X → R

n, ρ : X × X → R, 
and θ : X × X → Rn such that for all x ∈ X (x �= x∗),

with h : Rn × Rn → Rn differentiable. The function F is said to be (strictly)  
HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-pseudoinvex on X if it is (strictly) HA(α,β , γ , ξ , η, ρ,
h(·, ·), θ)-V-pseudoinvex at each point x∗ ∈ X.

Definition 13  The function F is said to be (prestrictly) HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V- 
quasiinvex at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R, γ :

X × X → R+, ξi : X × X → R+\{0}, i ∈ p, η : X × X → R
n, ρ : X × X → R, and θ :

X × X → R
n such that for all x ∈ X,

(29)

1

β(x, x∗)

〈

p
∑

i=1

∇zhi(x
∗, z), eβ(x,x

∗)η(x,x∗)) − 1

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒
1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(>) ≧ 0

if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X ,

(30)

〈

p
∑

i=1

∇zhi(x
∗, z), η(x, x∗)

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒
1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(>) ≧ 0

if α(x, x∗) �= 0 and β(x, x∗) → 0 for all x ∈ X ,

(31)

1

β(x, x∗)

〈

p
∑

i=1

∇zhi(x
∗, z), eβ(x,x

∗)η(x,x∗) − 1

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒ γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧ 0

if α(x, x∗) → 0 and β(x, x∗) �= 0 for all x ∈ X ,

(32)

〈

p
∑

i=1

∇zhi(x
∗, z), η(x, x∗)

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒ γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧ 0

if α(x, x∗) → 0 and β(x, x∗) → 0 for all x ∈ X .

(33)

1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(<) ≦ 0

⇒
1

β(x, x∗)

〈

p
∑

i=1

∇zhi(x
∗, z), eβ(x,x

∗)η(x,x∗) − 1

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X ,
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with h : Rn × Rn → Rn differentiable.

Example 14  The function F is said to be (strictly) HA(α,β , γ , ξ , η, ρ, θ)-V-invex  
at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R, γi : X × X → R+,

ξi : X × X → R+\{0}, i ∈ p, z ∈ R
n, η : X × X → R

n, ρi : X × X → R, i ∈ p, and θ : X 
×X → R

n such that for all x ∈ X (x �= x∗) and i ∈ p,

We also noticed that for the proofs of the sufficient efficiency theorems, sometimes 
it may be more appropriate to apply certain alternative but equivalent forms of the 
above definitions based on considering the contrapositive statements. For example, the 
exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-quasiinvexity (when α(x, x∗) �= 0 and 
β(x, x∗) �= 0 for all x ∈ X) can be defined in the following equivalent way:

The function F is an exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-quasiinvex  
at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R, γ : X × X → R+,

ξi : X × X → R+\{0}, i ∈ p, η : X × X → R
n, ρ : X × X → R, and θ : X × X → Rn 

such that for all x ∈ X,

(34)

1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(<) ≦ 0

⇒

〈

p
∑

i=1

∇zhi(x
∗, z), η(x, x∗)

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) �= 0 and β(x, x∗) → 0 for all x ∈ X ,

(35)

γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(<) ≦ 0

⇒
1

β(x, x∗)

〈

p
∑

i=1

∇zhi(x
∗, z), eβ(x,x

∗)η(x,x∗) − 1

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) → 0 and β(x, x∗) �= 0 for all x ∈ X ,

(36)

γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(<) ≦ 0

⇒

〈

p
∑

i=1

∇zhi(x
∗, z), η(x, x∗)

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) → 0 and β(x, x∗) → 0 for all x ∈ X .

(37)

1

α(x, x∗)
γi(x, x

∗)

(

eα(x,x
∗)[Fi(x)−Fi(x

∗)] − 1
)

(>) ≧
1

β(x, x∗)

〈

ξi(x, x
∗)∇f (x∗), eβ(x,x

∗)η(x,x∗) − 1

〉

+ ρi(x, x
∗)�θ(x, x∗)�2

if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X .

