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Exact traveling wave solutions of the KP-BBM
equation by using the new approach of
generalized (G′/G)-expansion method
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Abstract

The new approach of the generalized (G′/G)-expansion method is an effective and powerful mathematical tool in
finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and
mathematical physics. In this article, the new approach of the generalized (G′/G)-expansion method is applied to
construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The
solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions.
By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
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Introduction
The world around us is inherently nonlinear and NLEEs
are widely used as models to describe the complex phys-
ical phenomena. The exact traveling wave solutions of
NLEEs play a vital role in nonlinear science and engin-
eering. Therefore, investigating traveling wave solutions
is becoming increasingly attractive in nonlinear sciences
day by day. However, not all equations posed of these
models are solvable. As a result, many new techniques
have been successfully developed by diverse group of sci-
entists, such as, the rank analysis method (Feng 2000),
the complex hyperbolic function method (Zayed et al.
2006; Chow 1995), the generalized Riccati equation
method (Yan and Zhang 2001; Porubov 1996), the Jacobi
elliptic function method (Chen and Wang 2005; Xu
2006; Yusufoglu and Bekir 2008; Zayed et al. 2004a), the
ansatz method (Hu 2001a, 2001b), the Adomian decom-
position method (Wazwaz 2002), the He’s homotopy
perturbation method (Ganji and Rafei 2006; Ganji 2006;
Ganji et al. 2007), the homogeneous balance method
(Wang 1995, 1996; Zayed et al. 2004b), the inverse
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scattering transform method (Ablowitz and Clarkson
1991), the Darboux transformation method (Matveev
and Salle 1991), the Backlund transformation method
(Miura 1978), the (G′/G)-expansion method (Wang
et al. 2008; Akbar et al. 2012a, 2012b, 2012c, 2012d,
2012e; Bekir 2008; Zayed 2009; Zhang et al. 2008), the
improved (G′/G)-expansion method (Zhang et al. 2010),
the modified simple equation method (Jawad et al. 2010;
Khan et al. 2013; Zayed and Ibrahim 2012), the Exp-
function method (He and Wu 2006; Akbar and Ali 2012;
Mohyud-Din et al. 2010), the tanh-function method
(Malfliet 1992; Fan 2000), the sine-cosine method (Wazwaz
2004, 2005; Bibi and Mohyud-Din 2013), the first integral
method (Feng 2002; Tascan and Bekir 2010) etc.
Recently, the new generalized (G′/G) expansion method

has been initiated by Naher and Abdullah (2013). The sig-
nificance of the new generalized (G′/G) expansion method
is that one can treat the nonlinear problems by essentially
linear method. Moreover, it transforms a nonlinear evolu-
tion equation to a simple algebraic computation. The
merits of the new generalized (G′/G) expansion method
over the other methods are that it gives more general so-
lutions with some free parameters and it handles NLEEs
in a direct manner with no requirement for initial/bound-
ary conditions or initial trial function at the outset.
is an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.
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Our aim in this paper is to present an application of
the new generalized (G′/G) expansion method to solve
the KP-BBM equation by using this method for the
first time.
The rest of the paper is organized as follows: In Sec-

tion “Description of the new generalized (G′/G)-expan-
sion method”, we give the description of the method. In
Section “Application of the method”, we exert this
method to the KP-BBM equation. In Section “Discus-
sions”, Discussions are presented. Conclusions are given
in Section “Conclusion”.

Description of the new generalized
(G′/G)-expansion method
Let us consider a general nonlinear PDE in the form

P u;ux;ut ; ux x; ux t ; ut t ;⋯ð Þ; ð1Þ

where u = u(x, t) is an unknown function, P is a polyno-
mial in u(x, t) and its derivatives wherein the highest
order derivatives and nonlinear terms are involved and
the subscripts are used for the partial derivatives.

Step 1
We combine the real variables x and t by a compound
variable ξ:

u x; tð Þ ¼ u ξð Þ; ξ ¼ x� V t; ð2Þ

where V is the speed of the traveling wave. The traveling
wave transformation (2) converts Eq. (1) into an ordin-
ary differential equation (ODE) for u = u(ξ):

Q u; u′;u″; u‴;⋯
� � ¼ 0; ð3Þ

where Q is a polynomial of u and its derivatives and the
superscripts indicate the ordinary derivatives with re-
spect to ξ.

