
Mobile clusters of single board
computers: an option for providing resources
to student projects and researchers
Christian Baun*

Background
For student projects and research projects, dealing with parallel applications or pri-
vate cloud services, an option for implementing clusters of inexpensive nodes would be
useful. It may also be useful for small and medium-sized enterprises. Possible fields of
application are among others the hosting of distributed database systems and clusters
of network services like HTTP servers. Compared with commodity hardware servers,
such clusters are an opportunity for reducing purchase costs for new hardware and the
hardware related operating costs. In addition, such clusters can be constructed in a way
that they can easily transported by the users because of their low weight and compact
design. A scenario, where mobility is a beneficial characteristic, is when clusters shall be
lend out to students. This way, they can solve exercises or do project work at home or
some other place.

This paper is organized as follows. In “Options for resource provisioning” section,
options for providing resources to student projects or research projects with limited
financial resources are discussed.

Section “Related work” contains a discussion of related work and explains the reason
for the construction of the clusters of mobile single board computers.

Abstract 

Clusters usually consist of servers, workstations or personal computers as nodes. But
especially for academic purposes like student projects or scientific projects, the cost for
purchase and operation can be a challenge. Single board computers cannot com-
pete with the performance or energy-efficiency of higher-value systems, but they are
an option to build inexpensive cluster systems. Because of the compact design and
modest energy consumption, it is possible to build clusters of single board computers
in a way that they are mobile and can be easily transported by the users. This paper
describes the construction of such a cluster, useful applications and the performance
of the single nodes. Furthermore, the clusters’ performance and energy-efficiency is
analyzed by executing the High Performance Linpack benchmark with a different num-
ber of nodes and different proportion of the systems total main memory utilized.

Keywords:  Single board computers, Performance, Speedup

Open Access

© 2016 Baun. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Baun ﻿SpringerPlus (2016) 5:360
DOI 10.1186/s40064-016-1981-3

*Correspondence:
christianbaun@fb2.fra‑uas.de
Frankfurt University
of Applied Sciences,
Nibelungenplatz 1,
60318 Frankfurt am Main,
Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1981-3&domain=pdf

Page 2 of 20Baun ﻿SpringerPlus (2016) 5:360

Section “Cluster of raspberry Pi nodes” presents a list of components of a mobile clus-
ter of single board computers and a calculation of the energy costs.

Useful application scenarios for clusters of single board computers are analyzed in sec-
tion “Useful applications”.

Section “Performance of the single board computers and the network infrastructure”
contains an analysis of the performance of the CPU, storage and network interface of the
single nodes.

In section “Analyzing the clusters’ performance with the HPL”, the performance and
speedup of the entire cluster of single board computers is analyzed, by using the High
Performance Linpack (HPL).

Section “Analysis of the energy-efficiency” contains an analysis of the energy-efficiency
of the cluster.

Finally, section “Conclusions and future work” presents conclusions and directions for
future work.

Options for resource provisioning
Clusters usually consist of servers, workstations or personal computers as nodes. Since
the mid-1990s, especially at universities and research institutions, cluster systems are
assembled by using commodity hardware computers and Ethernet local area networks.
Sterling et al. (1995) built such a cluster with the Linux operating system in 1994 and
called it Beowulf cluster (Gropp et al. 2002), becoming a blueprint for numerous scien-
tific projects afterwards.

The purchase cost for physical server resources can be challenging for student projects
or scientific projects. Decommissioned hardware can be acquired for little money, but
they require much space and the maintenance is labor intensive.

Another fact, which must be taken into account are costs, which arise from running
physical computer resources. These include electricity cost.

If it is not mandatory to operate hardware resources in-house, outsourcing them or
using services instead is an option. Dedicated server offerings and public cloud infra-
structure service offerings can be used to provide compute resources to students or
researchers.

Obstacles against public cloud and dedicated server offerings

In some countries, it is not common that students have a credit card. This can be an
obstacle for using public cloud infrastructure services for student projects.

In contrast to cloud infrastructure service offerings, which can be used on an on-
demand-basis according to the pay-as-you-go principle, dedicated server offerings usu-
ally have a minimum rental period of at least a month. Depending on the number of
systems, which are required to realize a specific distributed system, using dedicated
server offerings may be an expensive choice.

A drawback of both dedicated servers and public cloud infrastructure services is the
lack of a physical representation, which e.g. for students complicates understanding the
functioning of distributed systems.

Page 3 of 20Baun ﻿SpringerPlus (2016) 5:360

Building clusters of single board computers is another option for providing compute
and storage resources to students and researchers for running and implementing distrib-
uted systems.

Table 1 contains a selection of single board computers, which provide sufficient com-
puting power and main memory capacities to operate a Linux operating system and the
required server daemons to implement clusters or private cloud services.

Related work
Clusters of single board computers have already been implemented. Cox et al. (2009)
assembled in the project Iridis-pi at the University of Southampton a cluster of 64 Rasp-
berry Pi nodes with 256 MB main memory per node. The aim of this project was among
others to implement an affordable cluster for running MPI1 applications and to evaluate
the computational performance, network performance and storage performance of a
cluster of single board computers.

Similar works have been done by Kiepert (2013), who assembled a Beowulf cluster by
using 32 Raspberry Pi nodes with 512 MB main memory per node, at the Boise State
University. He created a solid structure by using plexiglass, in which the cluster and its
network and electric power infrastructure is housed. To power the single board comput-
ers, he used two standard PC power supplies and attached them by using one of the 5 V
pins of the I/O header, each Raspberry Pi node provides. For the cooling of the cluster
and mainly the power supplies, the cluster is equipped with 120 mm fans. The perfor-
mance and speedup of this cluster was measured with an MPI-program that calculates π
using the Monte Carlo method. Because this program can be parallelized very well, the
speedup of the cluster is close to the theoretical maximum.

Abrahamsson et al. (2013) presented their work of building an affordable and energy-
efficient cluster of 300 Raspberry Pi nodes, as well as several challenges and a number of
opportunities.

Tso et al. (2013) presented a scale model of a Data Center, composed of clusters of
56 Raspberry Pi Model B nodes, that emulates the layers of a cloud stack (the focus is
resource virtualisation to network management) by using Linux containers and the sup-
porting LXC suite. The work compares the acquisition cost, electricity costs and cooling
requirements of the cluster of single board computers with a testbed of 56 commodity
hardware servers.

1  Message Passing Interface (MPI) is the de facto standard for distributed scientific computing. The MPI standard
defines the syntax and semantics of the MPI functions. Several implementations of the standard exist. One example is
MPICH.

Table 1  Selection of single board computers

BananaPi ODROID-U3 Raspberry Pi B/B+ Raspberry Pi 2 B

CPU ARM Cortex A7 ARM Cortex A9 ARM 11 ARM Cortex A7

CPU cores (#) 2 4 1 4

Clock rate 900 MHz 1700 MHz 700 MHz 900 MHz

RAM 1024 MB 2048 MB 512 MB 1024 MB

Ethernet interface 1000 Mbit 100 Mbit 100 Mbit 100 Mbit

Storage interfaces SD, SATA microSD, eMMC SD/microSD microSD

Page 4 of 20Baun ﻿SpringerPlus (2016) 5:360

Various projects successfully built clusters of single board computers for implement-
ing multi-node Hadoop installations mainly for educational purposes.

