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Background
Reliability modelling is a process in which the distribution curve of system failure rate is 
fitted based on lifetime failure data generated in system life cycle test or system opera-
tion (Myers 2010). The failure rate distribution curve can reveal system’s failure mecha-
nism or the system-specific use phase, which may be conducive to the predication and 
control of failure, and carrying out an available predictive maintenance, reducing unex-
pected failures (Lin and Tseng 2005). Furthermore, the quantitative fitting of distribu-
tion curve is also the premise that reliability analysis, design, and test are effectively 
carried out. Therefore, it is important to analyze the variation trend of failure rate in a 
quantitative way for the purpose of reliability modelling.

At present, common distribution models for fitting failure rate include exponen-
tial distribution, normal distribution, lognormal distribution and Weibull distribution, 
etc. Among them, exponential distribution deals with the situation where failure rate 
remains unchanged, and its function is relatively simple. Weibull distribution is the 
most widely applied since it is able to fit the progressive increase or decrease of fail-
ure rate effectively by changing parameters. Some scholars improved exponential distri-
bution, proposed the exponential geometric distribution (Adamidis and Loukas 1998), 
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exponentiated exponential distribution (Gupta and Kundu 1999), the exponential-Pois-
son distribution (Kus 2007), the exponentiated exponential-poisson distribution (Bar-
reto-Souza and Cribari-Neto 2009), those improved models also achieve description 
of the progressive increasing or decreasing of failure rate. All of which have been used 
monotonic function to model the failure patterns for the repairable system.

However, the lifetime failure data are often non-monotonic, and have a bathtub-
shaped failure rate, which can be divided into three phases—early failure, random fail-
ure, and wear-out failure. For this reason, many scholars studied the phenomenon. Chen 
(2000) put forward a new two-parameter Weibull distribution model, in which the fail-
ure rate function followed the trend of bathtub curve when the shape parameter satisfied 
a certain condition. Later, Xie et al. (2002) and Zhang (2004) expanded the two-parame-
ter model above by introducing the third parameter, and proposed the three-parameter 
Weibull distribution models independently. The results indicated that those models can 
reach high accuracy in fitting the trend of bathtub curve more easily than traditional 
models. Lai et al. (2003), based on Weibull distribution and Extreme Value Type I dis-
tribution, proposed an improved Weibull distribution model, which also described the 
trend of bathtub curve very well. They also completed the model’s parameter estimation 
by means of Weibull probability plot. El-Gohary et  al. (2013) gave a new distribution 
known as the generalized Gompertz distribution by dealing with a new generalization of 
exponential. Generalized Gompertz distribution, and generalized exponential distribu-
tions, which had bathtub curve failure rate depending upon the shape parameter. And 
the maximum likelihood estimators of the parameters were derived using a simulations 
study.

Wang et al. (2015) proposed a new four parameter interval life model to describe the 
bathtub curve. Cordeiro et  al. (2014) extended the modified Weibull distribution, and 
established a five-parameter Weibull distribution. Aiming at the failure censored data 
of industrial devices, Using Newton–Raphson type algorithm for parameter estimation, 
finding that the extended model fitted the bathtub curve very well.

The above models fitted the trend of bathtub-shaped failure rate well, but random fail-
ure phase was not described in detail, as well as only one critical point of early failure 
phase and random failure phase was included. In fact, random failure phase is the main 
part of life cycle for most repairable system. Single distribution model may be inade-
quate for analysis and modelling as well as relatively errors may occur. Parameter esti-
mation of multi parameter model, because of the unknown parameters, is difficult to 
solve the problem directly by using the maximum likelihood estimation.