Step 2
According to possibility Eq. (3) can be integrated term
by term one or more times, yields constant(s) of integra-
tion. The integral constant may be zero, for simplicity.

Step 3
Suppose the traveling wave solution of Eq. (3) can be
expressed as follows:

u ξð Þ ¼
XN
i¼0

ai d þ Hð Þi þ
XN
i¼1

bi d þ Hð Þ−i; ð4Þ

where either aN or bN may be zero, but both aN and bN
could be zero at a time, ai (i = 0, 1, 2,⋅⋅⋅, N) and bi (i = 1,
2,⋅⋅⋅, N) and d are arbitrary constants to be determined
later and H(ξ) is

H ξð Þ ¼ G′=G
� � ð5Þ

where G =G(ξ) satisfies the following auxiliary equation:

AGG″−BGG′−EG2−C G′
� �2 ¼ 0; ð6Þ

where the prime stands for derivative with respect to ξ;
A, B, C and E are real parameters.

Step 4
To determine the positive integer N, taking the homoge-
neous balance between the highest order nonlinear
terms and the derivatives of the highest order appearing
in Eq. (3).

Step 5
Substitute Eq. (4) and Eq. (6) including Eq. (5) into
Eq. (3) with the value of N obtained in Step 4, we obtain
polynomials in (d +H)N (N = 0, 1, 2,⋅⋅⋅) and (d +H)−N

(N = 0, 1, 2,⋅⋅⋅). We collect each coefficient of the re-
sulted polynomials and setting them to zero yields a set
of algebraic equations for ai (i = 0, 1, 2,⋅⋅⋅, N) and bi (i =
1, 2,⋅⋅⋅, N), d and V.

Step 6
Suppose that the value of the constants ai (i = 0, 1, 2,⋅⋅⋅, N),
bi (i = 1, 2,⋅⋅⋅, N), d and V can be found by solving the alge-
braic equations obtained in Step 5. Since the general solu-
tion of Eq. (6) is well known to us, inserting the values of ai
(i = 0, 1, 2,⋅⋅⋅, N), bi (i = 1, 2,⋅⋅⋅, N), d and V into Eq. (4), we
obtain more general type and new exact traveling wave so-
lutions of the nonlinear partial differential equation (1).
Using the general solution of Eq. (6), we have the fol-

lowing solutions of Eq. (5):

Family 1
When B ≠ 0, ψ =A −C and Ω = B2 + 4E(A − C) > 0,

H ξð Þ ¼ G′

G

� �
¼ B

2ψ
þ

ffiffiffiffi
Ω

p

2ψ

C1 sinh
ffiffiffi
Ω

p
2A ξ

� �
þ C2 cosh

ffiffiffi
Ω

p
2A ξ

� �

C1 cosh
ffiffiffi
Ω

p
2A ξ

� �
þ C2 sinh

ffiffiffi
Ω

p
2A ξ

� �

ð7Þ
Family 2
When B ≠ 0, ψ =A −C and Ω = B2 + 4E(A − C) < 0,

H ξð Þ ¼ G′

G

� �
¼ B

2ψ
þ

ffiffiffiffiffiffiffi
−Ω

p

2ψ

−C1 sin
ffiffiffiffiffi
−Ω

p
2A ξ

� �
þ C2 cos

ffiffiffiffiffi
−Ω

p
2A ξ

� �

C1 cos
ffiffiffiffiffi
−Ω

p
2A ξ

� �
þ C2 sin

ffiffiffiffiffi
−Ω

p
2A ξ

� �

ð8Þ
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Family 3
When B ≠ 0, ψ =A −C and Ω = B2 + 4E(A − C) = 0,