Jamie Whitehorn presented2 in 2013 a Hadoop cluster of five Raspberry Pi Model B
nodes. For a productive usage, the performance of the Hadoop cluster is considered too
slow. Especially the poor memory capacity is problematic for using Hadoop, but for edu-
cational purposes, regarding Hadoop itself, the system is well suited.

Also in 2013, the developers of the Cubieboard single board computer presented3 a
Hadoop cluster of eight nodes. In contrast to the Raspberry Pi Model A and B, the
Cubieboard computer used are equipped with a faster CPU (1 GHz clock rate) and a big-
ger main memory of 1 GB. Because of these resource characteristics, the Cubieboard
were in 2013 better suited for deploying Hadoop.

Kaewkas and Srisuruk (2014) built at the Suranaree University of Technology a clus-
ter of 22 Cubieboards, running Hadoop and Apache Spark, which are both open source
frameworks for big data processing. The focus of their work is the I/O performance and
the power consumption of the cluster.

Benefits of the single board computer cluster, used for this project, are the weight,
which is only 7.8 kg, the reduced energy consumption (see Cluster of raspberry Pi nodes
section) and that the entire cluster occupies little space and can easily be transported by
the users, because all components are stored inside an aluminum hard case. This is an
important feature because it allows to use the cluster for practical exercises close to the
students and the cluster can easily be borrowed.

A further positive characteristic is that the cluster do not contain moving parts, such
as fans or hard disk drives. The lack of moving parts makes the cluster less error prone.

Cluster of Raspberry Pi nodes
In order to examine the performance and power consumption, a cluster (see Figs. 1, 2) of
the following components was constructed:

• • 8x Raspberry Pi Model B
• • 8x SD flash memory card (16 GB each)
• • 10/100 network switch with 16 ports
• • 8x network cable CAT 5e U/UTP
• • 2x USB power supply 40 W (5 V, 8 A)
• • 8x USB 2.0 cable USB-A/Micro-USB
• • Aluminum hard case 450x330x150 mm
• • Power strip with at least 3 ports
• • Various wooden boards, screws, cable ties, angles, wing nuts, etc.

• • The purchase cost for all components were approximately 500 €. The cluster is
stored in an aluminum hard case to facilitate transporting and storing the system.
A 100 Mbit Ethernet switch is sufficient for Raspberry Pi nodes with their 100 Mbit
Ethernet interface.

2  The slides, presented by Jamie Whitehorn at the Strata + Hadoop world conference 2013 are accessible via the URL
http://www.idatasci.com/uploads/1/4/6/6/14661274/jamiewhitehorn_raspberryflavouredhadoop_annotated.pdf.
3  Further information about the Hadoop cluster of Cubieboard computers provides the web page http://cubieboard.
org/2013/08/01/hadoophigh- availability-distributed-object-oriented- platform-on-cubieboard/.

http://www.idatasci.com/uploads/1/4/6/6/14661274/jamiewhitehorn_raspberryflavouredhadoop_annotated.pdf
http://cubieboard.org/2013/08/01/hadoophigh-%20availability-distributed-object-oriented-%20platform-on-cubieboard/
http://cubieboard.org/2013/08/01/hadoophigh-%20availability-distributed-object-oriented-%20platform-on-cubieboard/

Page 5 of 20Baun ﻿SpringerPlus (2016) 5:360

Initially, the power supply was realized via individual USB power supplies (Samsung
ETA-U90EWE, 5.0V, 2.0A) for each node, which were later replaced by two 5-port USB
power supplies (Anker Model 71AN7105 40 W, 5.0 V, 8.0 A). Table 2 shows the power
consumption of the cluster in idle operation mode and in stress mode4. Using just two
power supplies causes lesser energy loss, which results in a reduced energy
consumption.

The energy costs per year (CY) for a 24/7 usage for a specific power consumption in
kW during operation (E) can be calculated with Eq. (1). In the equation, energy costs of
0.25 € per kWh are assumed.

4  The nodes were put into stress mode by using the command-line tool stress. Further information about this tool
provides the web page http://people.seas.harvard.edu/~apw/stress/.

(1)CY = E× 24
hour

day
× 365.25

days

year
×

0.25 C

kWh

Fig. 1  Eight Raspberry Pi Model B are the cluster nodes

Fig. 2  Power supply and network infrastructure of the cluster

http://people.seas.harvard.edu/~apw/stress/

Page 6 of 20Baun ﻿SpringerPlus (2016) 5:360

In a scenario where a cluster with eight Raspberry Pi Model B nodes and two 5-port USB
power supplies runs all the time in stress mode (26 W energy consumption), the energy
cost for 24/7 usage is approximately 56.98 € per year.

Useful applications
A cluster of single board computers has very limited resources and cannot compete with
the performance of higher-value systems. But despite these drawbacks, useful applica-
tion scenarios exist, where clusters of single board computers are a promising option.
This applies in particular for small and medium-sized enterprises as well as for academic
purposes like student projects or research projects with limited financial resources.

Private cloud infrastructure services

Different sorts of cloud services exist, which belong to the Infrastructure as a Service
(IaaS) delivery model. One group of services allows the operation of virtual server
instances and management of network resources. Popular public cloud IaaS offerings are
among others the Amazon EC2, Google Compute Engine, GoGrid and Rackspace Cloud.
Examples of private cloud IaaS solutions are OpenStack Nova, Eucalyptus (Nurmi et al.
2008), Nimbus (Keahey et al. 2009) and Apache CloudStack. These services have in com-
mon that they require a hypervisor like KVM (Kivity et al. 2007) or Xen (Barham et al.
2003). All evaluated single board computers (see Table 1) implement the ARM archi-
tecture and despite the fact, that numerous efforts like Dall and Nieh (2014) and Hwang
et al. (2008) have been made to port KVM and Xen to this architecture, the computing
power and main memory resources of the tested single board computers are not suffi-
cient for server virtualization in a useful scale.

Further services, which belong to the IaaS family are object-based storage services like
the public cloud offerings Simple Storage Service and Google Cloud Storage. Examples
for private cloud solutions are Eucalyptus Walrus (Nurmi et al. 2009), Nimbus Cumulus
(Bresnahan et al. 2011), OpenStack Swift and Riak S2. These service solutions can be
executed on single board computers. In a cluster of single board computes, each request
to a object-based storage service creates little workload on a node. Eucalyptus Walrus,
OpenStack Swift and Riak S2 even implement replication over multiple nodes.

Private cloud platform services

A Platform as a Service (PaaS) implements a scalable application runtime environment
for programming languages. The target audience are software developers and end users
who like to provide and consume services in a corresponding market place. A PaaS
allows to scale from a single service instance to many, depending on the actual demand
(Armbrust et al. 2009). Prominent instances of public cloud PaaS offerings are Google
App Engine, Microsoft Azure Platform and Engine Yard.

Table 2  Power consumption of the cluster with eight Raspberry Pi Model B

Idle mode Stress mode

2x 5-port USB power supplies ≈ 24 W ≈ 26 W

8x 1-port USB power supplies ≈ 31 W ≈ 33 W

Page 7 of 20Baun ﻿SpringerPlus (2016) 5:360

In some cases, it might be desirable to avoid public cloud offerings for privacy or legal
reasons for example. Advantageously, private cloud solutions exist. Examples are App-
Scale (Chohan et al. 2009; Bunch et al. 2010), Apache Stratos and OpenShift. Running
these services is potentially possible in a cluster of single board computers as long as no
virtualization layer (hypervisor) is required.

