Setsirichok et al. SpringerPlus 2013, 2:230
http://www.springerplus.com/content/2/1/230

® SpringerPlus

a SpringerOpen Journal

RESEARCH Open Access

An omnibus permutation test on ensembles of
two-locus analyses can detect pure epistasis
and genetic heterogeneity in genome-wide
association studies

Damrongrit Setsirichok!, Phuwadej Tienboon', Nattapong Jaroonruang?, Somkit Kittichaijaroen',
Waranyu Wongseree?, Theera Piroonratana’, Touchpong Usavanarong', Chanin Limwongse?,
Chatchawit Aporntewan®, Marong Phadoongsidhi? and Nachol Chaiyaratana'*”

Abstract

This article presents the ability of an omnibus permutation test on ensembles of two-locus analyses (2LOmb) to
detect pure epistasis in the presence of genetic heterogeneity. The performance of 2LOmb is evaluated in various
simulation scenarios covering two independent causes of complex disease where each cause is governed by a purely
epistatic interaction. Different scenarios are set up by varying the number of available single nucleotide
polymorphisms (SNPs) in data, number of causative SNPs and ratio of case samples from two affected groups. The
simulation results indicate that 2LOmb outperforms multifactor dimensionality reduction (MDR) and random forest
(RF) techniques in terms of a low number of output SNPs and a high number of correctly-identified causative SNPs.
Moreover, 2LOmb is capable of identifying the number of independent interactions in tractable computational time
and can be used in genome-wide association studies. 2LOmb is subsequently applied to a type 1 diabetes mellitus
(T1D) data set, which is collected from a UK population by the Wellcome Trust Case Control Consortium (WTCCC).
After screening for SNPs that locate within or near genes and exhibit no marginal single-locus effects, the T1D data set
is reduced to 95,991 SNPs from 12,146 genes. The 2LOmb search in the reduced T1D data set reveals that 12 SNPs,
which can be divided into two independent sets, are associated with the disease. The first SNP set consists of three
SNPs from MUC21 (mucin 21, cell surface associated), three SNPs from MUC22 (mucin 22), two SNPs from PSORS1C1
(psoriasis susceptibility 1 candidate 1) and one SNP from TCF19 (transcription factor 19). A four-locus interaction
between these four genes is also detected. The second SNP set consists of three SNPs from ATADT (ATPase family,
AAA domain containing 1). Overall, the findings indicate the detection of pure epistasis in the presence of genetic
heterogeneity and provide an alternative explanation for the aetiology of T1D in the UK population.
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Background

Epistasis or gene-gene interactions are among many
causes of complex diseases (Moore 2005). In the sim-
plest form, epistasis can be described by two-locus disease
models, in which both loci jointly contribute towards
the disease susceptibility (Neuman and Rice 1992; Schork
et al. 1993). Many attempts have been made to pro-
vide consistent definitions of epistasis (Cordell 2002;
Hallgrimsdéttir and Yuster 2008; Li and Reich 2000;
Marchini et al. 2005; Musani et al. 2007; Verhoeven et
al. 2010). Regardless of preferred definitions, a common
ground for describing epistasis covers an effect deviat-
ing from the combined individual effects of each genetic
factor. In other words, epistasis describes an effect that
departs from a linear addition of individual effects (Fisher
1918). The detection of epistasis hence provides neces-
sary information complementary to that gained through
single-locus analysis.

With the availability of genome-wide genotyping tech-
nologies, a large number of single nucleotide poly-
morphisms (SNPs) can be considered during epistasis
detection (Heidema et al. 2006; Motsinger et al. 2007;
Van Steen 2012). At present, the most feasible strategy
for genome-wide epistasis detection involves two-locus
analysis (Evans et al. 2006; Gaydn et al. 2008; Ionita
and Man 2006; Liu et al. 2011; Marchini et al. 2005;
Sha et al. 2009; Wongseree et al. 2009). The detection
may concentrate on all possible SNP pairs (Gayén et al.
2008; Liu et al. 2011; Marchini et al. 2005; Wongseree
et al. 2009) or only SNP pairs where at least one
SNP in each pair exhibits a marginal single-locus effect
(Evans et al. 2006; Ionita and Man 2006; Liu et al. 2011;
Marchini et al. 2005; Sha et al. 2009). Exhaustive two-
locus analysis is generally required when pure epistasis
(Culverhouse et al. 2002) is present. This is because each
interacting SNP in a purely epistatic model exhibits no
marginal single-locus effect. Although the importance of
pure epistasis remains in question (Cordell 2009), many
genetic association studies reveal that putatively pure
epistasis plays a role in determining disease susceptibil-
ity (Cho et al. 2004; Jiang and Neapolitan 2012; Zhang
et al. 2008).

In addition to epistasis, two-locus (Hallgrimsdéttir
and Yuster 2008; Li and Reich 2000; Neuman and Rice
1992; Schork et al. 1993) and multi-locus disease mod-
els (Edwards et al. 2009; Lunetta et al. 2004) also
describe other phenomena. One particular phenomenon
that makes the capture of genetic factors responsible for
complex diseases a difficult task is genetic heterogeneity.
Basically, genetic heterogeneity models define indepen-
dent effects that cause the same complex disease. Since
it is impossible to know beforehand that each affected
individual participating in genetic association studies is
predisposed to which independent effect, the presence
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of genetic heterogeneity always leads to the reduction in
statistical power to detect causative SNPs (Edwards et al.
2009; Lunetta et al. 2004; Meng et al. 2009; Ritchie et al.
2007; Ritchie et al. 2003).