H ξð Þ ¼ G′

G

� �
¼ B

2ψ
þ C2

C1 þ C2ξ
ð9Þ

Family 4
When B = 0, ψ =A −C and Δ = ψE > 0,

H ξð Þ ¼ G′

G

� �
¼

ffiffiffiffi
Δ

p

ψ

C1sinh
ffiffiffi
Δ

p
A ξ

� �
þ C2cosh

ffiffiffi
Δ

p
A ξ

� �

C1cosh
ffiffiffi
Δ

p
A ξ

� �
þ C2 sinh

ffiffiffi
Δ

p
A ξ

� � ð10Þ

Family 5
When B = 0, ψ =A −C and Δ = ψE < 0,

H ξð Þ ¼ G′

G

� �
¼

ffiffiffiffiffiffi
−Δ

p

ψ

−C1sin
ffiffiffiffiffi
−Δ

p
A ξ

� �
þ C2cos

ffiffiffiffiffi
−Δ

p
A ξ

� �

C1cos
ffiffiffiffiffi
−Δ

p
A ξ

� �
þ C2sin

ffiffiffiffiffi
−Δ

p
A ξ

� �

ð11Þ

Application of the method
In this section, we will bring to bear the new generalized
(G′/G) expansion method to construct new and more
general traveling wave solutions of the KP-BBM equa-
tion. Let us consider the KP-BBM equation

ut þ ux−a u2
� �

x−bux x t
� �

x
þ k uy y ¼ 0: ð12Þ

Now, we use the wave transformation (2) into the Eq.
(12), which yields

−Vu″ þ u″−2a u′
� �2

−2auu″ þ bV u 4ð Þ þ k u″ ¼ 0: ð13Þ

Integrating Eq. (13) twice with respect to ξ, we obtain

P þ 1−V þ kð Þ uþ b V u==−2au2 ¼ 0; ð14Þ

where P is an integral constant which is to be
determined.
Taking the homogeneous balance between u2 and u″

in Eq. (14), we obtain N = 2. Therefore, the solution of
Eq. (14) is of the form:

u ξð Þ ¼ a0 þ a1 d þ Hð Þ þ a2 d þ Hð Þ2
þ b1 d þ Hð Þ−1 þ b2 d þHð Þ−2; ð15Þ

where a0, a1, a2, b1, b2 and d are constants to be
determined.
Substituting Eq. (15) together with Eqs. (5) and (6) into

Eq. (14), the left-hand side is converted into polynomials
in (d +H)N (N = 0, 1, 2, .......) and (d +H)−N (N = 1, 2,⋅⋅⋅).
We collect each coefficient of these resulted polynomials
and setting them zero yields a set of simultaneous alge-
braic equations (for simplicity the equations are not pre-
sented here) for a0, a1, a2, b1, b2 d, P and V. Solving these
algebraic equations with the help of symbolic computation
software Maple, we obtain following:

Set 1
P = 0,V =V, d = d, a1 = 0, a2 = 0,

a0 ¼ 1

2aA2 ð 12bVd2ψ2 þ A2k þ A2−VA2 þ 12bVBdψ

−8bVEψ þ bVB2Þ;
b1 ¼ −

6bV

aA2 2d3ψ2 þ 3Bd2ψ þ 2Edψ þ B2d−EB
� �

;

b2 ¼ 6bV

aA2 d4ψ2 þ 2Bd3ψ−2Ed2ψ−2BdE þ B2d2 þ E2
� �

:

ð16Þ

where ψ =A −C,V, d, A, B, C, E are free parameters.

Set 2
P = 0,V =V, d = d, b1 = 0, b2 = 0,

a1 ¼ −
6bV

aA2 2dψ2 þ Bψ
� �

;

a0 ¼ 1

2aA2 ð 12bVd2ψ2 þ A2k þ A2−VA2 þ 12bVBdψ

−8bVEψ þ bVB2Þ; a2 ¼ 6bVψ2

aA2 ;

ð17Þ

where ψ =A −C,V, d, A, B, C, E are free parameters.

Set 3
P = 0,V =V, d ¼ −B

2ψ ; a1 = 0, b1 = 0,

a0 ¼ −
1

2aA2 −A2k−A2 þ A2V þ 8bVEψ þ 2bVB2
� �

;

a2 ¼ 6bVψ2

aA2 ; a1 ¼ 0;V ¼ V ;

b2 ¼ 3bV

8aA2ψ2
16E2ψ2 þ 8EB2ψ þ B4
� �

;

ð18Þ

where ψ =A −C,V, A, B, C, E are free parameters.
For set 1, substituting Eq. (16) into Eq. (15), along

with Eq. (7) and simplifying, yields following traveling
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wave solutions (if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0)
respectively:

u11 ξð Þ ¼ a0 þ b1ðd þ B
2ψ

þ
ffiffiffiffi
Ω

p

2ψ
cothð

ffiffiffiffi
Ω

p

2A
ξÞÞ−1

þb2ðd þ B
2ψ

þ
ffiffiffiffi
Ω

p

2ψ
cothð

ffiffiffiffi
Ω

p

2A
ξÞÞ−2;

u12 ξð Þ ¼ a0 þ b1ðd þ B
2ψ

þ
ffiffiffiffi
Ω

p

2ψ
tanhð

ffiffiffiffi
Ω

p

2A
ξÞÞ−1

þb2ðd þ B
2ψ

þ
ffiffiffiffi
Ω

p

2ψ
tanhð

ffiffiffiffi
Ω

p

2A
ξÞÞ−2

;