Distributed file systems

Two different types of distributed file systems exist:

1.	 Shared storage file systems, which are also called shared disk file systems
2.	 Distributed file systems with distributed memory

Clusters of single board computers are an inexpensive option for testing and developing
distributed file systems with distributed memory. Examples for such file systems are
Ceph (Weil et al. 2006) GlusterFS5, HDFS (Borthakur 2008), PVFS2/OrangeFS
(Carns et al. 2000) and XtreemFS (Hupfeld et al. 2008).

In order to use shared storage file systems like OCFS2 (Fasheh 2006) and GFS2, all
nodes must have direct access to the storage via a storage area network (SAN), e.g.
implemented via Fibre Channel or iSCSI. Connecting the nodes of a cluster of single
board computers with a SAN is an option with two major drawbacks. First, the purchase
cost of a SAN infrastructure would in most cases be higher as the sum of all other clus-
ter components (including the nodes itself). Second, the Fibre Channel interface cards,
often called host bus adapters (HBA), are usually connected via PCI Express or Thunder-
bolt. None of these interfaces are provided by any of the evaluated single board comput-
ers. Using iSCSI via Ethernet is not a recommendable option for single board computers
(see Table 1) which provide just a single Ethernet interface with a maximum data rate of
100 Mbit/s.

Distributed database systems

Numerous free database systems support cluster operation to provide a higher level of
availability and a better performance for query and data modification operations com-
pared with single node operation. Examples of distributed database systems, which have
been successfully tested on clusters of single board computers are the document-ori-
ented databases Apache CouchDB6, the column-oriented database Apache Cassandra7,
the key/value database Riak8, as well as the relational database management system
MySQL9.

5  Further information about GlusterFS provides the document Cloud Storage for the Modern Data Center: An Intro-
duction to Gluster Architecture (2011), which is accessible via the URL http://moo.nac.uci.edu/~hjm/fs/An_Introduc-
tion_To_Gluster_ArchitectureV7_110708.pdf.
6  Further information about deploying CouchDB on a cluster of 12 Raspberry Pi computers provides the web page
http://cloudant.com/blog/building-a-cloudant-cluster-of-raspberry-pis/.
7  Further information about deploying Apache Cassandra on a cluster of 32 Raspberry Pi computers provides the web
page http://www.datastax.com/dev/blog/32-node-raspberry-pi-cassandra-cluster.
8  Further information about deploying Riak on a cluster of three Raspberry Pi computers provides the web page http://
basho.com/posts/technical/building-a-riak-cluster-on-raspberry-pi/.
9  Further information about deploying MySQL on a cluster of Raspberry Pi computers provides the web page http://
www.bigair.net/rpi.

http://moo.nac.uci.edu/~hjm/fs/An_Introduction_To_Gluster_ArchitectureV7_110708.pdf
http://moo.nac.uci.edu/~hjm/fs/An_Introduction_To_Gluster_ArchitectureV7_110708.pdf
http://cloudant.com/blog/building-a-cloudant-cluster-of-raspberry-pis/
http://www.datastax.com/dev/blog/32-node-raspberry-pi-cassandra-cluster
http://basho.com/posts/technical/building-a-riak-cluster-on-raspberry-pi/
http://basho.com/posts/technical/building-a-riak-cluster-on-raspberry-pi/
http://www.bigair.net/rpi
http://www.bigair.net/rpi

Page 8 of 20Baun ﻿SpringerPlus (2016) 5:360

Further relational database management systems and NoSQL database systems sup-
port cluster operation mode and should be deployable in a cluster of single board com-
puters in principle.

High‑throughput‑clustering

Single board computers provide sufficient resources for running network services like
HTTP servers, mail servers or FTP servers. Each request to such a service creates little
load on a node.

To realize e.g. a High-Throughput-Cluster of HTTP servers, only a server software and
the load balancer functionality are required. As HTTP server software, the Apache
HTTP Server or a resource-saving alternative like Nginx or Lighttpd can be deployed.
The Apache server software provides the load balancer module mod_proxy_bal-
ancer10 and the Nginx server software implements load balancing functionality too.
Another option is using a load balancing solution like Ultra Monkey, which can be oper-
ated in a redundant way by running a stand-by instance.

Detailed monitoring of the state and load of the single nodes can be implemented with
monitoring tools like Nagios and Ganglia.

High‑performance‑clustering and parallel data processing

Clusters of nodes with physical hardware are the ideal environment to test and develop
parallel applications for High-Performance-Clusters, because no virtualization layer and
additional guest operating systems influence the performance of the nodes.

For the distributed storage and parallel processing of data, the Apache Hadoop frame-
work, which implements the MapReduce (Dean and Ghemawat 2004) programming
model, can be used.

Solutions for implementing parallel applications are among others MPI, PVM11,
OpenSHMEM and Unified Parallel C (Dinan et al. 2010), which all can be used in clus-
ters of single board computers.

Performance of the single board computers and the network infrastructure
The performance of the CPU, the local storage and the clusters’ network infrastructure
was measured in order to get an impression about the performance capability of a single
node of the cluster.

CPU performance

The benchmark suite SysBench was used to measure the CPU performance. Table 3
shows the total execution time of the benchmark, while testing each number up to value
10,000 if it is a prime number.

For comparison, not only the CPU performance of the Raspberry Pi Model B, used in
the cluster was measured, but also of the BananaPi and the ODROID-U3. Furthermore,

10  Further information about the load balancing module mod_proxy_balancer provides the documentation for
the Apache HTTP Server Version 2.2, which can be accessed via the URL http://httpd.apache.org/docs/2.2/mod/mod_
proxy_balancer.html.
11  Parallel Virtual Machine (PVM) is a software which allows to connect heterogeneous computer systems to a single
distributed parallel computer. Since the late 1990s, PVM is more and more superseded by MPI.

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

Page 9 of 20Baun ﻿SpringerPlus (2016) 5:360

the benchmark was executed on a Lenovo ThinkPad X240 notebook with an Intel
i7-4600U quad-core CPU.

The benchmark scales well on multiple nodes. The measurement results in Table 3
show that doubling the number of cores nearly halves the execution time.

Increasing the clock rate of the Raspberry Pi from 700 to 800 MHz does not require
overvolting the CPU and results in a noticeable increase of the processing power. For
this reason, the Raspberry Pi nodes of the cluster are overclocked to 800 MHz.

The measurement results in Table 3 also show that for the BananaPi and the ODROID-
U3, using more threads than CPU cores available does not result in a significant perfor-
mance gain. For the Raspberry Pi, the execution time is even extended, because of the
additional overhead, that results of the increased number of context switches.

Storage performance

Only a limited number of options exist to attach local storage to the cluster nodes. The
Raspberry Pi provides (depending on the model) two or four USB interfaces, connected
via an internal USB 2.0 hub and an interface for secure digital cards (SD cards). By using
an appropriate passive adapter, microSD flash cards can be used as well. Each Raspberry
Pi node in the cluster is equipped with a 16 GB flash storage card, which stores the oper-
ating system and provides storage capacity for applications and data.