From a machine learning viewpoint, the identification
of causative SNPs among available SNPs in genetic asso-
ciation studies can be treated as an attribute selection
problem. The aim of attribute selection is to identify infor-
mative attributes necessary for the correct classification of
recruited samples. Saeys et al. (2007) categorise attribute
selection techniques into three main approaches: filter,
wrapper and embedded approaches. The filter approach
interests in identifying SNPs associated with the disease
according to a statistical or mathematical measure. The
wrapper approach attempts to search for the best SNP
combination that provides the highest prediction accu-
racy dictated by a classifier. The embedded approach
uses available SNPs to construct a prediction model while
simultaneously prioritises informative SNPs.

Among the wrapper techniques, a technique which
is proven to be capable of detecting pure epistasis in
the presence of genetic heterogeneity is a multifactor
dimensionality reduction (MDR) technique (Edwards et
al. 2009; Ritchie et al. 2007; Ritchie et al. 2003). MDR
searches for the best SNP combination that yields the
highest prediction accuracy according to the rules gov-
erned by multi-dimensional decision tables (Ritchie et al.
2001). Although the detection power of MDR is high, the
demonstration has been limited to simulations consisting
of two independent purely epistatic two-locus interac-
tions. Moreover, MDR is a time-consuming technique
and hence requires large computational efforts for multi-
locus analysis in genetic association studies with a large
number of SNPs (Edwards et al. 2009; Kwon et al. 2012;
Pattin and Moore 2008; Ritchie et al. 2001; Wongseree
et al. 2009).

Similar to MDR, a random forest (RF) is an embed-
ded technique which is also proven to be capable of
detecting epistasis in the presence of genetic heterogene-
ity (Lunetta et al. 2004; Meng et al. 2009). RF consists
of multiple decision trees in which each tree is ran-
domly constructed from available SNPs. Causative SNPs
can be identified by permuting the genotype of each
SNP and observing how this affects the overall predic-
tion accuracy (Breiman 2001). The detection power of
RF has been demonstrated through simulations involving
multiple independent epistatic multi-locus interactions.
Nonetheless, the previous studies concentrate on epis-
tasis with marginal single-locus effects. As a result, the
ability of RF to detect pure epistasis has not yet been
determined.

Unlike genetic association studies that use wrapper
and embedded techniques, most studies involving filter
techniques rarely consider scenarios which cover genetic
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heterogeneity. However, one filter technique which should
be suitable for detecting pure epistasis in the presence of
genetic heterogeneity is an omnibus permutation test on
ensembles of two-locus analyses or 2LOmb (Wongseree et
al. 2009). 2LOmb exhaustively performs two-locus analy-
sis on case-control SNP data by x? tests. The best ensem-
ble of SNP pairs is then progressively constructed where
the statistical significance of the association between the
ensemble and the disease is determined by a permuta-
tion test. 2LOmb is suitable for detecting purely epistatic
two-locus interactions and purely epistatic multi-locus
interactions with marginal two-locus effects (Wongseree
et al. 2009). In addition, 2LOmb has been successfully
benchmarked against an exhaustive two-locus analysis
technique, a set association approach (Hoh et al. 2001),
a correlation-based feature selection technique (Hall and
Holmes 2003) and a tuned ReliefF technique (Moore
and White 2007). Although the study has been con-
ducted without considering genetic heterogeneity, the
result from an application of 2LOmb to a real case-control
data set, derived from a genome-wide data set by focus-
ing on SNPs within or near candidate genes, suggests
that 2LOmb can function when genetic heterogeneity is
present. Previously, 2LOmb identifies 11 intronic SNPs
which exhibit no marginal single-locus effects and are
associated with type 2 diabetes mellitus (T2D) in a UK
population (The Wellcome Trust Case Control Consor-
tium 2007): four SNPs in PGMI (phosphoglucomutase
1), two SNPs in LMXIA (LIM homeobox transcription
factor 1, alpha), two SNPs in PARK2 (parkinson pro-
tein 2, E3 ubiquitin protein ligase (parkin)) and three
SNPs in GYS2 (glycogen synthase 2 (liver)). The results
also suggest that there are no interactions between genes
(Wongseree et al. 2009). Obviously, this finding signi-
fies the power of 2LOmb to detect genetic heterogene-
ity. Nevertheless, a thorough investigation by simulations
is still required. In addition, the possibility of apply-
ing 2LOmb to a genome-wide data set also needs to be
explored.

In this article, the ability of 2LOmb to detect pure epis-
tasis in the presence of genetic heterogeneity is demon-
strated. 2LOmb is benchmarked against MDR and RF
in various simulation scenarios generated by varying the
number of available SNPs, number of causative SNPs and
ratio of case samples in which the disease status is gov-
erned by different purely epistatic interaction models. The
statistical power of 2LOmb to directly identify the num-
ber of independent interactions in simulated data from
its output is subsequently evaluated. The application of
2LOmb to a genome-wide type 1 diabetes mellitus (T1D)
data set is also included. In this study, the genome-wide
T1D data set is chosen instead of the T2D data set because
2LOmb does not detect any purely epistatic interactions
in the T2D data set.
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Results and discussion