(38)

1

β(x, x∗)

〈

p
∑

i=1

∇zhi(x
∗, z), eβ(x,x

∗)η(x,x∗) − 1

〉

> −ρ(x, x∗)�θ(x, x∗)�2

⇒
1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

> 0,
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where h : Rn × Rn → Rn is differentiable.
In the sequel, we shall also need a consistent notation for vector inequalities. For 

a, b ∈ Rm, the following order notation will be used: a ≧ b if and only if ai ≧ bi for all 
i ∈ m; a � b if and only if ai ≧ bi for all i ∈ m, but a �= b; a > b if and only if ai > bi for 
all i ∈ m; and a � b is the negation of a � b.

Consider the multi-objective problem

where Fi, i ∈ p, are real-valued functions defined on Rn.
An element x◦ ∈ F is said to be an efficient (Pareto optimal, non-dominated, non-infe-

rior) solution of (P∗) if there exists no x ∈ F such that F(x) � F(x◦). In the area of multi-
objective programming, there exist several versions of the notion of efficiency most of 
which are discussed in Miettinen (1999), Verma (2014), White (1982), Yu (1985). How-
ever, throughout this paper, we shall deal exclusively with the efficient solutions of (P) in 
the sense defined above.

For the purpose of comparison with the sufficient efficiency conditions that will be 
proposed and discussed in this paper, we next recall a set of necessary efficiency condi-
tions for (P).

Theorem  15  (Zalmai 2013a) Let x∗ ∈ F, let �∗ = ϕ(x∗), for each i ∈ p, let fi and gi 
be continuously differentiable at x∗, for each j ∈ q, let the function Gj(·, t) be continu-
ously differentiable at x∗ for all t ∈ Tj, and for each k ∈ r, let the function Hk(·, s) be 
continuously differentiable at x∗ for all s ∈ Sk. If x∗ is an efficient solution of (P), if the 
generalized Guignard constraint qualification holds at x∗, and if for each i0 ∈ p, the set  
cone({∇Gj(x

∗, t) : t ∈ T̂j(x
∗), j ∈ q}∪{∇i(x

∗)−�
∗
i ∇gi(x

∗) : i ∈ p, i �= i0})+span({∇Hk (x
∗, s) : s ∈ Sk ,

k ∈ r}) is closed, then there exist u∗ ∈ U and integers ν∗0 and ν∗, with 0 ≦ ν∗0 ≦ ν∗ ≦ n+ 1 , 
such that there exist ν∗0 indices jm, with 1 ≦ jm ≦ q, together with ν∗0 points 
tm ∈ T̂jm(x

∗), m ∈ ν∗0 , ν
∗ − ν∗0 indices km, with 1 ≦ km ≦ r, together with ν∗ − ν∗0 points 

sm ∈ Skm for m ∈ ν∗\ν∗0 , and ν∗ real numbers v∗m, with v∗m > 0 for m ∈ ν∗0 , with the prop-
erty that

where cone(V) is the conic hull of the set V ⊂ Rn(i.e., the smallest convex cone con-
taining V), span(V) is the linear hull of V (i.e., the smallest subspace containing V ), 
T̂j(x

∗) = {t ∈ Tj : Gj(x
∗, t) = 0}, U = {u ∈ Rp : u > 0,

∑p
i=1 ui = 1}, and ν∗\ν∗0  is the 

complement of the set ν∗0  relative to the set ν∗.

Random cases

Let the function h(·, z,ω)

(P∗) Minimize
x∈F

F(x) = (F1(x), . . . , Fp(x)),

(39)

p
∑

i=1

u∗i
[

∇fi(x
∗)− �

∗
i ∇gi(x

∗)
]

+

ν∗0
∑

m=1

v∗m∇Gjm(x
∗, tm)+

ν∗
∑

m=ν∗0+1

v∗m∇Hkm(x
∗, sm) = 0,

(40)h(x, z,ω) =

〈

∇f (x)+
1

4
∇2f (x)z, z

〉

,
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be defined on the probability space (�,F ,P) where ω ∈ � and z is a direction. We start 
with the assumptions we will use throughout the paper.

Assumption 16  (A1)	� h(·, ·,ω) is an i.i.d. sequence (identically and independently 
distributed sequence).

(A2)	 E[h(·, ·,ω)] < ∞.