Sequential read/write performance

The sequential read/write performance of the local storage of a single cluster node was
measured with the tool dd, while reading and writing a single file of size 300 MB. Several
(micro)SD storage cards of different manufacturers and speed classes12 were tested. To
avoid interferences, caused by the page cache, it was dropped before each read perfor-
mance test and the flag oflag=sync was used for write performance tests with the dd
command. The file system used was ext4 with 4 kB block size and journaling mode
ordered, which implies that all file data are directly written into the file system prior to
its metadata being committed to the journal. The values in Table 4 are averages of five
measurement rounds.

12  Further information about the speed classes of (micro)SD storage cards provides the physical layer specification from
the Technical Committee of the SD Card Association. This document is accessible via the URL http://www.sdcard.org/
downloads/pls/simplified_specs/archive/part1_301.pdf.

Table 3  Total execution time of SysBench benchmark, testing each number up to value
10,000 if it is a prime number

∗ Overclocking the Raspberry Pi Model B to 800 MHz is possible without overvolting the CPU

CPU cores
(#)

Total execution time with...

Clock rate 1 thread 2 threads 4 threads 8 threads 16 threads

Raspberry Pi Model B 1 700 MHz 503.01 s 503.98 s 504.19 s 504.30 s 504.45 s

Raspberry Pi Model B 1 800 MHz∗ 439.68 s 440.47 s 440.56 s 440.75 s 440.82 s

BananaPi 2 900 MHz 292.98 s 147.74 s 147.85 s 147.82 s 147.82 s

ODROID-U3 4 1.7 GHz 133.88 s 66.90 s 34.28 s 33.93 s 33.91 s

ThinkPad X240 4 2.1 GHz 9.72 s 5.35 s 3.03 s 2.95 s 2.97 s

http://www.sdcard.org/downloads/pls/simplified_specs/archive/part1_301.pdf
http://www.sdcard.org/downloads/pls/simplified_specs/archive/part1_301.pdf

Page 10 of 20Baun ﻿SpringerPlus (2016) 5:360

When used with the Raspberry Pi, most tested class 6 and class 10 flash storage drives
provide a significant better data rate for sequential write compared with the class 4
drives. The sequential read performance of all tested drives is limited by the maximum
data rate of the storage card interface, the Raspberry Pi Model B is equipped with. The
SD card interface on the Raspberry Pi implements a 4-bit data bus and 50 MHz clock
rate. Therefore, the theoretical maximum data rate is 25 MB/s, which cannot be reached
in practice. For comparison, the data rate of the flash storage drives for sequential read
and write was also measured with the internal Realtek RTS5227 PCI Express card reader
of a Lenovo ThinkPad X240 notebook. The results in Table 4 show that the maximum
data rate of the tested class 10 drives for sequential read is more than double the data
rate, the drives provide in the Raspberry Pi.

Measuring the sequential read and write performance is a procedure, which is quite
common for benchmark purposes, but its significance for practical applications is lim-
ited because reading and writing large amounts of data in row is carried out quite sel-
dom on many systems. Use cases are e.g. streaming media and the up- and download
of objects, which are at least several MB in size. More common in root file systems and
during operation of e.g. HTTP servers and database systems are random read and write
operations.

Random read/write performance

For measuring the random read and write performance, the benchmark tool iozone
v3.430 was used. The results show that all tested SD cards provide even for record size
4 kB a random read performance of 3-5 MB/s (see Table 5). Increasing the record size
increases the data rate until the performance of sequential read is reached.

Table 4  Sequential read/write performance on local storage on a single Raspberry Pi
Model B node and on a ThinkPad X240

1 Measured with: echo 3 > /proc/sys/vm/drop_caches&& dd if=/tmp/testfile of=/dev/null
bs=300M count=1
2 Measured with: dd if=/dev/zero of=/tmp/testfile bs=300M count=1 oflag=sync

 Manufac-
turer

Form
factor

Capacity
[GB]

Speed
class

Product ID/
Item number

Read1 performance
[MB/s]

Write2 perf. [MB/s]

Raspberry
Pi Model B

ThinkPad
X240

Raspberry
Pi Model B

ThinkPad
X240

Kingston SD 16 4 SD4/16GB 17.50 20.58 4.36 4.38

SanDisk SD 16 4 SDSDB-016G 15.80 22.40 4.36 4.46

Verbatim SD 16 4 #44020 18.40 22.18 7.48 7.62

Verbatim microSD 16 4 #44007 18.60 71.92 9.50 10.86

Samsung microSD 16 6 MB-MS16D 18.40 21.92 10.30 12.06

Kingston SD 16 10 SD10V/16GB 17.50 34.34 10.60 9.82

Kingston microSD 16 10 SDC10/16GB 17.72 33.64 8.38 11.60

Samsung microSD 16 10 MB-MP16D 18.10 40.86 10.12 12.24

SanDisk SD 16 10 SDSDL-016G 18.68 42.04 11.52 12.78

SanDisk microSD 16 10 SDSDQUI-016G 18.70 42.72 12.18 13.26

SONY SD 16 10 SF-16UX 17.30 59.10 14.28 24.00

SONY microSD 16 10 SR-16UY 17.90 35.16 9.64 10.98

Page 11 of 20Baun ﻿SpringerPlus (2016) 5:360

The performance for random write (see Table 6) is significantly lower compared with
sequential write. The random write performance of SD cards is caused by the inter-
nal architecture of this type of flash storage. Memory cells of NAND flash storage
are grouped to pages and so called erase blocks. Typical page sizes are 4, 8 or 16 kB.
Although it is possible for the controller to write single pages, the data cannot be over-
written without being erased first and an erase block is the smallest unit that a NAND
flash storage can erase. The size of the erase blocks of SD cards is typically between 64
or 128 kB. In modern SD cards, small numbers of erase blocks are combined into larger
units of equal size which are called allocation groups or allocation units or segments.
The usual segment size is 4 MB. The controllers of SD cards implement a translation
layer. For any I/O operation, a translation from virtual to physical address is carried

Table 5  Random read performance on local storage on a single Raspberry Pi Model B node

1 Measured with: iozone -RaeI -i 0 -i 1 -i 2 -y 4k -q 1M -s 500m -o -f /tmp/testfile

Manufac-
turer

Form
factor

Capacity
[GB]

Speed
class

Random read performance1 [kB/s] with record size [kB]...