Therefore, a bathtub-shaped reliability model based on piecewise intensity function 
was proposed for repairable system. According to the characteristics of failure rate at 
three phases of bathtub curve, using non-homogeneous Poisson process (NHPP) and 
homogeneous Poisson process (HPP), the failure rate of different phases was fitted 
respectively. In view of the complexity of parameter estimation, relevant parameter esti-
mation was studied by virtue of maximum likelihood method and artificial bee colony 
algorithm. At last, the approach was applied and verified by the reliability analysis of 
a repairable Computer Numerical Control (CNC) system. The remainder of the paper 
is organized as follows. "Set up piecewise model" section builds up a piecewise model 
under bathtub curve. "Parameter estimation" section studies the parameter estimation of 
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the model. "Application" section gives an example application for verifying the proposed 
method. Finally, the paper is concluded.

Set up piecewise model
Currently, there are two main methods for studying reliability of repairable system: 
Counting Process and Markov Process (Rausand and Høyland 2004). Markov Process 
is mainly targeted at the multi-state problem of repairable system. Counting Process 
focuses on two states which are normal operation and fault of the system, and record 
normal operating time of system, fault occurrence time as well as frequency, which is 
consistent with the trend of fault rate in this research. Consequently, Counting Process 
was selected for piecewise reliability modelling of trend of bathtub curve. Process is as 
follows:

1.	 Early failure phase
	 At early failure phase, intensity function presents a decline trend. Due to the defects 

in the process of selection, manufacture and assembly of components, failure rate of 
system is high in the initial phase, but decreases rapidly as the run time increases and 
maintenance is provided. Therefore, we assume that the repair process at early fail-
ure phase is minimal repair, NHPP is used for modelling, intensity function complies 
with the most common Weibull process, and b1 < 1, namely: 

2.	 Random failure phase
	 At random failure phase, early defects of a system have been corrected, and failure 

intensity is tending towards stability. Thus, we assume that the repair process at ran-
dom failure phase is perfect repair, HPP and exponential distribution are adopted for 
modelling, and intensity function remains unchanged (as a constant): 

 where, t0 is the critical point between early failure phase and random failure phase.
3.	 Wear-out failure phase
	 As run time lapses, the system slowly enters wear-out failure phase due to loss of 

components and mechanical fatigue, and its intensity function is increasing. Just like 
early failure phase, we assume that the repair process at wear-out failure phase is 
minimal repair, NHPP is used for modelling, and intensity function complies with 
Weibull process. Thus, the system’s intensity function is: 

where, t1 is the critical point between random failure phase and wear-out failure 
phase.

To sum up, the system’s intensity function throughout the life cycle is:

(1)ω1(t) = a1b1t
b1−1

(2)ω2(t) = ω1(t0) = a1b1t
b1−1
0

(3)ω3(t) = a1b1t
b1−1
0 + a2b2(t − t1)

b2−1
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Then, the system’s cumulative intensity function is:

Parameter estimation
There are a lot of methods for parameter estimation of reliability model, such as maximum 
likelihood estimation, moment estimation, least square method, and Bayesian method. 
Among these methods, maximum likelihood estimation is the most widely used owing to 
its good theoretical basis and high estimation accuracy. Therefore, maximum likelihood 
estimation was applied for parameter estimation of the proposed reliability model.

Maximum likelihood estimation

First, the likelihood function shall be determined. Based on the reliability model above, 
the cumulative distribution function of the ith Mean Time Between Failure (MTBF) is:

where, Si is the moment when the ith failure occurs. Then, the conditional probability 
density function of Si is:

Equations (4) and (5) are plugged into (7), and we obtain: When Si ≤ t0,

When Si−1 < t0 ≤ Si < t1,

When t0 < Si−1 < Si ≤ t1,

When Si −1 < t1 < Si,

(4)ω(t) =















a1b1t
b1−1 t ≤ t0

a1b1t
b1−1

0
t0 < t ≤ t1

a1b1t
b1−1

0
+ a2b2(t − t1)

b2−1 t > t1

(5)

Wc(t) =

�

t

0

ω(u)du =















a1t
b1 t ≤ t0

a1t
b1
0

+ a1b1t
b1−1

0
(t − t0) t0 < t ≤ t1

a1t
b1
0

+ a1b1t
b1−1

0
(t − t0)+ a2(t − t1)

b2 t > t1

(6)

F(Si|Si−1 ) =
F(Si)− F(Si−1)