Notice that (A1) implies that ∇zh(·, ·,ω) is i.i.d. and is a function of ω and random vari-
able. In the view of (A2), E[∇zh(·, ·,ω)] < ∞.

The following are the new definitions related with randomness which will be used for 
the main results.

Definition 17  Let f be a differentiable real-valued function defined on Rn. Then f is 
said to be random η-asymptotic invex (invex with respect to η) at y if there exists a func-
tion η : Rn ×�n → Rn such that for each ω ∈ �n,

where ∇f (y) = (∂f (y)/∂y1, ∂f (y)/∂y2, . . . , ∂f (y)/∂yn) is the gradient of f at y, and 〈a, b〉 
denotes the inner product of the vectors a and b.

Definition 18  The function F is said to be random(α, η)-V-asymptotic-invex at x∗ if 
there exist functions αi : Rn × Rn → R+\{0} ≡ (0,∞), i ∈ N , and η : Rn ×�n → Rn 
such that for each ω ∈ �n and i ∈ N ,

Definition 19  The function F is said to be random (β , η)-V-asymptotic-pseudoinvex at 
x∗ if there exist functions βi : Rn × Rn → R+\{0}, i ∈ N , and η : Rn ×�n → Rn such 
that for each ω ∈ �n,

Definition 20  The function F is said to be random(γ , η)-V-asymptotic-quasiinvex at x∗ 
if there exist functions γi : Rn × Rn → R+\{0}, i ∈ N , and η : Rn ×�n → Rn such that 
for each ω ∈ �n,

Next, we define the exponential type Hanson–Antczak type generalized 
HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)-V-asymptotic-invexities under the random function 
h(·, ·,ω). Let the function F = (F1, F2, . . . , Fp) : X → Rp be differentiable at x∗.

(41)f (ω)− f (y) ≧ �∇f (y),E[η(ω, y)]�,

(42)Fi(x)− Fi(x
∗) ≧ �αi(x, x

∗)∇Fi(x
∗),E[η(ω, x∗)])�.

(43)

〈

N
∑

i=1

∇Fi(x
∗),E[η(ω, x∗)])

〉

≧ 0 ⇒

N
∑

i=1

βi(x, x
∗)Fi(x) ≧

N
∑

i=1

βi(x, x
∗)Fi(x

∗).

(44)
N
∑

i=1

γi(x, x
∗)Fi(x) ≦

N
∑

i=1

γi(x, x
∗)Fi(x

∗) ⇒

〈

N
∑

i=1

∇Fi(x
∗),E[η(ω, x∗)])

〉

≦ 0.
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Definition 21  The function F is said to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)-random  
V-asymptotic-invex at x∗ ∈ X if there exist functions α : X × X → R, β : X × X → R,

γi : X ×X → R+, ξi : X ×X → R+\{0}, i ∈ p, z ∈ R
n, η : X ×X → R

n ρi : X ×X → R, i ∈ p, and 
θ : X × X → Rn such that for all x ∈ X (x �= x∗) and i ∈ p,

where � · � is a norm on Rn and

with h : Rn × Rn ×�n → Rn differentiable and random function. The function F is said 
to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)-random V-invex x∗ ∈ X if the expectation 
is dropped in the above definition.

Definition 22  The function F is said to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)
-random V-asymptotic-pseudoinvex at x∗ ∈ X if there exist functions α : X × X → R,

β : X ×X → R, γ : X ×X → R+, ξi : X ×X → R+\{0}, i ∈ p, z ∈ R
n, η : X ×X → R

n, ρ : X×

X → R, and θ : X × X → Rn such that for all x ∈ X (x �= x∗),

(45)

1

α(x, x∗)
γi(x, x

∗)

(

eα(x,x
∗)[Fi(x)−Fi(x

∗)] − 1
)

(>) ≧
1

β(x, x∗)

〈

ξi(x, x
∗)E

[

∇zhi(x
∗, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρi(x, x
∗)�θ(x, x∗)�2 if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X ,

(46)

1

α(x, x∗)
γi(x, x

∗)

(

eα(x,x
∗)[Fi(x)−Fi(x

∗)] − 1
)