4 8 16 32 64 128 256 512 1024

Kingston SD 16 4 3892 5103 7989 10,494 14,117 15,491 17,275 18,040 18,110

SanDisk SD 16 4 3367 5567 8231 11,492 14,593 16,302 17,622 18,257 18,516

Verbatim SD 16 4 4542 6943 10,561 13,329 15,501 17,072 18,016 18,216 18,551

Verbatim microSD 16 4 4665 7308 11,368 14,198 16,041 17,524 18,262 18,657 18,674

Samsung microSD 16 6 3910 6691 9654 13,009 15,938 16,926 18,003 18,520 18,570

Kingston SD 16 10 3822 5790 8899 11,699 14,622 15,895 17,517 18,130 18,171

Kingston microSD 16 10 3905 5416 8644 12,018 14,530 16,594 17,521 18,214 18,279

Samsung microSD 16 10 3973 6754 10,264 13,377 15,522 17,193 18,073 18,562 18,586

SanDisk SD 16 10 4140 6420 9553 12,043 14,835 16,942 17,647 18,395 18,562

SanDisk microSD 16 10 3991 6406 9564 12,553 15,195 16,884 17,899 18,428 18,616

SONY SD 16 10 5061 5667 8503 11,164 13,900 15,996 17,342 18,046 18,127

SONY microSD 16 10 4026 6079 9169 11,951 14,802 16,429 17,619 18,186 18,255

Table 6  Random write performance on local storage on a single Raspberry Pi Model B
node

1 Measured with: iozone -RaeI -i 0 -i 1 -i 2 -y 4k -q 1M -s 500m -o -f /tmp/testfile

Manufac-
turer

Form
factor

Capacity
[GB]

Speed
class

Random write performance1 [kB/s] with record size
[kB]...

4 8 16 32 64 128 256 512 1024

Kingston SD 16 4 81 6 13 26 52 103 207 415 834

SanDisk SD 16 4 104 85 17 35 70 140 280 536 1076

Verbatim SD 16 4 77 161 335 594 902 875 1335 1832 2977

Verbatim microSD 16 4 121 257 586 962 1272 1780 2310 2894 3417

Samsung microSD 16 6 133 272 631 1055 1485 2028 2592 2994 3473

Kingston SD 16 10 200 10 21 43 86 176 355 737 1551

Kingston microSD 16 10 224 13 26 53 108 219 446 917 1939

Samsung microSD 16 10 128 263 581 1006 1440 2018 2589 3043 3430

SanDisk SD 16 10 323 451 40 81 162 329 665 1327 2749

SanDisk microSD 16 10 334 419 41 83 167 336 672 1345 2778

SONY SD 16 10 208 11 23 47 94 189 377 751 1469

SONY microSD 16 10 216 12 25 51 102 207 420 845 1807

Page 12 of 20Baun ﻿SpringerPlus (2016) 5:360

out by the controller. If data inside a segment shall be overwritten, the translation layer
remaps the virtual address of the segment to another erased physical address. The old
physical segment is marked dirty and queued for an erase. Later, when it is erased, it
can be reused. The controllers of SD cards usually cache a single or more segments for
increasing the performance of random write operations. If a SD card stores a root file
system, it is beneficial if the controller of the card can cache the segment(s) where the
write operation(s) takes place, the segments, which store the metadata for the file system
and (if available) the journal of the file system. Consequently, the random write perfor-
mance of a SD card depends among others of the erase block size, the segment size and
the number of segments, the controller caches.

A significant performance advantage of the tested class 10 flash storage cards com-
pared with the tested class 4 or class 6 flash storage cards is not visible.

Further options for local storage

The available USB interfaces provide further options to implement a local storage. It is
possible to attach a single or multiple hard disk drives (HDD) or flash storage drives via
USB. Patterson et al. (1988) described that if multiple drives are attached, the perfor-
mance and availability can be improved by combining them to redundant arrays of inde-
pendent disks (RAID).

No matter what storage technology is used, the USB 2.0 interface limits the possible
throughput. Solid state drives (SSD) and HDDs provide enough performance for read
and write to utilize the entire transfer capacity of the USB 2.0 interface. Drawbacks of
attaching SSDs or HDDs on each cluster node are higher purchase cost for the cluster
and increased energy consumption.

Mordvinova et al. (2009) showed that RAID arrays of USB flash storage drives can be
purchased for less cost, compared with SSDs or HDDs, but like SD cards they usually
provide a poor performance for random write operations. Therefore, USB flash storage
drives are a useful option mainly for read-mostly applications like storing the content of
web servers and for CPU bound applications.

For these reasons, only SD cards are used in the cluster of single board computers.

Network performance

The network performance between the nodes was measured with the command-line
tool iperf v2.0.5 and with the NetPIPE v3.7.2 benchmark.

According to iperf, the network performance between the nodes of the cluster is
76-77 Mbit per second.

A more detailed analysis of the network performance is possible with the NetPIPE
benchmark. It tests the latency and throughput over a range of message sizes between
two processes. The benchmark was executed inside the cluster one time by just using
TCP as end-to-end (transport layer) protocol and one time by using the Open MPI mes-
sage passing layer library. The results in Fig. 3 show that the smaller a message is, the
more is the transfer time dominated by the communication layer overhead. For larger
messages, the communication rate becomes bandwidth limited by a component in the
communication subsystem. Examples are the data rate of the network link, utilization of

Page 13 of 20Baun ﻿SpringerPlus (2016) 5:360

the transmission medium or a specific device between sender and receiver like the net-
work switch inside the mobile cluster.

As described by Snell et al. (1996) and clearly evident in Fig. 3, using MPI (which
also uses TCP as transport layer protocol) is an overhead that has a negative impact on
throughput and latency. The best measured throughput when using MPI is 65 Mbit per
second. When using just TCP, the throughput reaches up to 85 Mbit per second.

As long as the payload fits into a single TCP segment, the latency when using MPI is
approximately ten times worse compared when using just TCP. The maximum trans-
mission unit (MTU), which specifies the maximum payload inside an Ethernet frame, is
1500 Bytes in our cluster. Consequently, the maximum segment size (MSS), which speci-
fies the maximum payload inside a TCP segment, is 1460 Bytes.

The drop of the data rate when using MPI at around 64 kB payload size is caused by
the MPI library that implements the asynchronous eager protocol and the synchronous
rendezvous protocol. While eager does not await an acknowledgement prior starting a
send operation, the rendezvous does. This is because of the assumption that the receiver
process can store small messages in its receive buffer any time. The default size limit,
where the installed Open MPI library sends messages via eager protocol is 64 kB.

Further drops of the data rate when using MPI, especially around 4 MB payload size
are probably caused by the limited CPU resources of the Raspberry Pi nodes. When exe-
cuting the MPI benchmark with such a message size, the CPUs of the nodes are almost
entirely utilized.

The poor overall Ethernet performance of the Raspberry Pi nodes is probably caused
by the fact, that the 10/100 controller is a component of the LAN9512 controller13. This

13  Further information about the LAN9512 controller, which contains an USB 2.0 Hub and a 10/100 Ethernet Controller
provides the technical specification from the manufacturer. This document is accessible via the URL http://ww1.micro-
chip.com/downloads/en/DeviceDoc/9512.pdf.

Fig. 3  Analysis of the network performance inside the cluster by using the NetPIPE benchmark

http://ww1.microchip.com/downloads/en/DeviceDoc/9512.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/9512.pdf

Page 14 of 20Baun ﻿SpringerPlus (2016) 5:360

chip contains the USB 2.0 hub and a built-in 10/100 Mbit Ethernet controller, which is
internally connected (see Fig. 4) with the USB hub.

Analyzing the clusters’ performance with the HPL
Besides analyzing the performance of individual nodes and their resources, it is interest-
ing to examine the performance of the cluster as a whole.