Testing with small-scaled simulated data

2LOmb is benchmarked against MDR and RF in a simu-
lation trial involving both pure epistasis and genetic het-
erogeneity. An output from an efficient algorithm should
contain a low number of SNPs and a high number of
correctly-identified causative SNPs. These two measures
on the number of SNPs are the performance indicators.
Each simulated data set contains 20 or 1,000 unlinked
SNPs in which two independent purely epistatic inter-
actions are present. Each interaction is based on one
of the models investigated by Wongseree et al. (2009)
and is governed by two, three or four causative SNDPs.
As a result, the interesting numbers of causative SNPs
in each data set are 4 (2&2), 5 (2&3), 6 (3&3 or
2&4), 7 (3&4) and 8 (4&4). The allele frequencies of
all causative SNPs are 0.5; these are dictated by the
purely epistatic models with penetrance tables derived by
Culverhouse et al. (2002) and Wongseree et al. (2009). On
the other hand, the minor allele frequencies (MAFs) of
the remaining SNPs are between 0.05 and 0.5; these con-
form to the MAFs of SNPs targeted by the International
HapMap Project (The International HapMap Consortium
2005). The allele frequency setting is similar to that in the
early study by Wongseree et al. (2009). The data set con-
sists of balanced case-control samples of size 1,600. All
SNPs in control samples are in Hardy-Weinberg equilib-
rium. The case samples are drawn from two independent
groups of affected individuals where the disease status of
each individual from the same group is the result of the
same purely epistatic interaction. This leads to the pres-
ence of genetic heterogeneity. The interesting ratios of
case samples from two affected groups are 1:1 and 1:3.
The genotype distribution of causative SNPs that produce
an independent interaction follows the purely epistatic
model, leading to the heritability of 0.01. Thirty indepen-
dent data sets for each simulation setting are generated by
genomeSIM (Dudek et al. 2006). Since the same simulated
data sets are used during the benchmarking, a paired ¢-
test can be applied to assess the significance of difference
in algorithm performance.

The results from the problems with 20 and 1,000 SNPs
in data are shown in Figures 1 and 2, respectively. It can be
seen from Figure 1 that MDR fails to detect some causative
SNPs. This suggests that the detection capability of MDR
is lower than that of both RF and 2LOmb. Since it is highly
unlikely that the MDR performance can improve when
the number of available SNPs increases, the MDR simula-
tion for the problem with 1,000 SNPs is not carried out.
As a result, the MDR simulation is limited to the problem
with 20 SNPs, which is similar to the study by Edwards
et al. (2009). In Figures 1 and 2, the parameter setting of
1:3 for the ratio of case samples from two affected groups
leads to two sets of results if the numbers of causative
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Figure 1 Performance of MDR, RF and 2LOmb in the problem
with 20 SNPs. The results are averaged over 30 independent
simulations. MDR explores only models that do not contain more
than 10 SNPs. The MDR output contains the most parsimonious SNP
combination that yields the maximum prediction accuracy. The
number of trees in RF is set to 100. The RF output consists of
top-ranked SNPs, which are SNPs with variable importance in the top
five percentiles of a normal distribution (Strobl et al. 2009).
Association detection is declared for 2LOmb if the global p-value
used as the detection indicator in its result is less than 0.05. The
results from MDR, RF and 2LOmb are displayed using red diamond,
blue triangle and black square markers, respectively. In each chart, the
meeting point between two dotted lines denotes the graphical
location representing ideal performance of the algorithm. Ideally, the
algorithm should report only the causative SNPs in its output. In other
words, both number of output SNPs and number of
correctly-identified causative SNPs should be equal to the number of
causative SNPs. The charts on which the red diamond markers are
invisible denote the situations in which the performance of MDR and
2LOmb is similar.
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Figure 2 Performance of RF and 2LOmb in the problem with
1,000 SNPs. The number of trees in RF is set to 1,000. The
explanation for how the results are obtained and displayed is the
same as that given in Figure 1. The charts in this figure are displayed

SNPs responsible for the two independent interactions are
not equal. The first set of results is obtained when the
low-order interaction is responsible for the affected status
of individuals from the small-proportion group. On the
other hand, the second set of results is obtained when the
low-order interaction is responsible for the affected status
of individuals from the large-proportion group. 2LOmb

using a coarser scale than the charts in Figure 1.

significantly outperforms MDR and RF in terms of the low
number of output SNPs, the high number of correctly-
identified causative SNPs or both in the problems with
20 and 1,000 SNPs (a paired ¢-test on 15 x 30 = 450
benchmark results for each problem yields a p-value <
0.05). The statistical power analysis also reveals that the
benchmark trial with 30 independent data sets for each
simulation setting is sufficient for an accurate evaluation
of the overall algorithm performance (power > 0.95 for
a type I error rate of 0.05). The simulation results can be
further interpreted as follows.

MDR functions by attempting to identify a SNP com-
bination which leads to the maximum prediction accu-
racy. In the presence of genetic heterogeneity, multiple
SNP combinations are required where each combination
is needed for the correct class prediction of a portion
of case-control samples. If the proportions of samples
at which their class labels can be predicted by different
SNP combinations are equal, then each causative SNP
contributes equally towards achieving high prediction
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accuracy. Subsequently, MDR is able to detect all or
almost all causative SNPs. On the other hand, if the pro-
portions of samples are not equal, then the attained pre-
diction accuracy depends more on the ability to classify
samples that occupy the large proportion. In other words,
the inclusion of SNP combination necessary for the iden-
tification of class labels of samples that occupy the small
proportion does not lead to an improvement of prediction
accuracy. As a result, MDR fails to uncover some causative
SNPs when the ratio of case samples from two affected
groups is 1:3.

