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Background X
fp>175+ =1 (,80) 20f € F(Ry),g € LRy, IIf ], = (Jo~ £ ®)dx)? > 0,
liglly > O, then we have the following Hardy—Hilbert’s integral inequality (cf. Hardy et al.
1934):

% 1% fx)e(y) n
/O (LD by < Wl M

where, the constant factor m is the best possible. {kssuming that
amyby = 0,a = {am)pe_y €17, b={by}52, €19, llally = Loz @m)? > 0,1|blly > 0,

we have the following Hardy-Hilbert’s inequality with the same best possible constant

ﬁn/p) (cf. Hardy et al. 1934):

fjfj L ST
m+n sin(w/p) LT 2

m=1n=1

Inequalities (1) and (2) are important in Analysis and its applications (cf. Hardy et al.
1934; Mitrinovi€ et al. 1991; Yang 2009a, b, 2011).

In 1998, by introducing a parameter 4 € (0,1], Yang (1998) gave an extension of (1)
1

with the kernel ey,

for p = g = 2. Recently, Yang (2009b) gave extensions of (1) and
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(2) as follows: If 21, A2 € R, 41 + A2 = 4, k;(x, ) is a non-negative homogeneous function
of degree —/, with

oo
k(21) =/ k;(t, Dt 1dt € Ry,
0

¢ (x) = 2?1071y (x) = 210271 f(x), () > 0,

S EeLpgRy) = {f; Wfllpe = </o d)(x)Lf(x)lde)p < oo},

g€ Lyy R, |fllpgs 11gllgy > 0, then we have
o0 o0
/O /0 k(69 f (g dxdy < kGl F g 1€ g 3)

where, the constant factor k(4;) is the best possible. Moreover, if k;(x,y) keeps finite
value and k;y(x,y)xil_l(ki(x,y)yh_l) is decreasing with respect to x > 0 (y > 0), then
for a,,, b, > 0,

0 ;
aclyy=1allallpy = (Z«zs(n)wp) <00,

n=1

={bn}2 1 € lyys llallpgs 11bllg,y > 0, we have the following Hilbert-type inequality
w1th the same best possible constant factor k(4;):

0> kitmmamby < kGllallpellbllg,y- )

m=1 n=1

On half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy
et al. provided a few results in Theorem 351 of Hardy et al. (1934). But they did not
prove that the the constant factors are the best possible. Yang (2005) gave an inequality

with the kernel —— a + o7 8 follows:

wf @ _, AV 1—12/00 142 :
Z/ (1+mc)) B<2’2> (;n ay o X f (x)dx> , 5

and proved that the constant factor B(%, %)(Z > 0) is the best possible. Zhong et al.
(Zhong 2008, 2011, 2012; Li and He 2007; Azar 2008; Jin and Debnath 2010; Huang
2010, 2015; Krni¢ and Vukovié 2012; Adiyasuren et al. 2014, 2016; He 2015) investigated
a few half-discrete Hilbert-type inequalities and some other Hilbert-type inequalities. In
2014, Yang et al. published a book (Yang and Debnath 2014) for building the theory of
half-discrete Hilbert-type inequalities.

In this paper, by means of weight functions and Hermite—Hadamard’s inequality, and
introducing a discrete interval variable, a more accurate half-discrete Hardy—Hilbert-
type inequality related to the kernel of arc tangent function and a best possible constant
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factor is given, which is an extension of a published result mention in Yang and Debnath
(2014). The equivalent forms and the operator expressions are considered.

An example and some lemmas
In the following, we make appointment that v; > 0(j € N), V,, := Z]’?:l v, 0 <V, < 7,
Vi = Vi — U v(t) == vt € (n— 3, n+ 31(n € N),and

V(y = [yv(t)dt<ye B,oo)),

2

P#0L +1=18¢€{-1L1}, f(®),ay = 0 € Ry, n € N)|[f |0, = (Jo~ Psx)fP(®)
1 ~ 1
dx)?,llall g = (s W(mbi) 7, where, s (x) 1= 2?1007,
N 74(1—0)—1
V(n) = HT(x e Ry,n e N).
Vn

Examplel Forp > 0,0 <o <y <1,weset

h(t) := arctan t% (t € Ry).