The High Performance Linpack (HPL)14 benchmark is an established approach to
investigate the performance of cluster systems. It is among others used by the Top500
project, which maintains a list of the 500 most powerful computer systems. As described
by Luszczek et al. (2005) and Dunlop et al. (2010), the benchmark solves a linear system
of equations of order n

that is divided into blocks of size P × Q, by using double-precision (8 Bytes) floating-
point arithmetic (Gaussian elimination with partial pivoting) on computer systems with
distributed memory. The execution of the HPL can be specified manually in the config
file HPL.dat with several parameters. Some tools like the Top500 HPL Calculator15 are
helpful to find some initial settings, but finding the most appropriate settings for a spe-
cific system is not a simple task and takes some time.
P × Q is equal to the number of processor cores used. The developers of the HPL rec-

ommend16 that P (the number of process rows) and Q (the number of process columns)
should be approximately equal, with Q slightly larger than P. Consequently, in the cluster
of eight Raspberry Pi single board computers, the values P = 1,Q = 1 were used for
benchmarking just a single node, P = 1,Q = 2 for two nodes, P = 1,Q = 4 for four
nodes and P = 2,Q = 4 for the entire cluster with eight nodes.

The parameter N specifies the problem size—the order of the coefficient matrix. It is
challenging to find the largest problem size that fits into the main memory of the specific
system. Therefore, the main memory capacity for storing double precision (8 Bytes)
numbers need to be calculated. Utilizing the entire main memory capacity for the

14  Further information about the High-Performance Linpack (HPL) benchmark provides the web page http://www.
netlib.org/benchmark/hpl/.

A× x = b; A ∈ R
n×n

; x, b ∈ R
n

15  The Top500 HPL Calculator is accessible via the URL http://hpl-calculator.sourceforge.net.
16  Further information provides the document HPL Frequently Asked Questions, which provides the web page http://
www.netlib.org/benchmark/hpl/faqs.html.

Fig. 4  The Ethernet controller of the Raspberry Pi is connected with the USB 2.0 hub. Image source: SMSC
(see footnote 13)

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://hpl-calculator.sourceforge.net
http://www.netlib.org/benchmark/hpl/faqs.html
http://www.netlib.org/benchmark/hpl/faqs.html

Page 15 of 20Baun ﻿SpringerPlus (2016) 5:360

benchmark is impossible because the operating system and the running processes still
consume memory and using the swap memory has a negative impact on the perfor-
mance. Thus, it is promising17 ,18 to set N to a value 80–90 % of the available main
memory.

The problem size N can be calculated with Eq. (2). It depends on the number of nodes
in the system, the reduction coefficient R which specifies how much percent of the entire
main memory of the cluster shall be utilized by the benchmark and the main memory
capacity M of a single node in GB. The Raspberry Pi cluster nodes used for this project
are equipped with 512 MB main memory. A part of the main memory is assigned as
video memory to the GPU, which lacks own dedicated memory. Because in the cluster,
the GPUs are not used at all, the minimal GPU memory was set, which is 16 MB. This
results in 496 MB main memory left for the operating system and the applications on
each node. After the operating system Raspbian and the daemon and client for the dis-
tributed file system is started, approximately 400–430 MB main memory remains avail-
able on each node.

If for example the value of N shall be big enough to fill around 80 % of the memory
capacity of four nodes (P = 1,Q = 4) of the cluster system, the calculation is as follows:

A further important parameter is the block size NB. As optimization, N should
be NB aligned18. For this example, if we consider NB = 32, we calculate
13,054
32 = 407.9375 ≈ 407 and next 407× 32 = 13, 024 = N . For this work, the HPL

benchmark was executed with different parameters in the cluster of single board com-
puters. Figure 5 shows the Gflops when executing the benchmark with different values
for the parameter NB in the cluster system when using all eight nodes and utilizing dif-
ferent proportions of the systems’ total main memory. These tests were carried out to
find a recommendable value for NB.

For NB = 16 and NB = 32, a performance drop is observed, when utilizing 95 % of
the systems’ main memory. This is caused by the heavy use of swap memory.

The results in Fig. 5 show that from the tested values, NB = 32 causes the best per-
formance. For this reason, further performance investigations with the HPL benchmark
were carried out with this value for the parameter NB.

17  Further information provides the document Frequently Asked Questions on the Linpack Benchmark and Top500
from Jack Dongarra, which provides the web page http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html.
18  Further information provides the document HowTo—High Performance Linpack (HPL) from Mohamad Sindi, which
is accessible via the URL http://www.crc.nd.edu/~rich/CRC_Summer_Scholars_2014/HPL-HowTo.pdf.

(2)N =

√

(

M ∗ 1024 ∗ 1024 ∗ 1024 ∗ P ∗ Q

8

)

∗ R

N =

√

(

0.496 GB ∗ 1024 ∗ 1024 ∗ 1024 ∗ 1 ∗ 4

8

)

∗ 0.8

≈ 13, 054

http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
http://www.crc.nd.edu/~rich/CRC_Summer_Scholars_2014/HPL-HowTo.pdf

Page 16 of 20Baun ﻿SpringerPlus (2016) 5:360

Analysis of the speedup

Table 7 shows the values of the parameters N , P, Q and NB, as well as the runtimes,
required to solve the linear system and the resulting Gflops19.

The benchmark was executed in the cluster with just a single node, two nodes, four
nodes and eight nodes to investigate the speedup. The speedup SP, that can be achieved
when running a program on P processors is defined as

where F1 is the Gflops on a single-processor system and FP is the Gflops on a multipro-
cessor system.

The theoretical maximum speedup is equal to the number of single-processor nodes,
which means it is value 2 for two nodes, value 4 for four nodes, value 8 for eight nodes,
etc.

The results in Table 7 show, that increasing the number of nodes also increases the
speedup significantly. The best benchmark results were obtained, when N is set to a
value 80–90 % of the available main memory.

The low speedup, when utilizing 95 % of the systems’ main memory, is caused by the
heavy use of swap memory. Figure 6 highlights this observation.

Analysis of the efficiency

Especially for the previous mentioned Top500 list, two performance indicators are con-
sidered important. These are:

• • Rpeak, which is the theoretical peak performance of the system. It is determined by
counting the number of floating-point additions and multiplications (in double pre-
cision), that can be completed during a period of time, usually the cycle time of the
machine (see footnote 17). The ARM 11, which is used by the Raspberry Pi comput-

19  Flops is an acronym for floating-point operations per second.

(3)SP =
FP

F1

Fig. 5  Analysis of the clusters Gflops performance, when using all eight nodes, by using the HPL benchmark
with different values for the parameter NB and different proportions of the systems total main memory
utilized. The concrete values for problem size N can be seen in Table 7

Page 17 of 20Baun ﻿SpringerPlus (2016) 5:360

Fig. 6  Analysis of the clusters speedup by using the HPL benchmark with NB = 32, different numbers of
nodes and different proportion of the systems total main memory utilized. The concrete values for problem
size N can be seen in Table 7

Table 7  Analysis of the clusters Gflops performance and speedup by using the HPL bench‑
mark with NB = 32, different numbers of nodes and different proportion of the systems
total main memory utilized

1 The Gflops are rounded to three decimal places behind the decimal point
2 The Speedup is rounded to two decimal places behind the decimal point