RF identifies causative SNPs by permuting the genotype
of the interesting SNP and monitoring how it affects the
prediction accuracy. It is aimed that the reduction in pre-
diction accuracy as a result of the genotypic change of the
causative SNP is more prominent than that of other SNPs.
Although this is an efficient strategy, RF also selects erro-
neous SNPs as causative SNPs. This is observed from the
number of output SNPs reported by RF which is greater
than the number of correctly-identified causative SNPs.
The number of erroneous SNPs increases drastically when
the number of available SNPs increases from 20 to 1,000.
Moreover, the number of correctly-identified causative
SNPs also markedly decreases. This can be explained from
the manner at which each tree is constructed. Basically,
the tree construction begins by assigning a SNP, which
provides the best split, from a randomly chosen SNP set
as the root node, creating a split according to the genotype
and sorting samples to the appropriate descendant node.
This process is repeated until each final descendant node
is assigned with samples from the same class or the maxi-
mum tree size, dictated by the number of available SNPs,
is reached. Permuting the genotype of a SNP located at or
near the root node produces a large effect on the predic-
tion accuracy while permuting the genotype of a SNP in a
descendant node produces a small effect. Since the chance
that a causative SNP being located near or at a root node is
small when the problem contains a large number of SNPs,
the variable importance of causative SNPs obtained by
the genotype permutation may not be markedly different
from that of other SNPs. This subsequently leads to the
degradation of the RF performance. Although the perfor-
mance of RF can be improved by increasing the number
of trees in the forest (Strobl and Zeileis 2008), it also leads
to an increase in computational time. The computational
time result for RF, which will be discussed later, provides
evidence against the option of increasing the number of
trees for this study.

As mentioned earlier, 2LOmb produces the best results
among three techniques in the benchmark trial. 2LOmb is
capable of detecting most of causative SNPs in every sim-
ulated data set. This performance is further strengthened
by highly significant p-values (2LOmb’s global p-value <
0.0001) and the presence of common SNPs among some
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or all SNP pairs that are parts of three- and four-locus
interactions in the 2LOmb results. Nonetheless, some
causative SNPs are missing from the 2LOmb output. Since
the study is carried out by varying the number of avail-
able SNPs, the number of causative SNPs and the ratio
of case samples from two affected groups, these param-
eters may influence the number of correctly-identified
causative SNPs. The parameter analysis is divided into
two parts. The first part concentrates on the results from
problems where the numbers of causative SNPs responsi-
ble for two independent interactions are equal while the
second part concentrates on those where the numbers of
causative SNPs are not equal. The analysis is divided in
this manner because as mentioned earlier the parame-
ter setting of 1:3 for the ratio of case samples from two
affected groups leads to two sets of results in only the
second part of the analysis. From both parts, analysis
of variance (ANOVA) reveals that all three parameters
are the sources of variation which significantly affect the
number of correctly-identified causative SNPs (p < 0.05).

It is observed that the number of correctly-identified
causative SNPs decreases when the number of available
SNPs is large. This is to be expected because the Bon-
ferroni correction factor is a quadratic function of the
number of available SNPs. An increase in the Bonferroni
correction factor leads to an increase in the Bonferroni-
corrected x%'s p-value. If there are not enough sam-
ples for the two-locus analysis to produce a sufficiently
low Bonferroni-corrected x2’s p-value, some causative
SNPs may be excluded from the output ensemble. This
is highly evident when the ratio of case samples from
two affected groups is 1:3. The variation in the ratio
of case samples also leads to a change in the number
of correctly-identified causative SNPs. The magnitudes
of Bonferroni-corrected x?’s p-values for causative SNP
pairs are similar when the numbers of case samples from
two affected groups are equal. All causative SNPs can gen-
erally be identified in this scenario. On the other hand, the
Bonferroni-corrected x?’s p-values for SNP pairs respon-
sible for the affected status of individuals from the small-
proportion group are higher than those for SNP pairs
responsible for the affected status of individuals from
the large-proportion group. As a result, the exclusion of
causative SNP pairs with insufficiently low Bonferroni-
corrected x?’s p-values from the output ensemble leads to
a decrease in the number of correctly-identified causative
SNPs.

In contrast to the first two parameters, an increase in
the number of causative SNPs leads to an increase in
the number of correctly-identified causative SNPs. This
phenomenon can be explained as follows. To identify a
multi-locus interaction, a number of SNP pairs must be
included in the output ensemble. For instance, an ensem-
ble of three SNP pairs namely (SNP1, SNP2), (SNP2,
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SNP3) and (SNP1, SNP3) leads to the identification of a
three-locus interaction between SNP1, SNP2 and SNP3.
However, only two-out-of-three SNP pairs are necessary
for the correct interaction identification. Similarly, only
three-out-of-six possible SNP pairs are necessary for the
correct identification of a four-locus interaction. In other
words, the number of redundant SNP pairs increases as
the order of interaction increases. Hence, the number of
correctly-identified causative SNPs increases when there
are more redundant SNP pairs, which can be omitted from
the output ensemble.