(i) Settingu = p%t=%7, we find

00 oy 0 _, 1
k(o) == / t°larctan tﬁy dt = p / u? Larctanu? du
0 0

2y
p°lY [ I
= arctan u2du %
o Jo
P 1 1 [ u%’_%
= u? arctanu?|g° — f/ du
o 2 1+u
p°lY /°° u(%ﬂ%)fld P 1
= u =
20 Jo 1+u 20’511’171(%—%
pc/yn
~ 20 cos(Z2)’ ©
2y

(i) We obtain for p > 0,0 <y <1,t > 0,h(t) = arctan % > 0,

o
2 + pHttv
It is evident that for ¢ < 1,27 ~1h(t) > 0,

d d?
Lty = , —sh :
o ho 0, —h(t)>0

d o—1 d2 o—1
ﬁ(t h(t)) <0, ﬁ(t h(t)) > 0.

(iif) Since forn € N,V(y) > 0,V'(y) = v, > 0,V"(y) =0(y € (n — 3, n+ 1), it follows
that for ¢ > 0, we have
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d
V)Vl >0, d—y(h(cV(y»vH(y)) <0,

& h(cV(y) Vol 0 1 1
SRV oY) > (yE(n—z,n—l—z))

Lemmal If g(t) > 0,¢'(¥) <0,g"(t) > 0(¢ e(%, oo)),satisfyingfgog(t)dt € Ry, then
we have

/oog(t)dt < Zg(n) < /oog(t)dt. (7N
1 1

n=1 2

Proof For np € N\{1}, by the assumptions and Hermite—Hadamard’s inequality, we
have

n+1 n+%
/ gt)ydt < g(n) < / X g)ydt(n=1,...,np). (8)

2

It follows that

no+1 1o 1o n+% Vlo+%
0 </ gydt <> gn) < Z/ 1 g(t)dt:[ gt)dt < oco.
1 n=1 n=1"" 2

2

In the same way, we still have

o0

0</ gwdr < N g(n)g/  g(tydt < co.

o+l n=ny+1 not3
Hence, adding these two inequalities, we have (7). O

Lemma2 If p > 0,0 <o <y <1,define the following weight coefficients:

(0,%) i 27 vy t p €R 9)
ws(o,x) == ——— arctan - X +
SVl & V)Y
) = t = d y N

ws(o,n) /0 sy arctan A x, ne€ (10)
We have

ws(o,x) < k(o)(x € Ry), (11)

ws(o,n) = k(o)(n € N), (12)

where, k(o) is indicated by (6).
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Proof Since

n+s
Vn) :[ V(t)dt — ”?” —y, -

S

1
SVnSVn=V<n+>, (13)

and fort € (n — %, n+ %), V' (t) = vy, in view of Example 1(ii)-(iii), (13), (8) and (7), we
have

x(SG Uy P xéa Ve 0
= arctan = < arctan ———
(7 @ V,)r ~ VI=o(m) @V (n)r

/Vl+é xaﬂ V/(t) P
<
n

Vi (o) arctan BV dt (n € N),

_1
2

S Vl+% xéo‘v/(t) 0
a)g(a,x) < Z/_l Warctan W&l’t

n=1 2
oo 801/
= / w arctan Ldt
1 Viso(r) (x3V(2)Y

Setting u = x° V (¢) in the above, by (6), we find

X0V (00) 200 =8 0
ws(o,x) < —— 5 arctan —du
0 (ux=0)' =7 1724

*© p
< / u® Larctan -—du = k(o).
0 uv

Hence, (11) follows.
Setting u = \N/,,x‘S in (9), we find du = Svnxs’ldx. If§ = 1, then

) ‘70 \7—1 )
wi(o,n) = / ——"— arctan Ly = / u® Larctan ﬁdu;
0 (Vn u)l—d uY 0 uY

if § = —1, then
0 ‘70‘7 )
w_1(o,n) = —/ —n M arctan Ldu = / u®~Larctan 2-du.
00 (Vnu71)1+ou2 uv 0 u’

In view of (6), we have (12). O

Lemma 3 If p>0,0<0 <y <1, there exists a ny € N, such that v, > v,
(ne{ng,ng+1,---}),and Vo = 00, then, (i) for x € Ry, we have

k(o)(1 —0s(0,x)) < ws(0,%), (14)
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where,