Proportion of total main
memory of the system
utilized

N Nodes
used

NB P Q Time to solve
the linear system

Gflops1 Speedup2

 ≈ 70 % 5696 1 32 1 1 589.17 s 0.209 1.00

8064 2 32 1 2 983.76 s 0.355 ≈ 1.69

11,392 4 32 1 4 1641.22 s 0.600 ≈ 2.78

16,128 8 32 2 4 2166.95 s 1.291 ≈ 6,17

≈ 75 % 6112 1 32 1 1 722.29 s 0.210 1.00

8640 2 32 1 2 1153.95 s 0.372 ≈ 1.77

12,224 4 32 1 4 1977.85 s 0.615 ≈ 2.92

17,280 8 32 2 4 2617.08 s 1.315 ≈ 6.26

≈ 80 % 6496 1 32 1 1 859.81 s 0.212 1.00

9216 2 32 1 2 1503.04 s 0.347 ≈ 1.77

13,024 4 32 1 4 2328.03 s 0.632 ≈ 2.98

18,432 8 32 2 4 3055.37 s 1.367 ≈ 6.44

≈ 85 % 6912 1 32 1 1 1037.84 s 0.212 1.00

9792 2 32 1 2 1705.12 s 0.367 ≈ 1.73

13,856 4 32 1 4 2782.23 s 0.637 ≈ 3.00

19,584 8 32 2 4 3688.51 s 1.358 ≈ 6.40

≈ 90 % 7328 1 32 1 1 1246.73 s 0.210 1.00

10,368 2 32 1 2 1993.88 s 0.372 ≈ 1.77

14,656 4 32 1 4 3274.85 s 0.641 ≈ 3.05

20,768 8 32 2 4 4370.31 s 1.367 ≈ 6.50

≈ 95 % 7744 1 32 1 1 1578.72 s 0.196 1.00

10,944 2 32 1 2 2699.97 s 0.323 ≈ 1.64

15,488 4 32 1 4 4927.79 s 0.502 ≈ 2.56

21,920 8 32 2 4 10,326.42 s 0.680 ≈ 3.46

Page 18 of 20Baun ﻿SpringerPlus (2016) 5:360

ers, can process a floating-point addition in one cycle and requires two cycles for a
floating-point multiplication20. The calculation of Rpeak of a system is as follows:

 Thus, the Rpeak of a cluster of eight Raspberry Pi nodes (with 800 MHz clock speed)
is 6,4 Gflops for floating-point addition operations and 3,2 Gflops for floating-point
multiplication operations.

• • Rmax, is the maximal performance that was achieved with the HPL. In case of our
cluster, Rmax has value 1.367 Gflops (see Fig. 5; Table 7).

• • The efficiency of a specific system in percent is calculated via Rmax
Rpeak

∗ 100. In case of
our cluster, the efficiency depends of the executed operations and is only between
≈ 21 % and ≈ 42 %. The exact reason for this low efficiency was not evaluated. But as
described by Luszczek et al. (2005), the HPC Challenge benchmark test suite stresses
not only the processors, but the memory system and the interconnect too. Therefore,
it is likely that the low network performance (see Network performance section),
as well as the memory performance of the Raspberry Pi computers have a negative
impact here.

Analysis of the energy‑efficiency
Knowing the clusters’ electric energy consumption (see Table 2) and its performance
when executing the HPL benchmark (see Analyzing the clusters’ performance with the
HPL section) is the precondition to analyze the clusters’ energy-efficiency.

The Green500 list, which is a complement to the Top500 list, uses the flops per Watt
metric (Sharma et al. 2006) to rank the energy efficiency of supercomputers21. The met-
ric is defined as

P(Rmax) is the average system power consumption while executing the HPL with a
problem size that delivers Rmax. When executing the HPL benchmark, the power con-
sumption of the cluster depends of the number of nodes used for the benchmark. The
average system power consumption while executing the HPL is approximately 26 W
when using all eight nodes. With Rmax = 1.367 Gflops, the cluster provides approxi-
mately 52.57 Mflops per Watt.

Conclusions and future work
The performance of single board computers cannot compete with higher-value sys-
tems because the performance of their components, especially CPU, main memory and
network interface. The same applies for clusters of single board computers. The maxi-
mum observed performance Rmax of the cluster system, implemented for this work is

20  Further information provides the Technical Reference Manual—Components of the processor—Vector Floating-
Point (VFP) for the ARM1176JZF-S processor, which can be accessed at the URL http://infocenter.arm.com/help/
topic/com.arm.doc.ddi0301h/Cegdejjh.html.

Rpeak [Gflops] = Clock speed per core [GHz]

× Number of cores

× Operations per cycle

21  Further information provides the Power Measurement Tutorial for the Green500 List, which can be accessed at the
URL http://www.green500.org/sites/default/files/tutorial.pdf.

(4)flops per Watt =
Rmax [flops]

P(Rmax) [Watt]

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/Cegdejjh.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/Cegdejjh.html
http://www.green500.org/sites/default/files/tutorial.pdf

Page 19 of 20Baun ﻿SpringerPlus (2016) 5:360

1.367 Gflops. This performance would be sufficient for 216th place in the Top500 list
from June 1993. But compared with recent cluster sites this performance is very low. In
the most recent Top500 list from June 2015, the last entry (500th place) provides Rmax
= 164,800 Gflops, which is more than factor 120, 000 better compared with our cluster.

Also the energy-efficiency cannot compete with higher-value systems. The cluster pro-
vides approximately 52.57 Mflops per Watt, which would be sufficient for 186th place in
the Green500 list from November 2007. In the most recent list from November 2015,
the best entry (1st place) provides 7, 031.58 Mflops per Watt, which is more than factor
133 better compared with our cluster.

Regardless of the performance or energy-efficiency, clusters of single board computers
like the Raspberry Pi are useful for academic purposes and research projects because
of the lesser purchase costs and operating costs compared with commodity hardware
server resources. They can also provide the same or a better level of reliability compared
with single server systems.

Since February 2015, the Raspberry Pi 2 is available for purchase. This single board
computer provides more computational power and main memory compared with the
cluster nodes, that were used in this project. Building a cluster of this computers is one
of the next steps. It is interesting to discover how increasing the processor cores by fac-
tor four and doubling the main memory per node affects the performance because the
available main memory per processor core is halved. It is further interesting to inves-
tigate if the increased CPU performance has a positive impact on the network perfor-
mance when using MPI.

Further next steps are the implementation of clusters of different single board comput-
ers and comparing their performance.
Authors’ information
Dr. Christian Baun is working as Professor at the Faculty of Computer Science and Engineering of the Frankfurt University
of Applied Sciences in Frankfurt am Main, Germany. His research interest includes operating systems, distributed systems
and computer networks.

Acknowledgements
This work was funded by the Hessian Ministry of Higher Education, Research, and the Arts (’Hessisches Ministerium für Wis-
senschaft und Kunst’) in the framework of research for practice (’Forschung für die Praxis’). Many thanks to Katrin Baun and
Henry Cocos for their assistance in improving the quality of this paper.