In addition to the superiority in terms of the number
of output SNPs and the number of correctly-identified
causative SNPs, the computational time for 2LOmb
analysis is tractable. The order of growth in 2LOmb com-
putational time is O(mn®) where m is the sample size and
n is the number of available SNPs. The computational
time for RF analysis is also tractable. However, the order
of growth in RF computational time is O(m log(m)./nf)
where f is the number of trees, signifying that the required
computational time also depends on the algorithm setting
(Guyon and Elisseef 2006). In contrast, the tractability of
MDR depends on the maximum size of explored mod-
els. If MDR explores all possible SNP combinations, the
order of growth in MDR computational time is O(m2"),
which makes the computational time becomes intractable.
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On the other hand, if MDR explores only models that do
not contain more than n; SNPs where n; < #, the order
of growth in MDR computational time is O(mn's), which
means that the computational time is tractable. Since the
computational time required by 2LOmb, RF and MDR
with the latter setting is all tractable, the comparison of
computational time is hence carried out. MDR explores
only models that do not cover more than 10 SNPs in the
20-SNP data sets. An MDR permutation test is also omit-
ted because it requires large computational efforts and
is only performed to assess the probability that the null
hypothesis of no association is true. The summary of com-
putational time required by all three techniques is given in
Table 1. RF uses lesser computational time than 2LOmb
while MDR uses more computational time than 2LOmb
to analyse 20-SNP data sets. However, the computational
time required by RF to analyse 1,000-SNP data sets is
greater than that required by 2LOmb. In addition, by lim-
iting the MDR analysis to the exploration of models that
do not cover more than 10 SNPs, it is estimated using the
present MDR result that the computational time required
by MDR to analyse a 1,000-SNP data set is 2.75 x 102!
seconds. The present MDR result also suggests that the
computational time required by MDR to perform a per-
mutation test using 1,000 permutation replicates on a
20-SNP data set is 6.37 x 10° seconds. The estimation

Table 1 Computational time required by MDR, RF and 2LOmb to analyse small-scaled simulated data sets with different
numbers of available SNPs, different numbers of causative SNPs and different ratios of case samples from two affected

groups
Number of Ratio Computational time (sec)
causative of case MDR RF 2LOmb
SNPs samples 20 SNPs 20 SNPs 1,000 SNPs 20 SNPs 1,000 SNPs
282 1:3 6,505 2 539 5 24
1:1 6434 2 529 6 23
383 13 6,573 2 529 13 32
1:1 6,611 2 531 14 32
484 13 6,372 2 534 32 45
1:1 6,528 2 538 27 46
283 1:3 6,637 2 529 12 32
1:1 6,644 3 527 10 30
31 6,776 2 528 10 28
284 1:3 6513 2 525 16 35
1:1 6,637 2 528 16 35
31 6,599 2 528 18 34
384 13 6,369 2 526 22 38
1:1 6,410 2 530 25 45
31 6,435 2 528 22 38

The simulation is carried out on a computer server. The computer server is equipped with a Xeon 2.66 GHz quad-core processor and 4GB of main memory. A CentOS
5.5 operating system is installed on the computer server. The computational time is collected from the processing of multiple independent data sets for each
simulation setting. The displayed time is the maximum time required by each algorithm to analyse one data set.
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of computational time conforms to the results from early
reports (Edwards et al. 2009; Pattin and Moore 2008;
Ritchie et al. 2001; Wongseree et al. 2009). This means
that a direct application of MDR and RF used in this study
(see Methods for details) to larger data sets in which all
SNPs exhibit no marginal single-locus effects is certainly
impractical. Overall, 2LOmb outperforms MDR and RF in
this study. There are many attribute selection techniques
that have been successfully applied to genetic association
studies (Heidema et al. 2006; Motsinger et al. 2007; Van
Steen 2012). It would be interesting to benchmark 2LOmb
against other techniques that can also be applied to data
containing pure epistasis (Culverhouse 2012; Jiang et al.
2011b; Zhang and Liu 2007) and genetic heterogeneity
(Culverhouse 2012).

Another advantage of using 2LOmb for detecting pure
epistasis in the presence of genetic heterogeneity is the
ability to identify the number of independent interactions.
This is possible because 2LOmb reports its output in the
form of an ensemble of SNP pairs. If there are common
SNPs between pairs, then the detection of a multi-locus
interaction is declared. On the other hand, the absence
of common SNPs between pairs signifies that the interac-
tions are independent. For example, an ensemble that con-
tains SNP pairs (SNP1, SNP2), (SNP3, SNP4) and (SNP4,
SNP5) indicates the presence of genetic heterogeneity in
which a two-locus interaction between SNP1 and SNP2
and a three-locus interaction between SNP3, SNP4 and
SNP5 are independently responsible for the disease status
of each individual. Obviously, it is impossible to directly
identify the number of independent interactions from
the MDR and RF results because both techniques report
their outputs in the form of a set of SNPs and not a set
of SNP pairs. To demonstrate this capability of 2LOmb,
the previously described simulation is extended where
the number of independent data sets for each simulation
setting increases from 30 to 100. The portions of inde-
pendent data sets in which 2LOmb can identify at least
one interaction and both interactions in the data sets are
obtained for the calculation of statistical power. Detec-
tion of one interaction is declared if 2LOmb correctly
identifies at least two interacting causative SNPs respon-
sible for the affected status of individuals from only one
case group. On the other hand, detection of two inter-
actions is declared if 2LOmb correctly identifies at least
four interacting causative SNPs in the form of two SNP
pairs without a common SNP among the pairs. In addi-
tion, each SNP pair must be responsible for the affected
status of individuals from a different case group. The sta-
tistical power to detect genetic heterogeneity summarised
in Table 2 indicates that 2LOmb can identify both inter-
actions in nearly all 20-SNP data sets. However, a loss of
statistical power to detect both interactions is observed
when the number of available SNPs increases from 20 to
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1,000. In particular, this occurs when the ratio of case
samples from two affected groups is 1:3 and a two-locus
interaction is responsible for the affected status of indi-
viduals from the small-proportion group. This conforms
to the early observation regarding the effects of increasing
the number of available SNPs and increasing the number
of causative SNPs on the number of correctly-identified
causative SNPs. In brief, the Bonferroni correction factor
increases when the number of available SNPs increases. If
the Bonferroni-corrected x?’s p-value for a causative SNP
pair is not low enough, this pair would be excluded from
the output ensemble. Subsequently, a failure to identify
the causative SNP pair that is solely responsible for the
affected status of individuals from the small-proportion
group leads to the reduction in statistical power to detect
both interactions.