1− F(Si−1)

=
exp[−W (Si−1)] − exp[−W (Si)]

exp[−W (Si−1)]

= 1− exp[−W (Si)+W (Si−1)]

(7)f (Si|Si−1 ) = ω(Si) exp [−W (Si)+W (Si−1)]

(8)f (Si|Si−1 ) = a1b1S
b1−1
i exp

(

−a1S
b1
i + a1S

b1
i−1

)

(9)f (Si|Si−1 ) = a1b1t
b1−1
0 exp

[

−a1(1− b1)t
b1
0 − a1b1t

b1−1
0 Si + a1S

b1
i−1

]

(10)f (Si|Si−1 ) = a1b1t
b1−1
0 exp

[

−a1b1t
b1−1
0 (Si − Si−1)

]
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When t1 < Si-1 < Si,

When the system’s failure time data is Type-II censored data, the likelihood function 
is:

where n is the total number of failures, θ = (a1, b1, t0, a2, b2, t1, ρ), Sk < t0 < Sk+1 < ⋯ < 
Sl < t1 < Sl+1.

When the system’s failure time data is Type-I censored data, the likelihood function is:

Where ts is censoring time,

To sum up, the likelihood function is:

(11)

f (Si|Si−1 ) =
[

a1b1t
b1−1
0 + a2b2(Si − t1)

b2−1
]

× exp
[

−a1b1t
b1−1
0 (Si − Si−1)− a2(Si − t1)

b2

]

(12)

f (Si|Si−1 ) =
[

a1b1t
b1−1
0 + a2b2(Si − t1)

b2−1
]

× exp
[

−a1b1t
b1−1
0 (Si − Si−1) − a2(Si − t1)

b2 + a2(Si−1 − t1)
b2

]

(13)

L(S1, S2, . . . , Sn|θ ) =

n
∏

i=1

f (Si|Si−1 )

=

k
∏

i=1

a1b1S
b1−1
i

exp
(

−a1S
b1
i

+ a1S
b1
i−1

)

× a1b1t
b1−1
0

× exp
[

−a1(1− b1)t
b1
0 − a1b1t

b1−1
0 Sk+1 + a1S

b1

k

]

×

l
∏

i=k+2

a1b1t
b1−1
0 exp[−a1b1t

b1−1
0 (Si − Si−1)]

×
[

a1b1t
b1−1
0 + a2b2(Sl+1 − t1)

b2−1
]

× exp
[

−a1b1t
b1−1
0 (Sl+1 − Sl)− a2(Sl+1 − t1)

b2

]

×

n
∏

i=l+2

{[

a1b1t
b1−1
0 + a2b2(Si − t1)

b2−1
]

× exp
[

−a1b1t
b1−1
0 (Si − Si−1)− a2(Si − t1)

b2 + a2(Si−1 − t1)
b2

]}

(14)L(S1, S2, . . . , Sn|θ ) =

n
∏

i=1

f (Si|Si−1 )R(ts|Sn )

(15)
R(ts|Sn ) = exp[−Wc(ts)+Wc(Sn)]

= exp[−a1b1t
b1−1
0 (ts − Sn)− a2(ts − t1)

b2 + a2(Sn − t1)
b2 ]

(16)L(S1, S2, . . . , Sn|θ ) =

n
∏

i=1

f (Si|Si−1 )δR(ts|Sn )
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Where δ is defined as:

Given that the specific equation of likelihood function is related to the interval of fail-
ure time data where t0 and t1 are located, and it is difficult to solve the complicated equa-
tion of likelihood function by calculating logarithmic derivative. Hence, artificial bee 
colony algorithm was used for parameter optimization to maximize likelihood in accord-
ance with the piecewise processing of t0 and t1. The optimization model is as follows:

In addition, the range of variable parameter shall be optimized to improve efficiency 
and accuracy of the model’s parameter optimization. First, the value range of t0 and t1, 
i.e. k and l, shall be determined based on the system’s failure time data and trend esti-
mation. Second, the first k time data at early failure phase and the last n–l time data at 
wear-out failure phase are adopted for interval estimation of Weibull process, and the 