Substituting Eq. (16) into Eq. (15), along with Eq. (8)
and simplifying, the exact solutions become (if C1 = 0
but C2 ≠ 0;C2 = 0 but C1 ≠ 0):

u13 ξð Þ ¼ a0 þ b1ðd þ B
2ψ

þ
ffiffiffiffiffiffiffi
−Ω

p

2ψ
cotð

ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞÞ−1

þb2ðd þ B
2ψ

þ
ffiffiffiffiffiffiffi
−Ω

p

2ψ
cotð

ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞÞ−2;

u14 ξð Þ ¼ a0 þ b1ðd þ B
2ψ

−

ffiffiffiffiffiffiffi
−Ω

p

2ψ
tanð

ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞÞ−1

þb2ðd þ B
2ψ

−

ffiffiffiffiffiffiffi
−Ω

p

2ψ
tanð

ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞÞ−2

;

Substituting Eq. (16) into Eq. (15), together with Eq.
(9) and simplifying, the obtained solution becomes:

u15 ξð Þ ¼ a0 þ b1ðd þ B
2ψ

þ C2

C1 þ C2ξ
Þ−1 þ b2ðd þ B

2ψ

þ C2

C1 þ C2ξ
Þ−2;

Substituting Eq. (16) into Eq. (15), along with Eq. (10)
and simplifying, we obtain following traveling wave solu-
tions (if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0):

u16 ξð Þ ¼ a0 þ b1ðd þ
ffiffiffiffi
Δ

p

ψ
cothð

ffiffiffiffi
Δ

p

A
ξÞÞ−1

þb2ðd þ
ffiffiffiffi
Δ

p

ψ
cothð

ffiffiffiffi
Δ

p

A
ξÞÞ−2;

u17 ξð Þ ¼ a0 þ b1ðd þ
ffiffiffiffi
Δ

p

ψ
tanhð

ffiffiffiffi
Δ

p

A
ξÞÞ−1

þb2ðd þ
ffiffiffiffi
Δ

p

ψ
tanhð

ffiffiffiffi
Δ

p

A
ξÞÞ−2

;

Substituting Eq. (16) into Eq. (15), together with
Eq. (11) and simplifying, the obtained exact solutions
become (if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0) re-
spectively:

u18 ξð Þ ¼ a0 þ b1ðd þ
ffiffiffiffiffiffi
−Δ

p

ψ
cotð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ−1

þb2ðd þ
ffiffiffiffiffiffi
−Δ

p

ψ
cotð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ−2;

u19 ξð Þ ¼ a0 þ b1ðd−
ffiffiffiffiffiffi
−Δ

p

ψ
tanð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ−1

þb2ðd−
ffiffiffi
−

p
Δ

ψ
tanð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ−2

;

where ξ = x − Vt.
Similarly, for set 2, substituting Eq. (17) into Eq. (15),

along with Eq. (7) and simplifying, the traveling wave so-
lutions become (if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0)
respectively:

u21 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

þ3bVΩ coth2ð
ffiffiffiffi
Ω

p

2A
ξÞÞ;

u22 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

þ3bVΩ tanh2ð
ffiffiffiffi
Ω

p

2A
ξÞÞ;

Substituting Eq. (17) into Eq. (15), along with Eq. (8)
and simplifying, yields exact solutions (if C1 = 0 but C2 ≠
0; C2 = 0 but C1 ≠ 0) respectively:

u23 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

−3bVΩ cot2ð
ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞÞ;

u24 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

−3bVΩ tan2ð
ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞÞ;

Substituting Eq. (17) into Eq. (15), along with Eq. (9)
and simplifying, our obtained solution becomes:

u25 ξð Þ ¼ 1

2aA2 ðA2 k−V þ 1ð Þ−2bV B2 þ 4Eψ
� �

þ 12bVψ2ð C2

C1 þ C2ξ
Þ2Þ;