(>) ≧
〈

ξi(x, x
∗)E

[

∇zhi(x
∗, z,ω)

]

, η(x, x∗)
〉

+ ρi(x, x
∗)�θ(x, x∗)�2 if α(x, x∗) �= 0 and β(x, x∗) → 0 for all x ∈ X ,

(47)

γi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧
1

β(x, x∗)

〈

ξi(x, x
∗)E

[

∇zhi(x
∗, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρi(x, x
∗)�θ(x, x∗)�2 if α(x, x∗) → 0 and β(x, x∗) �= 0 for all x ∈ X ,

(48)

γi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧
〈

ξi(x, x
∗)E

[

∇zhi(x
∗, z,ω)

]

, η(x, x∗)
〉

+ ρi(x, x
∗)�θ(x, x∗)�2

if α(x, x∗) → 0 and β(x, x∗) → 0 for all x ∈ X ,

(49)
(

eβ(x,x
∗)η(x,x

∗) − 1

)

≡
(

eβ(x,x
∗)η1(x,x

∗) − 1, . . . , eβ(x,x
∗)ηn(x,x

∗) − 1
)

,

(50)

1

β(x, x∗)

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, eβ(x,x
∗)η(x,x∗)) − 1

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒
1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(>) ≧ 0

if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X ,

(51)

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, η(x, x∗)

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒
1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(>) ≧ 0

if α(x, x∗) �= 0 and β(x, x∗) → 0 for all x ∈ X ,
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with h : Rn × Rn ×�n → Rn differentiable and random function. The function F is 
said to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)-random V-pseudoinvex x∗ ∈ X if the 
expectation is dropped in the above definition.

Definition 23  The function F is said to be (prestrictly) HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)
-random V-asymptotic-quasiinvex at x∗ ∈ X if there exist functions α : X × X → R,

β : X×X → R, γ : X×X → R+, ξi : X×X → R+\{0}, i ∈ p, η : X×X → R
n, ρ : X×X → R, and 

θ : X × X → Rn such that for all x ∈ X,

(52)

1

β(x, x∗)

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒ γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧ 0

if α(x, x∗) → 0 and β(x, x∗) �= 0 for all x ∈ X ,

(53)

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, η(x, x∗)

〉

≧ −ρ(x, x∗)�θ(x, x∗)�2

⇒ γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(>) ≧ 0

if α(x, x∗) → 0 and β(x, x∗) → 0 for all x ∈ X .

(54)

1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(<) ≦ 0

⇒
1

β(x, x∗)

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) �= 0 and β(x, x∗) �= 0 for all x ∈ X ,

(55)

1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Fi(x)−Fi(x
∗)] − 1

)

(<) ≦ 0

⇒

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, η(x, x∗)

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) �= 0 and β(x, x∗) → 0 for all x ∈ X ,

(56)

γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(<) ≦ 0

⇒
1

β(x, x∗)

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) → 0 and β(x, x∗) �= 0 for all x ∈ X ,
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with h : Rn × Rn ×�n → Rn differentiable and random function. The function F is said 
to be (strictly) HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), θ)-random V-quasiinvex x∗ ∈ X if the expec-
tation is dropped in the above definition.

Asymptotic sufficiency conditions
In this section, we present several sets of asymptotic sufficiency results in which vari-
ous generalized exponential type HA(α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-invexity assumptions 
are imposed on certain vector functions whose components are the individual as well as 
some combinations of the problem functions.

Let the function Ei(·, �,u) : X → R be defined, for fixed � and u, on X by

Theorem  24  Let x∗ ∈ F, let �∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t), and 
Hk(·, s) be differentiable at x∗ for all t ∈ Tj and s ∈ Sk , j ∈ q, k ∈ r, and assume that 
Assumption  16 is satisfied and that there exist u∗ ∈ U and integers ν0 and ν, with 
0 ≦ ν0 ≦ ν ≦ n+ 1, such that there exist ν0 indices jm, with 1 ≦ jm ≦ q, together with 
ν0 points tm ∈ T̂jm(x

∗), m ∈ ν0, ν − ν0 indices km, with 1 ≦ km ≦ r, together with 
ν − ν0 points sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m with v∗m > 0 for m ∈ ν0, with 
d = min{u∗i , v