Testing with large-scaled simulated data

In this part of the study, each simulated data set contains
10,000 or 100,000 unlinked SNPs where two independent
purely epistatic two-locus interactions are present. Only
the setting of two independent two-locus interactions is
considered because the early simulation results given in
Table 2 indicate that this scenario is the most difficult one
when the number of available SNPs is large. The allele fre-
quencies of all causative SNPs are 0.5 while the MAFs of
the remaining SNPs are between 0.05 and 0.5. The data
set consists of balanced case-control samples of size 1,600,
3,200 or 6,400. All SNPs in control samples are in Hardy-
Weinberg equilibrium. The case samples are drawn from
two independent groups of affected individuals where the
ratios of samples from two affected groups are 1:1 and
1:3. The genotype distribution of interacting causative
SNPs follows the purely epistatic model which gives the
heritability of 0.01. One hundred independent data sets
for each simulation setting are generated by genomeSIM
for the evaluation of statistical power to detect genetic
heterogeneity.

The summary of statistical power to detect genetic het-
erogeneity in Table 3 indicates that the ability to detect
both interactions is highest when the ratio of case sam-
ples from two affected groups is 1:1 and is lowest when
the sample size is 1,600 and the ratio of case samples
from two affected groups is 1:3. This conforms to the
early observation where a similar phenomenon is detected
when the number of available SNPs is 1,000. However,
once the sample size is doubled and quadrupled, the abil-
ity to detect both interactions increases significantly. Both
interactions can be detected in almost all data sets con-
taining 10,000 or 100,000 SNPs and 3,200 samples while
both interactions can be detected in all data sets contain-
ing 10,000 or 100,000 SNPs and 6,400 samples. Obviously,
an increase in sample size causes an increase in the x2
test statistic during the two-locus analysis of causative
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Table 2 Statistical power of 2LOmb to detect genetic heterogeneity in small-scaled simulated data sets with different
numbers of available SNPs, different numbers of causative SNPs and different ratios of case samples from two affected

groups
Statistical power
20 SNPs 1,000 SNPs
Number of Ratio At least Two At least Two
causative of case one interaction interactions one interaction interactions
SNPs samples detected detected detected detected
282 1:3 1.00 0.95 1.00 0.55
1:1 1.00 1.00 1.00 1.00
3&3 1:3 1.00 1.00 1.00 0.88
1:1 1.00 1.00 1.00 1.00
484 13 1.00 1.00 1.00 1.00
1:1 1.00 1.00 1.00 1.00
283 1:3 1.00 0.93 1.00 0.60
1:1 1.00 1.00 1.00 1.00
31 1.00 0.98 1.00 0.94
284 1:3 1.00 0.94 1.00 0.63
1:1 1.00 1.00 1.00 1.00
31 1.00 1.00 1.00 0.99
384 13 1.00 1.00 1.00 0.88
1:1 1.00 1.00 1.00 1.00
31 1.00 1.00 1.00 0.97

Each data set consists of balanced case-control samples of size 1,600. The results indicate that 2LOmb detects at least one interaction in every data set (global p-value

< 0.0001).

SNPs. This suggests that increasing the sample size leads
to a lower Bonferroni-corrected x2?’s p-value for the SNP
pair responsible for the affected status of individuals from
the small-proportion group. Subsequently, the chance this
SNP pair being included in the output ensemble increases.

Bonferroni correction during the two-locus analysis
plays an important role in keeping the number of output
SNPs reported by 2LOmb close to the number of causative
SNPs (Wongseree et al. 2009). However, the overly con-
servative nature of Bonferroni correction when the num-
ber of statistical tests is large (Jiang et al. 2011a) also
leads to the aforementioned limitation in 2LOmb’s ability
to detect both independent interactions when the ratio
of case of samples from two affected groups is 1:3.
Although increasing the sample size is a possible solution,
other multiple testing correction techniques can be used
instead of the Bonferroni correction to tackle this prob-
lem. For instance, false discovery rate (FDR) analysis is a
strong candidate and is proven to be appropriate for DNA
microarray data analysis (Storey and Tibshirani 2003) and
genome-wide association studies (The Diabetes Genetics
Replication and Meta-analysis Consortium 2012). Further
studies are required to determine the effect of replacing
the Bonferroni correction in the two-locus analysis within
2LOmb with the FDR analysis.

The computational time summarised in Table 4 indi-
cates that the computational time for the large-scaled
simulation is a linear function of sample size. This is to
be expected because the construction of a 2 x 9 con-
tingency table for each two-locus analysis requires the
assignment of samples to the appropriate cells in the
table, which is a linear-time operation. On the other
hand, the computational time is a quadratic function of
the number of available SNPs. Since the basic operation
of 2LOmb is the two-locus analysis, 2LOmb can tackle
large-scaled problems with fixed sample size and var-
ied number of SNPs in quadratic time (Wongseree et al.
2009). Overall, the result agrees with the order of growth
in computational time discussed in the small-scaled sim-
ulation section. Based on the computational time given
in Table 4, it is estimated that 2LOmb requires 3.14 x
10° seconds (87.2 hours) of computational time to com-
plete the analysis of a data set containing 500,000 SNPs
and 6,400 samples. This suggests that the computational
time of 2LOmb is tractable for genome-wide association
studies.