(17)δ =

{

0 Type-II censored data
1 Type I censored data

(18)

max
θ

L(S1, S2, . . . , Sn|θ )

subject to







a1 > 0, 0 < b1 ≤ 1
a2 > 0, b2 ≥ 1
0 < t0 < t1 < Sn

Start

According to the system’s failure time data 
and trend estimation to determine the value 

range of t0 and t1, i.e. k and l

Initialize the value of parameters 
θ=(a1, b1, t0, a2, b2, t1)

Solve: L(S1,S2,…,Sn|θ)

Max L(S1,S2,…,Sn|θ) ?

Get the optimal estimation parameters
θ=(a1, b1, t0, a2, b2, t1)

N

Y

Set: Sk<t0≤SK+1, Sl<t1≤Sl+1

Determine the optimization range of 
parameters a1, b1, a2 and b2

Piecewise interval estimation of 
Weibull process

Optimize θ and do iteration

Fig. 1  Flowchart of parameter estimation of reliability model
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extreme value of estimation interval is regarded as the optimization range of parameters 
a1, b1, a2, and b2.

The flowchart of parameter estimation of reliability model is shown in Fig. 1.

Weibull process interval estimation

Interval estimation includes two parts—point estimation and margin of error that 
describes estimation accuracy. Therefore, to complete the interval estimation of Weibull 
process, the point estimation of parameters shall be first performed, followed by the cal-
culation of its margin of error.

1.	 Point estimation
	 Based on Literature (Ebeling 2004), the maximum likelihood point estimation of 

Weibull process parameters a and b is as follows:

	 When the failure time data is Type-II censored data: 

	 When the failure time data is Type-I censored data: 

2.	 Margin of error
	 Generally, in the case of large sample (≥30), the maximum likelihood point estima-

tion presents consistency and asymptotically normal distribution; In the case of small 
sample, the logarithm of point estimation of parameter is much closer to normal dis-
tribution. Specific equations are as follows:

	 In the case of large sample: 

	 In the case of small sample: 

where D(â) and D(b̂) are the variance of parameters a and b, respectively. Their value 
can be obtained using Fisher Information Matrix below (Kijima 1989; Ye 2003): 

(19)







b̂ = n
�n

i=1 ln
Sn
Si

â = n

Sb̂n

(20)







b̂ = n
�n

i=1 ln
ts
Si

â = n

tb̂s

(21)
a− â
√

D(â)
∼ N (0, 1);

b− b̂
√

D(b̂)

∼ N (0, 1)

(22)
ln a− ln â
√

D(â)
∼ N (0, 1);

ln b− ln b̂
√

D(b̂)

∼ N (0, 1)

(23)

(

D(â) cov(â, b̂)

cov(b̂, â) D(b̂)

)

=

(

− ∂2 ln L
∂a2

− ∂2 ln L
∂a∂b

− ∂2 ln L
∂b∂a

− ∂2 ln L
∂b2

)−1
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According to normal distribution, the confidence interval under 1−α:
In the case of large sample:

In the case of small sample:

Solving Eq. (25) can obtain the confidence interval for a and b:
In the case of large sample:

In the case of small sample:

Parameter optimization based on artificial bee colony algorithm

With respect to the proposed model for parameter optimization and the range opti-
mized by Weibull process interval estimation, artificial bee colony algorithm was used 
for solving optimization problem. Artificial bee colony algorithm is characterized by 
strong global optimization, rapid rate of convergence, and suitability in solving different 
problems, compared with other swarm intelligence optimization algorithms such as evo-
lutionary algorithm, artificial immune algorithm, particle swarm optimization, and ant 
colony algorithm (Chen 2015).

The correspondence between bee’s search for nectar source and optimization in artifi-
cial bee colony algorithm is shown in Table 1.