∗
m}, and with the property that

or

Assume, furthermore, that either one of the following three sets of conditions holds under 
the random function h:

(a)	� (i)	� fi is exponential type HA(α,β , γ̄ , ξ , η, ρ̄, h(·, ·,ω), θ)-random V-invex at x∗, gi 
is exponential type HA(α,β , γ̄ , ξ , η, ρ̄, κ(·, ·,ω), θ)-random V-invex at x∗, and 
γ̄ (x, x∗) > 0 for all x ∈ F;

(ii)	� (v∗1Gj1(·, t
1), . . . , v∗ν0Gjν0

(·, tν0)) is exponential type HA(α,β , γ̂ ,π , η, ρ̂,ψ

(·, ·,ω), θ)-random V-invex at x∗;

(57)

γ (x, x∗)

p
∑

i=1

ξi(x, x
∗)
[

Fi(x)− Fi(x
∗)
]

(<) ≦ 0

⇒

〈

p
∑

i=1

E
[

∇zhi(x
∗, z,ω)

]

, η(x, x∗)

〉

≦ −ρ(x, x∗)�θ(x, x∗)�2

if α(x, x∗) → 0 and β(x, x∗) → 0 for all x ∈ X .

(58)Ei(z, �,u) = ui[fi(z)− �igi(z)], i ∈ p.

(59)
d ·

[

E
[

∇zhi(x
∗, z,ω)

]

− �̄E
[

∇zκi(x
∗, z,ω)

]

]

+ d · E
[

∇zψjm(x
∗, tm, z,ω)

]

+ d · E
[

∇z̟km(x
∗, sm, z,ω)

]

= 0.

(60)

p
∑

i=1

u∗i
[

E
[

∇zhi(x
∗, z,ω)

]

− �
∗
i E

[

∇zκi(x
∗, z,ω)

]]

+

ν0
∑

m=1

v∗mE
[

∇zψjm(x
∗, tm, z,ω)

]

+

ν
∑

m=ν0+1

v∗mE
[

∇z̟km(x
∗, sm, z,ω)

]

= 0.
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(iii)	� (v∗ν0+1Hkν0+1
(·, sν0+1), . . . , v∗νHkν (·, s

ν)) is exponential type HA(α,β , γ̆ , δ, η, ρ̆,̟
(·, ·,ω), θ)-random V-invex at x∗;

(iv)	� ξi = πk = δl = σ for all i ∈ p, k ∈ ν0, and l ∈ ν\ν0;
(v)	�

∑p
i=1 u

∗
i ρ̄i(x, x

∗)+
∑ν0

m=1 ρ̂m(x, x
∗)+

∑ν
m=ν0+1 ρ̆m(x, x

∗) ≧ 0 for all x ∈ F;

(b)	� (i)	� fi is exponential type HA(α,β , γ̄ , ξ , η, ρ̄, h(·, ·,ω), θ)-random V-asymptotic-
invex at x∗, gi is exponential type HA(α,β , γ̄ , ξ , η, ρ̄, κ(·, ·,ω), θ)-random 
V-asymptotic-invex at x∗, and γ̄ (x, x∗) > 0 for all x ∈ F;

(ii)	� (v∗1Gj1(·, t
1), . . . , v∗ν0Gjν0

(·, tν0)) is exponential type HA(α,β , γ̂ ,π , η, ρ̂,ψ

(·, ·,ω), θ)-random V-asymptotic-invex at x∗;
(iii)	� (v∗ν0+1Hkν0+1

(·, sν0+1), . . . , v∗νHkν (·, s
ν)) is exponential type HA(α,β , γ̆ , δ, η, ρ̆,̟

(·, ·,ω), θ)-random V-asymptotic-invex at x∗;
(iv)	� ξi = πk = δl = σ for all i ∈ p, k ∈ ν0, and l ∈ ν\ν0;
(v)	�

∑p
i=1 u

∗
i ρ̄i(x, x

∗)+
∑ν0

m=1 ρ̂m(x, x
∗)+

∑ν
m=ν0+1 ρ̆m(x, x

∗) ≧ 0 for all x ∈ F;

(c)	� the function (L1(·,u
∗, v∗, �∗, t̄, s̄), . . . , Lp(·,u

∗, v∗, �∗, t̄, s̄)) is exponential type 
HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), κ(·, ·,ω),ψ(·, ·,ω),̟(·, ·,ω), θ) -random V-asymptotic-
pseudoinvex at x∗ and γ (x, x∗) > 0 for all x ∈ F, where

 Then x∗ is an efficient solution of (P).