Competing interests
 The author declares that he has no competing interests

Received: 11 September 2015 Accepted: 7 March 2016

References
Abrahamsson P, Helmer S, Phaphoom N, Nicolodi L, Preda N, Miori L, Angriman M, Rikkila J, Wang X, Hamily K, Bugoloni S

(2013) Affordable and energy-efficient cloud computing clusters: the bolzano raspberry pi cloud cluster experi-
ment, vol 2. In: IEEE 5th international conference on cloud computing technology and science (CloudCom), 2013,
pp 170–175

Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2009)
Above the clouds: a berkeley view of cloud computing. Technical report

Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2013) Xen and the art of virtual-
ization. In: SOSP ’03: Proceedings of the nineteenth ACM symposium on operating systems principles. ACM, New
York, NY, USA, pp 164–177

Borthakur D (2008) HDFS architecture guide. In: Technical report, Apache Software Foundation
Bresnahan J, Keahey K, LaBissoniere D, Freeman T (2011) Cumulus: an open source storage cloud for science. In: Proceed-

ings of the 2nd international workshop on scientific cloud computing, pp 25–32. ACM

Page 20 of 20Baun ﻿SpringerPlus (2016) 5:360

Bunch C, Chohan N, Krintz C, Chohan J, Kupferman J, Lakhina P, Li Y, Nomura Y (2010) An evaluation of distributed
datastores using the AppScale cloud platform. In: IEEE cloud ’10: proceedings of the 3rd international conference on
cloud computing. IEEE computer society, Washington, DC, USA, pp 305–312

Carns P, Ligon W, Ross R, Thakur R (2000) PVFS: a parallel file system for Linux clusters. In: Proceedings of the extreme
Linux track: 4th annual Linux showcase and conference, pp 391–430

Chohan N, Bunch C, Pang S, Krintz C, Mostafa N, Soman S, Wolski R (2000) AppScale: scalable and open AppEngine appli-
cation development and deployment. CloudComp ’09: proceedings of the 1st international conference on cloud
computing. Springer, Munich, Germany, pp 57–70

Cox S, Cox J, Boardman R, Johnston S, Scott M, O’Brien N (2009) Iridis-pi: a low-cost, compact demonstration cluster. Clust
Comput, pp 15–20

Dall C, Nieh J (2014) KVM/ARM: the design and implementation of the Linux ARM hypervisor. In: ASPLOS ’14: proceedings
of the 19th international conference on architectural support for programming languages and operating systems,
pp 333–348. ACM

Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: OSDI ’04: proceedings of the 6th
symposium on operating systems design and implementation, pp 137–150

Dinan J, Balaji P, Lusk E, Sadayappan, P, Thakur R Hybrid (2010) Parallel programming with MPI and unified parallel C. In:
Proceedings of the 7th ACM international conference on computing frontiers, pp 177–186. ACM

Dunlop D, Varrette S, Bouvry P (2010) Deskilling HPL. In: Parallel processing and applied mathematics. Lecture notes in
computer science, vol 6068, pp 102–114. Springer, Heidelberg, Berlin

Fasheh M (2006) OCFS2: The Oracle clustered file system, version 2. In: Proceedings of the Linux symposium in Ottawa,
Ontario, Canada, vol 1, pp 289–301

Gropp W, Lusk E, Sterling T (2002) Beowulf cluster computing with Linux. MIT Press, Cambridge
Hupfeld F, Cortes T, Kolbeck B, Stender J, Focht E, Hess M, Malo J, Marti J, Cesario E (2008) The XtreemFS architecture—a

case for object-based file systems in grids. In: VLDB DMG ’07: concurrency and computation: practice and experi-
ence—selection of best papers of the VLDB data management in grids. Workshop, vol 20, no 17, pp 2049–2060

Hwang J-Y, Suh S-B, Heo, S-K, Park C-J, Ryu J-M, Park S-Y, Kim C-R (2008) Xen on arm: system virtualization using xen
hypervisor for arm-based secure mobile phones. In: CCNC ’08: proceedings of the 5th IEEE consumer communica-
tions and networking conference, pp 257–261. IEEE

Kaewkas C, Srisuruk W (2014) A study of big data processing constraints on a low-power hadoop cluster. In: ICSEC ’14:
proceedings of the 18th international computer science and engineering conference, pp 267–272

Keahey K, Tsugawa M, Matsunaga A, Fortes J (2009) Sky computing. IEEE Internet Comput 13(5):43–51
Kiepert J (2013) Creating a raspberry pi-based beowulf cluster. In: Technical report, Boise State University
Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the Linux virtual machine monitor. In: Proceedings of the Linux

symposium, vol 1, pp 225–230
Luszczek P, Dongarra J, Koester D, Rabenseifner R, Lucas B, Kepner J, Mccalpin J, Bailey D, Takahashi D (2005) Introduction

to the HPC challenge benchmark suite. In: Technical report, ICL, University of Tennessee at Knoxville
Mordvinova O, Kunkel JM, Baun C, Ludwig T, Kunze M (2009) USB flash drives as an energy efficient storage alternative. In:

Proceedings of the 10th IEEE/ACM international conference on grid computing, October 13–15, 2009. Banff, Alberta,
Canada, pp 175–182

Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2008) Eucalyptus: a technical report on
an elastic utility computing architecture linking your programs to useful systems. In: UCSB computer science techni-
cal report number 2008–2010

Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2009) The eucalyptus open-source
cloud-computing system. In: IEEE international symposium on cluster computing and the grid, pp 124–131

Patterson DA, Gibson G, Katz RH (1988) A case for redundant arrays of inexpensive disks (RAID). In: SIGMOD ’88: proceed-
ings of the 1988 ACM SIGMOD international conference on management of data. ACM, Chicago, Illinois, USA, pp
109–116

Sharma S, Hsu C-H, Feng W-C (2006) Making a case for a green500 list. In: IPDPS 2006: 20th international parallel and
distributed processing symposium, p 8 . IEEE

Snell QO, Mikler AR, Gustafson JL (1996) Netpipe: a network protocol independent performance evaluator. In: IASTED
international conference on intelligent information management and systems, vol 6. USA

Sterling T, Savarese D, Becker D, Dorband J, Ranawake U, Packer C (1995) BEOWULF: a parallel workstation for scientific
computation. In: Proceedings of the 1995 international conference on parallel processing, Urbana-Champain,
Illinois, USA, August 14–18, Vol I: Architecture, pp 11–14

Tso FP, White DR, Jouet S, Singer J, Pezaros DP (2013) The Glasgow raspberry pi cloud: a scale model for cloud comput-
ing infrastructures. In: IEEE 33rd international conference On distributed computing systems workshops (ICDCSW),
2013. IEEE, Philadelphia, PA, USA, pp 108–112

Weil SA, Brandt SA, Miller EL, Long DDE, Maltzahn C (2006) Ceph: a scalable, high-performance distributed file system. In:
Proceedings of the 7th symposium on operating systems design and implementation, pp 307–320

	Mobile clusters of single board computers: an option for providing resources to student projects and researchers
	Abstract
	Background
	Options for resource provisioning
	Obstacles against public cloud and dedicated server offerings

	Related work
	Cluster of Raspberry Pi nodes
	Useful applications
	Private cloud infrastructure services
	Private cloud platform services
	Distributed file systems
	Distributed database systems
	High-throughput-clustering
	High-performance-clustering and parallel data processing

	Performance of the single board computers and the network infrastructure
	CPU performance
	Storage performance
	Sequential readwrite performance
	Random readwrite performance
	Further options for local storage

	Network performance

	Analyzing the clusters’ performance with the HPL
	Analysis of the speedup
	Analysis of the efficiency

	Analysis of the energy-efficiency
	Conclusions and future work
	Authors’ information
	References