The algorithm process is as follows:

(24)P

�

�

�a− â
�

�

�

D(â)
≤ Zα

/2

�

= 1− α; P





�

�

�

b− b̂

�

�

�

�

D(b̂)

≤ Zα
/2



 = 1− α

(25)P

�

�

�ln a− ln â
�

�

�

D(â)
≤ Zα/2

�

= 1− α; P





�

�

�

ln b− ln b̂
�

�

�

�

D(b̂)

≤ Zα/2



 = 1− α

(26)
[

â− Zα
/2

√

D(â), â+ Zα
/2

√

D(â)

]

;

[

b̂− Zα
/2

√

D(b̂), b̂+ Zα
/2

√

D(b̂)

]

(27)

[

â

/

exp(Zα/2

√

D(â)), â · exp(Zα/2

√

D(â))

]

;

[

b̂

/

exp(Zα/2

√

D(b̂)), b̂ · exp(Zα/2

√

D(b̂))

]

Table 1  Correspondence between bee’s behavior and optimization

Bee searches for nectar source Optimization

Location of nectar source Value of all θ = (a1, b1, t0, a2, b2, t1)

Quality of nectar source Fitness value corresponding to all θ, i.e. L(S1,S2,…,Sn|θ)

Speed of gathering honey Solving speed

Maximum fitness max L(S1,S2,…,Sn|θ)
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1.	 Initialization of parameter
	 First, the two basic parameters in artificial bee colony algorithm shall be initialized. 

One parameter is the quantity of nectar source (Sn), which represents the number of 
solution. Besides, Sn is also the number of leaders and followers; the other parameter 
is the limit value of gathering nectar source (limit). When the gathering times of a 
nectar source exceed the limit, the nectar source will be abandoned.

2.	 Initialization of solution space
	 Random initialization produces the primary Sn solutions. Let θi = (a1i, b1i, t0i, a2i, b2i, 

t1i) = (θi1, θi2, θi3, θi4, θi5, θi6), which represents the location of the ith nectar source. 
The initialization formula for each value is as follows:

where r is the random number between [0, 1], and LBj and UBj are the value range of 
θj, i.e. minimum and maximum.

Later, the leaders start to gather these nectar sources at random, and relevant fit-
ness value is calculated.

3.	 Stage of leaders
	 When the leaders decide to gather a nectar source at random, they will search new 

nectar sources at random around the nectar source. Their search is in line with the 
equation below:

The fitness value corresponding to new nectar sources θnew is then calculated and 
compared with previous nectar sources to select the solution with higher fitness.

4.	 Stage of followers
	 In terms of followers, their follow probability is calculated based on normalization 

and fitness value of each nectar source. The equation is as follows:

where, fiti represents the fitness value of nectar source at θi. Larger fiti indicates 
greater probability that the followers select the nectar source. When the followers 
select a nectar source, they also search new nectar sources at random around the nec-
tar source based on Eq.  (29) just as the leaders do, and then choose a better nectar 
source by comparing with the nectar source they follow.

5.	 Stage of scouters
	 At this stage, if a nectar source θi is still not improved after being gathered limit 

times, it will be abandoned. The leaders here will become scouters, and search a new 
nectar source at random based on Eq. (28).

6.	 Iterations
	 The nectar source with the maximum fitness is recorded. Whether iterations reach 

the maximum set point is judged. If the maximum set point is reached, the algorithm 
ends and the optimal nectar source, namely optimal solution, is output. Otherwise, 
return to (3) to continue the cycle.

(28)θij = LBj + (UBj − LBj)× r j = 1, 2, . . . , 4 i = 1, 2, . . . , Sn

(29)θnew(j) = θij + (θkj − θij)× r k ∈ (1, 2, . . . , Sn) ∩ k �= i j = 1, 2, . . . , 4

(30)Pi =
fiti

∑Sn
i=1 fiti
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Application
The proposed model was applied in reliability analysis of a repairable CNC system con-
taining servo drive unit.