Proof  (a) In view of our assumptions in (i)–(iv), we have

Multiplying (61) by u∗i  and then summing over i ∈ p, summing (62) over m ∈ ν0, and 
summing (63) over m ∈ ν\ν0, and finally adding the resulting inequalities, we get

(61)

Li(z,u
∗, v∗, �∗, t̄, s̄)

= u∗i



fi(z)− �
∗
i gi(z)+

ν0
�

m=1

v∗mGjm(z, t
m)+

ν
�

m=ν0+1

v∗mHkm(z, s
m)



, i ∈ p.

(62)

1

α(x, x∗)
γ̄i(x, x

∗)

(

eα(x,x
∗){fi(x)−�

∗
i gi(x)−[fi(x

∗)−�
∗
i gi(x

∗)]} − 1
)

≧
1

β(x, x∗)

〈

σ(x, x∗)
[

E
[

∇zhi(x
∗, z,ω)

]

− �
∗
i E

[

∇zκi(x
∗, z,ω)

]]

, eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρ̄i(x, x
∗)�θ(x, x∗)�2, i ∈ p,

(63)

1

α(x, x∗)
γ̂m(x, x

∗)

(

eα(x,x
∗)[v∗mGjm (x,tm)−v∗mGjm (x∗,tm)] − 1

)

≧
1

β(x, x∗)

〈

σ(x, x∗)v∗mE
[

∇zψjm(x
∗, tm, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρ̂m(x, x
∗)�θ(x, x∗)�2, m ∈ ν0,

(64)

1

α(x, x∗)
γ̆m(x, x

∗)

(

eα(x,x
∗)[v∗mHkm (x,sm)−v∗mHkm (x∗,sm)] − 1

)

≧
1

β(x, x∗)

〈

σ(x, x∗)v∗mE
[

∇z̟km(x
∗, sm, z,ω)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

+ ρ̆m(x, x
∗)�θ(x, x∗)�2, m ∈ ν\ν0.
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Let ℓ = min{p, ν}. Then the last term of above inequality

(65)

1

α(x, x∗)

�

p
�

i=1

u∗i γ̄i(x, x
∗)

�

eα(x,x
∗){fi(x)−�

∗
i gi(x)−[fi(x

∗)−�
∗
i gi(x

∗)]} − 1
�

+

ν0
�

m=1

γ̂m(x, x
∗)

�

eα(x,x
∗)[v∗mGjm (x,tm)−v∗mGjm (x∗,tm)] − 1

�

+

ν
�

m=ν0+1

γ̆m(x, x
∗)

�

eα(x,x
∗)[v∗mHkm (x,sm)−v∗mHkm (x∗,sm)] − 1

�







≧
1

β(x, x∗)
σ (x, x∗)

�

p
�

i=1

u∗i
�

E
�

∇zhi(x
∗, z,ω)

�

− �
∗
i E

�

∇zκi(x
∗, z,ω)

��

+

ν0
�

m=1

v∗mE
�

∇zψjm(x
∗, tm, z,ω)

�

+

ν
�

m=ν0+1

v∗mE
�

∇z̟km(x
∗, sm, z,ω)

�

, eβ(x,x
∗)η(x,x∗) − 1

�

+

�

p
�

i=1

u∗i ρ̄i(x, x
∗)+

ν0
�

m=1

ρ̂m(x, x
∗)+

�

m = ν0 + 1ν ρ̆m(x, x
∗)

�

�θ(x, x∗)�2.