Substituting Eq. (17) into Eq. (15), together with
Eq. (10) and simplifying, yields following traveling
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wave solutions (if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0)
respectively:

u26 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

−12bV
ffiffiffiffi
Δ

p
ðB cothð

ffiffiffiffi
Δ

p

A
ξÞ−

ffiffiffiffi
Δ

p
coth2ð

ffiffiffiffi
Δ

p

A
ξÞÞÞ;

u27 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

−12bV
ffiffiffiffi
Δ

p
ðB tanhð

ffiffiffiffi
Δ

p

A
ξÞ−

ffiffiffiffi
Δ

p
tanh2ð

ffiffiffiffi
Δ

p

A
ξÞÞÞ

Substituting Eq. (17) into Eq. (15), along with Eq. (11)
and simplifying, our exact solutions become (if C1 = 0
but C2 ≠ 0;C2 = 0 but C1 ≠ 0) respectively:

u28 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

−12bV
ffiffiffiffi
Δ

p
ðiB cotð

ffiffiffiffiffiffi
−Δ

p

A
ξÞ þ

ffiffiffiffi
Δ

p
cot2ð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞÞ;

u29 ξð Þ ¼ 1

2aA2 ðbV B2−8Eψ
� �þ A2 k−V þ 1ð Þ

þ12bV
ffiffiffiffi
Δ

p
ðiB tanð

ffiffiffiffiffiffi
−Δ

p

A
ξÞ−

ffiffiffiffi
Δ

p
tan2ð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ;

where ξ = x − Vt.
Similarly, For set 3, substituting Eq. (18) into Eq. (15),

together with Eq. (7) and simplifying, yields following
traveling wave solutions (if C1 = 0 but C2 ≠ 0; C2 = 0 but
C1 ≠ 0) respectively:

u31 ξð Þ ¼ a0 þ 3bVΩ

2aA2 coth2ð
ffiffiffiffi
Ω

p

2A
ξ Þ þ 4b2ψ2

Ω
tanh2ð

ffiffiffiffi
Ω

p

2A
ξÞ;

u32 ξð Þ ¼ a0 þ 3bVΩ

2aA2 tanh2ð
ffiffiffiffi
Ω

p

2A
ξÞ þ 4b2ψ2

Ω
coth2ð

ffiffiffiffi
Ω

p

2A
ξÞ;

Substituting Eq. (18) into Eq. (15), along with Eq. (8)
and simplifying, we obtain following solutions (if C1 = 0
but C2 ≠ 0;C2 = 0 but C1 ≠ 0) respectively:

u33 ξð Þ ¼ a0−
3bVΩ

2aA2 cot2ð
ffiffiffiffiffiffiffi
−Ω

p

2A
ξ Þ− 4b2ψ

2

Ω
tan2ð

ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞ

u34 ξð Þ ¼ a0−
3bVΩ

2aA2 tan2ð
ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞ− 4b2ψ2

Ω
cot2ð

ffiffiffiffiffiffiffi
−Ω

p

2A
ξÞ

Substituting Eq. (18) into Eq. (15), along with Eq. (9)
and simplifying, our obtained solution becomes:

u35 ξð Þ ¼ a0 þ 6bVψ2

aA2 ð C2

C1 þ C2ξ
Þ2 þ b2ð C2

C1 þ C2ξ
Þ−2;

Substituting Eq. (18) into Eq. (15), along with Eq.
(10) and simplifying, yields following exact traveling
wave solutions (if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0)
respectively:

u36 ξð Þ ¼ a0 þ 6bVψ2

aA2 ð−B
2ψ

þ
ffiffiffiffi
Δ

p

ψ
cothð

ffiffiffiffi
Δ

p

A
ξÞÞ2

þb2ð−B2ψ þ
ffiffiffiffi
Δ

p

ψ
cothð

ffiffiffiffi
Δ

p

A
ξÞÞ−2;

u37 ξð Þ ¼ a0 þ 6bVψ2

aA2 ð−B
2ψ

þ
ffiffiffiffi
Δ

p

ψ
tanhð

ffiffiffiffi
Δ

p

A
ξÞÞ2

þb2ð−B2ψ þ
ffiffiffiffi
Δ

p

ψ
tanhð

ffiffiffiffi
Δ

p

A
ξÞÞ−2

Substituting Eq. (18) into Eq. (15), along with Eq. (11)
and simplifying, the obtained solutions become (if C1 = 0
but C2 ≠ 0;C2 = 0 but C1 ≠ 0) respectively:

u38 ξð Þ ¼ a0 þ 6bVψ2

aA2 ð−B
2ψ

þ
ffiffiffiffiffiffi
−Δ

p

ψ
cotð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ2

þb2ð−B2ψ þ
ffiffiffiffiffiffi
−Δ

p

ψ
cotð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ−2

u39 ξð Þ ¼ a0 þ 6bVψ2

aA2 ð−B
2ψ

−

ffiffiffiffiffiffi
−Δ

p

ψ
tanð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ2

þb2ð−B2ψ −
ffiffiffi
−

p
Δ

ψ
tanð

ffiffiffiffiffiffi
−Δ

p

A
ξÞÞ−2

where ξ = x − Vt.

Remark
The solutions obtained in this article have been checked
by putting them back into the original equation and
found correct.

Discussions
The advantages and validity of the method over the basic
(G′/G)-expansion method have been discussed in the
following.

Advantages
The crucial advantage of the new generalized (G′/G)-
expansion method over the basic (G′/G)-expansion
method is that the method provides more general and
large amount of new exact traveling wave solutions with
several free parameters. The exact solutions have its
great importance to expose the inner mechanism of the
complex physical phenomena. Apart from the physical
application, the close-form solutions of nonlinear evolu-
tion equations assist the numerical solvers to compare
the accuracy of their results and help them in the stabil-
ity analysis.
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Validity
Feng and Zheng (2010) investigated the well-established
KP-BBM equation to obtain exact solutions via the basic
(G′/G)-expansion method and achieved only three solu-
tions (A.1),(A.2),(A.3) (see Appendix). On the other hand,
twenty seven solutions are constructed of this equation by
applying the new approach of generalized (G′/G)-expan-
sion method. They used the linear ordinary differential
equation as an auxiliary equation and traveling wave solu-

tions presented in the form u ξð Þ ¼
Xm
i¼0

ai G
′=G

� �i
; where

am ≠ 0. It is noteworthy to point out that some of our so-
lutions are coincided with the solutions obtained by Feng
and Zheng (2010) if the parameters are taken particular
values, which validate our solutions.
Conclusion
The new generalized (G′/G)-expansion method estab-
lished by Naher and Abdullah has successfully been im-
plemented to construct new and more general exact
traveling wave solutions of the KP-BBM equation. The
method offers solutions with free parameters that
might be important to explain some complex physical
phenomena. Comparing the currently proposed method
with other methods, such as (G′/G)-expansion method,
the Exp-function method and the modified simple
equation method, we might conclude that the exact so-
lutions to Eq. (12) can be investigated by simple and
systematic way. This study shows that the new general-
ized (G′/G)-expansion method is quite efficient and
practically well suited to be used in finding exact solu-
tions of NLEEs. Also, we observe that the new general-
ized (G′/G)-expansion method is straightforward and
can be applied to many other nonlinear evolution
equations.
Appendix
Feng and Zheng’s solutions (Feng and Zheng 2010)
Feng and Zheng (2010) established exact solutions of
the well-known the KP-BBM equation by using the basic
(G′/G)-expansion method which are as follows:
When λ2 − 4 μ > 0,

u1 ¼ a0−
a2
4
λ2

þ a2
4

λ2−4μ
� � C1 sinh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
ξ þ C2 cosh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
ξ

C1 cosh 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
ξ þ C2 sinh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
ξ

0
B@

1
CA

2

;

ðA:1Þ

where ξ ¼ xþ y− 1
6
aa2
b t and C1, C2 are arbitrary constants.
When λ2 − 4 μ < 0,

u2 ¼ a0−
a2
4
λ2

þ a2
4

4μ−λ2
� � −C1 sin 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
ξ þ C2 cos 12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
ξ

C1 cos 12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
ξ þ C2 sin 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
ξ

0
B@

1
CA

2

;

ðA:2Þ
where ξ ¼ xþ y− 1

6
aa2
b t and C1, C2 are arbitrary

constants.
When λ2 − 4 μ = 0,

u5 ¼ −
1
4
λ2a2 þ a2C2

2

C1 þ C2ξð Þ2 þ a0; ðA:3Þ

where ξ ¼ xþ y− 1
6
aa2
b t and C1, C2 are arbitrary

constants.
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