1

Os(0,x) := ko)

x‘s\/no o
/ u®Larctan —ydu = 0&*7) € (0,1); (15)
0 u

(i) foranyb > 0,we have

P ( L bou)) (16)
Ti+b T p\ o :
n=1"" no
Proof (i) Since fort € (m,n+ 1)(n > np), vy > vyp1 = V'(E+ %), by Example 1(iii) and
(8), we have
© So
x°9 vy,
) X) = t.
ws(o,%) > n_zn = arctan PV
=no
S So
= % arctan 8%
oy V7 (14 3) @ V(n+3)"
o0 So 1
> Z /n+1 w arctan La’t
e dn VITO@E+ ) @V (E+3)
00 400 %4 t+ 1
=/ warctan %dt.
o VIOt +3) @V (E+3))

Settingu = x° V(¢ + %) in the above, in view of Vo, = 00, by (6), we find

o P
ws(o,x) > / u® Larctan ~—du
BV (no+3) wr

x‘SVno P
= k(o) — / u® Larctan —ydu = k(o)1 — 65(0,x)),
0 u

1 xSVnO 1 o
_ o—
Os(o,x) = ko) /0 u arctan " du € (0,1).

Since

i
arctan - < —(u € (0,00)),
u¥ 2

we find

8

V, ) o

T X Vg T (x° Vi)

/ gy = TE Vi)™
0

0 < 05(0,x) < 2% (o) 20k(o)

and then (15) follows.
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(i) For b > 0, by (8), we find

00 no

Vn
; an—o—b = Z 1+b + = %:-&-1 V1+b(n)
+1
2 V')
- Z 1+b Z /n_7 VH‘b(t) dt

n=np+1
AV (t)

Vu e
= Z =itp 1+b
SV no+l V(D)
1({ 1 0,
=% (Vh +”Z T |’

O e z/ e
=Vt V1+b(n+ S = Vith 4+ 1)

_/00 v+ 1) 1

o VIFP(E+3) be(Vlo—i-g) 7

Hence we have (16). O

Note For example, v, = niﬂ(n € N; 0 < 8 < 1) satisfies the conditions of Lemma 3 (for

no = 1).

Main results and operator expressions
Theorem 1 If p>0,0<o0 <y <1, k(o) is indicated by (6), then for p > 1,
0 < |Ifllp,®s ||“||q\i <00, we have the following equivalent Hardy—Hilbert-type

inequalities:

Z / arcan ) —a,f @dx < K©)Ifllp;lall, g (17)

L > Vn o 14 a

5= {; ? {/0 arctan (xB\N/,,)Vf(x)dx] }
< k(a)|V||p,®5r (18)

PN

¢} 1 o q

J2 = {/o e [Zarctan P n] dx}

(19)

< k(o)llall, g

Page 7 of 14
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Proof By Holder’s inequality with weight (cf. Kuang 2004), we have

0 0 B p
t =
[/0 arctan - V,,)Vf(x)

) e NI;% g
= / arctan P AC)) Va dx
0 @V \ gy J e
~ p(-80) » ()
x 4 x
< / arctan B ~1;’: dx
0 @3V, Vi

X

~(1_ _ p—1
00 0 yd-o@-D
arctan —= =5 dx
0 xVyr  xie

(ws(o, )P~ /°° p  aldTo-by,
= — arctan
0

= = = P (x)dx. 20
Vr[lﬂ(f—l‘)n (x(s Vn)y r}—o‘ f (x) X ( )

In view of (12) and Lebesgue term by term integration theorem (cf. Kuang 2015), we find

S IC

x1=60)(p=1),,

J1 < (k(cf))é Z/ arctan (x‘SV,,)V S an(x)dx]

S =

L[ opoo @ (1-80)(p—1)
= (k(o))4 / Z arctan P_x v”fp (x)dx]
0

ot @@Vyr Vg ©

= (k(o))1 /OO wa(a,x)xp(laa)lfp(x)dx} g 1)
0

Then by (11), we have (18). By Holder’s inequality (cf. Kuang 2004), we have

1 1
0 P ) P
v a
= Z 1” / arctan B -f (x)dx “ T u
57 Jo XV, »
n=1| Vy Vn
<llall, g- 22)

In view of (18), we have (17). On the other hand, assuming that (17) is valid, we set

Vn

00 o p-1
an ‘= =7 [/ arctan —f (x)dx , nmeN.
Va P 0 (95(S Vi)Y

Then we find ]1 = ||a||q ~.If s = 0, then (18) is trivially valid; if /1 = oo, then (18) keeps
impossible. Suppose thatO < J1 < 00.By (17), we have

q P
lall? ;= =1 < k@)I|flIpe,llall,g.

llall”5 =1 < k@Il llpy

and then (18) follows, which is equivalent to (17).
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Still by Holder’s inequality with weight (cf. Kuang 2004), we have

00 q
[Z arctan (Ean]

n=1 x5\/n)}/
1-5¢ 1 1= 9
= iarctan p X1 Vn Va' an
- SV Vv ~ 1= 1-50 L
=1 (*x° Vi) V,” x @ b
< i t p a0=se-Dy 777
< arctan —— —
o &V Ve
- _qU-0)
V p
X Zarctan 58 u T al
ST @V xlso
7(1-0)(@-1)
ws(o,x))1 1 &
= ([Sx(qT)z Zarctan P = ——al. (23)

@ V,)r gldoyd!