(66)

1

β(x, x∗)
σ (x, x∗)

�

p
�

i=1

u∗i
�

E
�

∇zhi(x
∗, z,ω)

�

− �
∗
i E

�

∇zκi(x
∗, z,ω)

��

+

ν0
�

m=1

v∗mE
�

∇zψjm(x
∗, tm, z,ω)

�

+

ν
�

m=ν0+1

v∗mE
�

∇z̟km(x
∗, sm, z,ω)

�

, eβ(x,x
∗)η(x,x∗) − 1

�

+





p
�

i=1

u∗i ρ̄i(x, x
∗)+

ν0
�

m=1

ρ̂m(x, x
∗)+

ν
�

m=ν0+1

ρ̆m(x, x
∗)



�θ(x, x∗)�2

≧
1

β(x, x∗)
σ (x, x∗)

�

1

ℓ

p
�

i=1

u∗i
�

E
�

∇zhi(x
∗, z,ω)

�

− �
∗
i E

�

∇zκi(x
∗, z,ω)

��

+
1

ℓ

ν0
�

m=1

v∗mE
�

∇zψjm(x
∗, tm, z,ω)

�

+
1

ℓ

ν
�

m=ν0+1

v∗mE
�

∇z̟km(x
∗, sm, z,ω)

�

, eβ(x,x
∗)η(x,x∗) − 1

�

+





p
�

i=1

u∗i ρ̄i(x, x
∗)+

ν0
�

m=1

ρ̂m(x, x
∗)+

ν
�

m=ν0+1

ρ̆m(x, x
∗)



�θ(x, x∗)�2.
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Let d = min{u∗i , v
∗
m} and by using the law of large number, we get

Now using (59) and the condition (v), and noticing that σ(x, x∗) > 0, ϕ(x∗) =

�
∗; x, x∗ ∈ F, and Gjm(x

∗, tm) = 0 for all m ∈ ν0, the above inequality reduces to

Since γ (x, x∗) > 0, even if we consider the both cases α(x, x∗) > 0 and α(x, x∗) < 0, it 
follows from the above inequality

Therefore, we conclude that x∗ is an efficient solution of (P).
(b) Using the same idea in (a) and assumption (60), the proof follows.
(c) Let x be an arbitrary feasible solution of (P). From (60) we observe that

which in view of our HA(α,β , γ , ξ , η, ρ, h(·, ·,ω), κ(·, ·,ω),ψ(·, ·,ω),̟(·, ·,ω), θ)-random 
V-asymptotic-pseudoinvexity assumption implies that

(67)

1

β(x, x∗)
σ (x, x∗)

�

p
�

i=1

u∗i
�

E
�

∇zhi(x
∗
, z,ω)

�

− �
∗
i E

�

∇zκi(x
∗
, z,ω)

��

+

ν0
�

m=1

v∗mE
�

∇zψjm (x
∗
, tm , z,ω)

�

+

ν
�

m=ν0+1

v∗mE
�

∇z̟km (x
∗
, sm , z,ω)

�

, eβ(x,x
∗)η(x,x∗) − 1

�

+





p
�

i=1

u∗i ρ̄i(x, x
∗)+

ν0
�

m=1

ρ̂m(x, x
∗)+

ν
�

m=ν0+1

ρ̆m(x, x
∗)



�θ(x, x∗)�2

≧
1

β(x, x∗)
σ (x, x∗)

�

1

ℓ

p
�

i=1

u∗i
�

E
�

∇zhi(x
∗
, z,ω)

�

− �
∗
i E

�

∇zκi(x
∗
, z,ω)

��

+
1

ℓ

ν0
�

m=1

v∗mE
�

∇zψjm (x
∗
, tm , z,ω)

�

+
1

ℓ

ν
�

m=ν0+1

v∗mE
�

∇z̟km (x
∗
, sm , z,ω)

�

, eβ(x,x
∗)η(x,x∗) − 1

�

+





p
�

i=1

u∗i ρ̄i(x, x
∗)+

ν0
�

m=1

ρ̂m(x, x
∗)+

ν
�

m=ν0+1

ρ̆m(x, x
∗)



�θ(x, x∗)�2

≧
1

β(x, x∗)
σ (x, x∗)

�

d ·
�

E
�

∇zhi(x
∗
, z,ω)

�

− �̄E
�

∇zκi(x
∗
, z,ω)

�

�

+ d · E
�

∇zψjm (x
∗
, tm, z,ω)

�

+d · E
�

∇z̟km (x
∗
, sm , z,ω)

�

, eβ(x,x
∗)η(x,x∗) − 1

�

+





p
�

i=1

u∗i ρ̄i(x, x
∗)+

ν0
�

m=1

ρ̂m(x, x
∗)+

ν
�

m=ν0+1

ρ̆m(x, x
∗)



�θ(x, x∗)�2.