Analysis of type 1 diabetes mellitus data
The presence of pure epistasis and genetic heterogeneity
in a T1D data set is identified using 2LOmb. The data set,
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Table 3 Statistical power of 2LOmb to detect genetic heterogeneity in large-scaled simulated data sets with different
numbers of available SNPs, different sample sizes and different ratios of case samples from two affected groups where

the affected status is governed by a two-locus interaction

Statistical power

10,000 SNPs 100,000 SNPs
Ratio At least Two At least Two
Sample of case one interaction interactions one interaction interactions

size samples detected detected detected detected
1,600 1:3 1.00 0.30 1.00 013
1:1 1.00 1.00 1.00 1.00
3,200 1:3 1.00 0.98 1.00 092
1:1 1.00 1.00 1.00 1.00
6,400 13 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00

The results indicate that 2LOmb detects at least one interaction in every data set (global p-value < 0.0001).

which is collected and screened by the Wellcome Trust
Case Control Consortium (WTCCC), consists of 1,963
case samples and 2,938 control samples. The case sam-
ples are collected from affected individuals in the UK
while the control samples are the results of the merging
between 1,458 samples from the UK blood services and
1,480 samples from the 1958 British birth cohort. The data
set contains 469,557 SNPs, which are genotyped through
the Affymetrix GeneChip 500K Mapping Array Set and
pass the WTCCC quality control (The Wellcome Trust
Case Control Consortium 2007). The SNP set is primar-
ily reduced by screening for SNPs within or near genes

Table 4 Computational time required by 2LOmb to analyse
large-scaled simulated data sets with different numbers of
available SNPs, different sample sizes and different ratios
of case samples from two affected groups where the
affected status is governed by a two-locus interaction

Sample Ratio of Computational time (sec)

size case samples 10,000 SNPs 100,000 SNPs
1,600 13 34 3,106

1:1 34 3,116
3,200 13 68 6,227

1:1 68 6,256
6,400 1:3 135 12,503

1:1 136 12,560

The simulation is carried out on a computer system with a graphics processing
unit. The parallelism of the graphics processing unit is exploited to speed up the
computation. The computer system is equipped with an AMD 2.8 GHz quad-core
processor, 4GB of main memory and an NVIDIA GeForce GTX 285 graphics
processing unit. The graphics processing unit contains 240 streaming processors
sharing 1GB of GDDR3 memory. Each streaming processor has a clock rate of
1.48 GHz. An Ubuntu 9.10 operating system is installed on the computer system.
The computational time is collected from the processing of multiple
independent data sets for each simulation setting. The displayed time is the
maximum time required to analyse one data set.

(Herold et al. 2009; Ritchie 2011) according to NCBI build
36.3 (dbSNP b129) coordinates. SNPs that are near a gene
are located within 2,000 bases upstream of the start site
or 500 bases downstream of the termination site for tran-
scription. The SNP set is further reduced by removing
SNPs that exhibit marginal single-locus effects or have
MAFs below 0.1. SNPs that the genotype distribution
within control samples departs from Hardy-Weinberg
equilibrium are also discarded. The final SNP set con-
tains 95,991 SNPs with no marginal single-locus effects
(uncorrected x?’s p-value > 0.05) from 12,146 genes.
The analysis of the reduced T1D data set by 2LOmb
takes 8,862 seconds (2.46 hours) of computational time on
the computer system with a graphics processing unit (see
Table 4 for detailed computer specification). The possi-
ble genetic association is detected from 12 SNPs located
within or near five genes (global p-value < 0.0001). Details
of these SNPs, the SNP pairs that exhibit marginal two-
locus effects and the identified genes are given in Table 5.
Linkage disequilibrium (LD) analysis is subsequently per-
formed using JLIN (Carter et al. 2006) and the LD patterns
are shown in Figure 3. All SNPs within or near the same
gene are in LD due to high values of D' and r2. This
is most likely being the cause of the identification of
multiple SNPs from the same gene. On the other hand,
SNPs in each pair that contains SNPs from different genes
(SNP pairs 2—18) are not in LD due to low values of D/
and 2. There are several subsets of these SNP pairs in
which each subset contains three SNP pairs with com-
mon SNPs between pairs. One example is {(SNP1, SNP5),
(SNP1, SNP7), (SNP1, SNP9)}. Consequently, the detec-
tion of these 17 SNP pairs indicates that there is a four-
locus interaction between MUC21 (mucin 21, cell surface
associated), MUC22 (mucin 22), PSORSIC1 (psoriasis
susceptibility 1 candidate 1) and TCFI9 (transcription
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Table 5 2LOmb identifies 12 SNPs, which are located within or near five genes, from the reduced T1D data set

Chromosome SNP

SNP pair in the ensemble

Gene and location  no. SNP 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
mMuC2i 6p21.32 1 152844678 o o o o .
2 rs2523929 e o e o .
3 152530699 e o .
MUC22 6p21.33 4 159262546 e e o o
5 16933349 o o .
6 rs4713423 . .
PSORSICI 6p21.3 7 159263715 . . ° .
8  rs9263716 . . ° °
TCF19 6p21.3 9 rs9263794 ° . . .
ATAD1 10923.31 10 1512775041 .
11 rs12573160 4 b
12 1512781171 .