Then by (11) and Lebesgue term by term integration theorem (cf. Kuang 2015), it follows
that

, Pl 7
I < (k(o))? {/ Zarctan T py a’fldx}

xl—éavn
-0 i
al
(k(G))P{Z/ arctan x‘SVn)V R I dx}
pa- o)1 7
_(k(o))I’ ng(o n)iaz . 24
n=1 v"
In view of (12), we have (19). By Holder’s inequality (cf. Kuang 2004), we have
1 R
1= / xa % (x) arctan —=—ay, | dx
0 ( f ) x%— g ; (x(S "
= W llp@s/2- (25)

Then by (19), we have (17). On the other hand, assuming that (19) is valid, we set
q—1
n] , X € R+.

Then we find ]2 |[f||p o, If J2 =0, then (19) is trivially valid; if /2 = oo, then (19)
keeps impossible. Suppose that 0 < /5 < c0. By (17), we have

fx) = - qaa lz arctan x5V 2%

W Itye, =13 =1 < k@IIfllpe;llall, g
I, =2 < k(@)llall,,g»

and then (19) follows, which is equivalent to (17).
Therefore, inequalities (17), (18) and (19) are equivalent. O

Page 9 of 14
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Theorem 2 With regards the assumptions of Theoreml, if there exists a ng € N, such
that v, > vyp1(n € {no,no + 1,...}), and Voo = 00, then the constant factor k(o) in (17),
(18) and (19) is the best possible.

Proof Fore € (0,gq0),wesetod = o — £(< min{l, y}), andf :f(x),x eRy,a={a,}2,,

q
~ S(c+e)—1 )
X , O0<x’°<1
fx) = {o, B =0 , (26)
_ ~ ~o—£-1
a, = V,i’_lvn = : 7 v, meN. 27

Then for § = +1, we obtain

/ 1 4 1
1 ge A = - 28
{x>0;0<xd <1} xl be 3 ( )

By (28), (16) and (14), we find

~ dx }, o Vi q
W llpasllall, g = </ _) d ==
q,¥ (x> 0:0<x3<1) xl—d¢e — 1+e

_1 (1 + aO(l)) i 29

&
e\ Vi,

7::/0 Zarctan (xaén)yﬁn}?(x)dx

\7,‘,7_1\;,, P
-/ D s e e
{ x°Vy)

x>0;0<x<1} 1

- 1
= ‘ w(;(a,x)mdx
{x>0;0<xd <1} X

- _e 1
> k() 1 - 0" ) - dx
{x>0;0<xd <1} X

dx 1
Wl ool
{x>0;0<xd <1} xl=oe {x>0;0<xd <1} x1_8(6+15)

T (0 ~Sa- 801(1)).
£ q

If there exists a positive constant K < k(o), such that (17) is valid when replacing k(o)
to K, then in particular, we have el < eK||f 1p,as 4l |q,\f/’ namely,

k(c —=)1—¢e01(1)) < K| — +£0(1) | .
q Vi

no

It follows that k(c) < K(¢ — 0T). Hence, K = k(o) is the best possible constant factor
of (17).

Page 10 of 14
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The constant factor k(o) in (18) [(19)] is still the best possible. Otherwise, we would
reach a contradiction by (22) [(25)] that the constant factor in (17) is not the best pos-
Sible. ‘:l

For p > 1, we find UlP(n) = =2 _(n € N), <I>§_q(x) = —L—(x € R}), and define the

‘71pr x1l—qdo
. n
following real normed spaces:

Lp,CDg (R+) = {f7f =f(x),x € R-i-: |If||p,<l>,s < OO}:
Ly =laia={any,2y llall, g < oo},

L, o1-a(Ry) = (i = h(x),x € Ry, |[All  g1-q < o0},

lp'q,l—p = {C; c= {Cn};?lo:p ||C||p,\f/l—p < OO}

Assuming that f € L, ¢;(R), setting

o
(xS Vi)

o0
c=A{enly, Cni= / arctan f(x)dx, neN,
0

we can rewrite (18) as||c| |py@1,p < k(o)||fllp,0; < 00, namely, ¢ € lp’q,l,p.