In order to test the reliability of CNC system, a long-term multi-sample test (Type-I cen-
sored) under the same environment was carried out, and the environment of test laboratory 
as shown in Fig. 2. This test has been taken to record the failures of CNC system in the past 
two years. The failure time data of 18 sets of CNC system with 50 failures were recorded, and 
processed by the Total Test Time method (Barlow and Campo 1975), as shown in Table 2.

Based on the data above, the system’s failure trend estimation and test were carried 
out, and TTT diagram (Bergman 1979) was drawn, as shown in Fig. 3. Where, the total 
number of failures n = 50.

As can be seen in Fig.  3, the TTT scatter diagram is concave under the diagonal of 
unit square at the beginning, indicating that the failure rate presents a decline at early 
phase. Later, the diagram fluctuates slightly along a straight line. The failure rate remains 

Fig. 2  The environment of CNC system reliability test laboratory

Table 2  Data of total failure time

Number 
of failure

Total 
failure  
time (h)

Number 
of failure

Total 
failure  
time (h)

Number 
of failure

Total 
failure  
time (h)

Number 
of failure

Total failure 
time (h)

1 216 14 53,262 27 129,726 40 191,921

2 522 15 58,536 28 132,588 41 193,253

3 990 16 66,546 29 139,770 42 195,282

4 1368 17 68,310 30 145,314 43 197,686

5 4248 18 76,734 31 149,868 44 199,193

6 6354 19 80,406 32 153,054 45 199,901

7 10,728 20 85,842 33 162,036 46 200,671

8 17,046 21 95,400 34 168,666 47 201,244

9 23,652 22 97,578 35 174,137 48 201,739

10 29,862 23 107,010 36 179,169 49 202,810

11 35,730 24 111,492 37 183,413 50 202,978

12 39,276 25 116,892 38 186,045 Type-I censored test time: 
ts = 203,11513 48,366 26 121,662 39 189,225
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unchanged, and the system is gradually stabilized. After a period of time, the diagram looks 
like a convex under the diagonal of unit square, indicating that the failure rate increases.

Meanwhile, Laplace test (Louit et al. 2009) and Anderson–Darling test (Pulcini 2001) 
were used for trend test of failure data in Table  2. The significance level was set as 
α = 0.05. The results of statistical tests are shown in Table 3.

The results of trend test are consistent with the estimation output of TTT diagram. 
The system failure time data follows the trend of bathtub curve, and undergoes three 
phases—early failure, random failure and wear-out failure.

Then, the system reliability model was set up using the piecewise function above, and 
parameter estimation was performed.

First, the optimum ranges of t0 and t1 were processed in segment, and within the scope 
of (0, n) select the values of k and l in turn. But in order to improve calculation efficiency, 
by observing the total failure time data and the inflection point trend of TTT diagram, 
the range of values for k and l can be reduced and make a preliminary judgment. So, the 
value of k may be 6, 7, 8, and 9, while the value of l may be 33, 34, 35, and 36. And, the 
value range of t0 and t1 is Sk < t0 < Sk+1 < Sl < t1 < Sl+1.

Second, parameter optimization was conducted in accordance with different k and 
l. Based on the failure time sequence S1, S2, S3,…, Sk (considered as Type-II censored 
data), interval estimation of minimal repair model at early failure phase was conducted. 
In the condition that the given confidence was 99.73 %, the confidence interval was a1 
∈ [a1min, a1max], b1 ∈ [b1min, b1max]. Similarly, based on the failure time sequence Sl+1,…, 

Fig. 3  TTT diagram of system failure time data

Table 3  Results of statistical tests at the significance level α = 0.05

Test methods Statistics Critical value Calculated value Results

Laplace test U 1.96 1.35 Show a non-monotonic trend

Anderson–Darling test V1 1.96 3.32 Follow the trend of bathtub curve

V2 1.96 4.08

V3 192.47 68.65
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S50, ts (considered as Type-I censored data), interval estimation of minimal repair model 
at wear-out failure phase was conducted. In the condition that the given confidence was 
99.73 %, the confidence interval was a2 ∈ [a2min, a2max], b2 ∈ [b2min, b2max]. The improved 
optimization model was:

Artificial bee colony algorithm was then used for parameter optimization of the opti-
mization model above. The algorithm’s iterations, size of bee colony, and limit were set. 
The optimal parameter in the case of k and l was θ = (a1, b1, t0, a2, b2, t1).