(68)
1

α(x, x∗)

p
∑

i=1

u∗i γ̄i(x, x
∗)

(

eα(x,x
∗)[fi(x)−�

∗
i gi(x)] − 1

)

≧ 0.

(69)

p
∑

i=1

u∗i [fi(x)− �
∗
i gi(x)] ≧ 0.

(70)

1

β(x, x∗)

〈

p
∑

i=1

u∗i
[

E
[

∇fi(x
∗)
]

− �
∗
i E

[

∇gi(x
∗)
]]

+

ν0
∑

m=1

v∗mE
[

∇Gjm(x
∗, tm)

]

+

ν
∑

m=ν0+1

v∗mE
[

∇Hkm(x
∗, sm)

]

, eβ(x,x
∗)η(x,x∗) − 1

〉

= 0,

(71)
1

α(x, x∗)
γ (x, x∗)

(

eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Li(x,u
∗,v∗,�∗,t̄,s̄)−Li(x

∗,u∗,v∗,�∗,t̄,s̄)] − 1
)

≧ 0.
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We need to consider two cases: α(x, x∗) > 0 and α(x, x∗) < 0. If we assume that 
α(x, x∗) > 0 and recall that γ (x, x∗) > 0, then the above inequality becomes

which implies that

Because x∗ ∈ F, tm ∈ T̂jm(x
∗),m ∈ ν0, and �∗i = ϕi(x

∗), i ∈ p, the right-hand side of 
the above inequality is equal to zero, and hence we have L(x,u∗, v∗, �∗, t̄, s̄) ≧ 0. Next, as 
x ∈ F, and v∗m > 0, m ∈ ν0, this inequality simplifies to

Since u∗ > 0 and ξi(x, x∗) > 0, i ∈ p, the above inequality implies that

which in turn implies that

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an efficient solu-
tion of (P). On the other hand, we arrive at the same conclusion if we assume that 
α(x, x∗) < 0. � �

Concluding remarks
In this paper, we have introduced several notions of random exponential type 
HA(α,β , γ , ξ , η, ρ, h(·, ·, ·), θ)-V-asymptotic invexities (which generalize the Hanson–
Antczak type (α,β , γ , ξ , η, ρ, h(·, ·), θ)-V-invexity (Zalmai 2013a), while this generalizes 
most of the existing notions in the literature), and then applied to establish some results 
to the context of a class of asymptotically sufficient efficiency conditions in semi-infi-
nite multi-objective fractional programming. Furthermore, the obtained results can be 
applied to generalize the related duality models and theorems in Zalmai (2013b, c), and 
more. Our results also indicate a wide range of future applications to other problems 
arising from higher order random invexities and its variants.
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(72)eα(x,x
∗)

∑p
i=1 ξi(x,x

∗)[Li(x,u
∗,v∗,�∗,t̄,s̄)−Li(x

∗,u∗,v∗,�∗,t̄,s̄)] ≧ 1,

(73)

p
∑

i=1

ξi(x, x
∗)Li(x,u

∗, v∗, �∗, t̄, s̄) ≧

p
∑

i=1

ξi(x, x
∗)Li(x

∗,u∗, v∗, �∗, t̄, s̄).

(74)

p
∑

i=1

u∗i ξi(x, x
∗)[fi(x)− �

∗
i gi(x)] ≧ 0.

(75)
(

f1(x)− �
∗
1g1(x), . . . , fp(x)− �

∗
pgp(x)

)

� (0, . . . , 0),

(76)

(

f1(x)

g1(x)
, . . . ,

fp(x)

gp(x)

)

� (�∗1, . . . , �
∗
p) = ϕ(x∗).
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