Definition 1 Define a half-discrete Hardy—Hilbert-type operator T; : L,,¢; (R4) — lp Jl-p
as follows: For any f € Ly, ¢;(R4), there exists a unique representation 71/ = c € lpy@l,p.
Define the formal inner product of T1f and a = {a,} >, € lq’q, as follows:

oo

(Thf,a) = Z {/0 arctan ” %)yf(x)dx ay. (30)

n=1

Then we can rewrite (17) and (18) as follows:

(Tif, @) < k(©@)IIf llp,e;llall, g (31)

N 1,10 < K@) l1p,05- (32)
Define the norm of operator T} as follows:

T 1, g1
[1T1]| := sup i 2 b
FE0eLpo,®)  fllpos

Then by (32), it follows that||T1|| < k(o). Since by Theorem 2, the constant factor in (32)
is the best possible, we have

pa/yn

M) ' (33)

[IT1]] = k(o) =
20 cos <2y

Assuming that a = {a,};2 ; € lq - setting
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oo
h(x) == Z arctan

n=1

(xavn)y Ay, X € R+,

we can rewrite (19) as||h||q,q>;7q < k(a)||a||q"f, < oo, namely, 1 € Lq,(b;fq Ry).

Definition 2 Define a half-discrete Hardy—Hilbert-type operator T, : L — Lq’ o1 (R4)
as follows: For any a={a,}3>, €l 0 there exists a unique representation
thl =he Lq,
follows:

1 (Ry). Define the formal inner product of Tha and f € Ly ¢;(Ry) as

(Tha,f) = /0 o [g arctan ﬁan f(x)dx. (34)

Then we can rewrite (17) and (19) as follows:

(Taa.f) < k(@If lIp.e;lall, g (35)
||T26l||q,¢)1s—q < k(@)llall, - (36)

Define the norm of operator 75 as follows:

Toa -
_—_— 1T2all | g1-a
T2l == sup ————

a0yl allyg

Then by (36), we find || T5|| < k(o). Since by Theorem 2, the constant factor in (36) is the
best possible, we have

aly

s
ITall = k(o) = =2 = ||Tu]l. (37)

20 cos( 3y )

Remark (i) For § = —1in (17), we obtain the following inequality with the homogene-

ous kernel of degree 0:

aly

o0 00 y
pPx Pl
nZ::I/O arctan <‘~/ny>ﬂnf(x)dx < me“p,cb,l IIallq,@. (38)

(if) For § = 1 in (17), we obtain the following inequality with the non-homogeneous

kernel:

oY

N[ p p
> / arctan anf (W)dx < 7y I llpou lall, - (39)
n=1 0 2y

(V)Y 20 cos(

Page 12 of 14
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(iii) For ft, = 0(n € N)in (17), we have the following inequality:

o 00 aly
P PV
;/0 arctan Wﬂnf(x)dx < m”fﬂp,@a”ﬂlﬂq,% (40)

0 Y
20 cos(7)
more accurate form of (40) (for 0 < i, < &, n € N).

where, the constant factor is still the best possible. Hence, inequality (17) is a

(iv) For uy = 1(x € R4, n € N), § = —1in (40), we have the following inequality:

> o0 X\
;an/o arctanp(;) fx)dx

[N X\ 41
—/0 f(x);arctanp(n) audx (4D

1
1 00 =

PV [/oo p(+0)—1 Z -o)—1pq|"
—_— x P (x)dx n? b1\
20 cos(%) 0 ; "

which is a particular case of Example 3.2 in Yang and Debnath (2014) for

A=0,11 =—0,l =cand k;(x,n) = arctanp(%)y.

We still can obtain some inequalities in Theorems 1-4, by using some particular
parameters.
Conclusion

By means of the technique of real analysis, weight functions and Hermite—Hadamard’s
inequality, and introducing a discrete interval variable and parameters, a more accurate
half-discrete Hardy—Hilbert-type inequality related to the kernel of arc tangent func-
tion and a best possible constant factor is given. The equivalent forms and the opera-
tor expressions are also considered. The method of weight functions is very important,
which is the key to help us proving the main results with the best possible constant fac-
tor. The lemmas and theorems provide an extensive account of this type of inequalities.
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