At last, optimal parameters in the case of different k and l were compared. The param-
eter that maximizes likelihood was selected as the optimal parameter of overall model, 
i.e. k = 7, l = 33, a1 = 0.0427, b1 = 0.5066, t0 = 16,567, a2 = 5.0503 × 10–11, b2 = 2.4984, 
t1 = 168,242.

The goodness of fit of the two-stage Weibull process above was tested using Cramer-
Von Mises test (Ebeling 2004). The given significance level was α = 0.05. The test results 
are shown in Table 4.

In conclusion, 18 sets of CNC system intensity functions were obtained:

Meanwhile, the results suggest that the critical point between early failure phase and 
random failure phase of a single system was located at about t0/18 = 920 h, while the 
critical point between random failure phase and wear-out failure phase was located at 
about t1/18 = 9347 h.

The intensity function of a single system was:

The curve of intensity function is shown in Fig. 4.
Based the instantaneous MTBF(t) = 1/ω(t), we found that the MTBF of the system at 

random failure phase was calculated as MTBF = 1/(1.7893 × 10−4) = 5589 h.

(31)

max
θ

L(S1, S2, . . . , Sn|θ )

subject to







a1min ≤ a1 ≤ a1max, b1min ≤ b1 ≤ b1max

a2min ≤ a2 ≤ a2max, b2min ≤ b2 ≤ b2max

Sk < t0 < Sk+1, Sl < t1 < Sl+1

(32)

ω(t) =







0.0216× t−0.4934 t ≤ 16567

1.7893× 10
−4

16567 < t ≤ 168242

[1.7893× 10
−4 + 1.2618× 10

−10 × (t − 168242)1.4984 t > 168242

(33)

ω1(t) =







5.1882× 10−3 × t−0.4934 t ≤ 920

1.7893× 10−4 920 < t ≤ 9347

[1.7893× 10−4 + 9.5916× 10−9 × (t − 9347)1.4984 t > 9347

Table 4  Results of test of goodness of fit at the significance level α = 0.05

Weibull process Test methods Statistics Critical value Calculated value Results

Stage I Cramer-Von Mises test C
2

M
0.208 0.079 Verified

Stage II 0.217 0.151 Verified
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Therefore, the example above proves that the proposed piecewise reliability model can 
fit the failure rate under bathtub curve very well and obtain two critical points of bathtub 
curve. It provides an important basis for reliability analysis, design and test.

Conclusions
A modelling study on the phenomenon that the failure rate of lifetime failure data pre-
sents a bathtub curve was carried out for repairable system. The following achievements 
were made:

1.	 Considering the characteristics of failure rate at three phases of bathtub curve, and 
combining homogeneous Poisson process and non-homogeneous Poisson process 
during Counting Process, a bathtub-shaped reliability model based on piecewise 
intensity function was proposed. Moreover, with respect to the difficulty of common 
parameter estimation methods in solving equations, maximum likelihood estima-
tion and artificial bee colony algorithm were combined to estimate the model-related 
parameters and guarantee the feasibility of the model in application.

2.	 Given that extensive range and excessive time consumption of parameter optimiza-
tion during parameter estimation, the interval estimation of two-stage Weibull pro-
cess was studied, and the range of model optimization was improved. As a result, the 
efficiency of parameter optimization was substantially increased.

3.	 The proposed model, as well as estimation approach, fits the failure rate under bath-
tub curve very well and adequately reflects the duration of random failure phase. 
Besides, two critical points of bathtub curve are obtained.

Fig. 4  Intensity function of a single system
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4.	 At last, the practical use of the proposed model is demonstrated by a set of fail-
ure data of a repairable CNC system, and the validity of the proposed model and 
its parameter estimation method was verified. The study will be useful for reliability 
analysis of repairable systems and provide an important basis for relevant reliability 
research.
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