Twenty SNP pairs are present in the ensemble. A pair of dots in the same column denotes a SNP pair.

factor 19). In contrast, there are no interactions between
ATADI (ATPase family, AAA domain containing 1) and
the other genes due to the absence of a SNP pair con-
taining a SNP from ATADI and a SNP from any of the
remaining four genes. The detection of three linked SNPs
within ATADI is believed to be the result of haplotype
effects (Epstein and Satten 2003). Altogether, this clearly
signifies the presence of pure epistasis and genetic het-
erogeneity. In real data analysis, the detection of a SNP
pair that associates with the disease is insufficient to
claim the presence of pure epistasis. If the SNP pair con-
sists of two unlinked SNPs, then the detection of pure
epistasis can be declared. Otherwise, the detection is the
result of LD between SNPs. Since 2LOmb analysis cannot
solely distinguish genetic association due to pure epistasis
from genetic association due to LD, it is crucial to always
perform additional LD analysis.

The first four genes identified by 2LOmb, namely
MUC21, MUC22, PSORS1C1 and TCF19, are located on
the major histocompatibility complex (MHC). MHC is
a genomic region in which a mouse model of human
complex diseases suggests the presence of T1D suscepti-
bility genes (Cordell et al. 2001). The four genes are also
located between DDRI (discoidin domain receptor tyro-
sine kinase 1) and HLA-DQA1 (major histocompatibility
complex, class II, DQ alpha 1), which is the region where
the DR3-DQ2 ancestral haplotype 18.2 (AH18.2) is proven
to be highly conserved and likely to carry susceptibility
alleles for T1D in a Spanish population (Santiago et al.
2009). This implies that the detection of a four-locus inter-
action between these four genes conforms to the evidence
from early genetic association studies of T1D. On the
other hand, there are no early reports regarding the asso-
ciation between ATADI polymorphisms and T1D. ATADI

is among many candidate genes for the association studies
of Parkinson’s disease. Nonetheless, there is little infor-
mation about pathways that include ATADI (Moran and
Graeber 2008). Hence, it is impossible to explain the asso-
ciation between ATADI polymorphisms and T1D at this
point.

This study produces evidence of association between 12
SNPs within or near MUC21, MUC22, PSORS1C1, TCF19
and ATADI, and T1D in a UK population. Although there
are other independent genome-wide T1D data sets, the
association detection within these data sets using the pre-
sented methodology has never been attempted. Basically,
the methodology employed in most genome-wide asso-
ciation studies is based on single-locus analysis (Cooper
et al. 2008; The Wellcome Trust Case Control Consor-
tium 2007). Since each SNP explored in the reduced T1D
data set exhibits no marginal single-locus effect, the most
direct approach for replicating the association results pre-
sented in this article is to perform the same association
detection on these independent data sets. This would cer-
tainly help to gain a further insight into the genetics of
T1D.

Conclusions

In this article, the detection of pure epistasis (Culver-
house et al. 2002) in the presence of genetic heterogeneity
is investigated. The study focuses on the capability to
detect two independent interactions that influence the
development of the same complex disease. Each inter-
action can be either a purely epistatic two-locus inter-
action or a purely epistatic multi-locus interaction in
which the causative SNPs exhibit no marginal single-
locus effects. The candidate techniques for the detec-
tion benchmarking are MDR (Ritchie et al. 2001), RF
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Figure 3 LD patterns of SNPs within or near MUC21, MUC22,
PSORS1C1, TCF19 and ATAD1. LD is explained by D’ displayed in the
upper triangle and r? displayed in the lower triangle. Dark colours
indicate high values while pale colours indicate low values. Distances
between SNPs are given in terms of the number of base pairs. SNP1 =
152844678, SNP2 = rs2523929, SNP3 = rs2530699, SNP4 = rs9262546,
SNP5 = 156933349, SNP6 = 154713423, SNP7 = 59263715, SNP8 =
159263716, SNP9 = rs9263794, SNP10 = rs12775041, SNP11 =
rs12573160 and SNP12 =rs12781171.

(Breiman 2001) and 2LOmb (Wongseree et al. 2009). The
results from various simulation scenarios indicate that
2LOmb outperforms MDR and RF in terms of a low
number of output SNPs and a high number of correctly-
identified causative SNPs. These scenarios are created
by varying the number of available SNPs in data, the
number of causative SNPs and the ratio of case sam-
ples from two affected groups. ANOVA reveals that all
three simulation parameters influence the number of
correctly-identified causative SNPs in the 2LOmb output.
In addition to the superiority in the detection perfor-
mance, 2LOmb is also capable of identifying the number
of independent interactions. This is achieved through
the identification of common SNPs among SNP pairs

in the ensemble. The results indicate that 2LOmb is
able to identify the presence of independent interac-
tions even though the number of available SNPs reaches
100,000. Moreover, this is achieved in tractable compu-
tational time, which makes 2LOmb suitable for use in
genome-wide association studies. 2LOmb is subsequently
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applied to a T1D data set, which contains 1,963 case sam-
ples and 2,938 control samples and is collected from a
UK population (The Wellcome Trust Case Control Con-
sortium 2007). The genome-wide data set is primarily
screened for SNPs that locate within or near genes. The
data set is further reduced by removing SNPs that exhibit
marginal single-locus effects or have MAFs below 0.1. The
final data set contains 95,991 SNPs from 12,146 genes.
2LOmb identifies 12 SNPs that are associated with the
disease. These SNPs are located within or near MUC21,
MUC22, PSORSIC1, TCF19 and ATADI. 2LLOmb and LD
analyses indicate that there is a four-locus interaction
between MUC21, MUC22, PSORSICI and TCF19 while
SNPs from ATADI are independently associated with the
disease. This signifies the presence of both pure epis-
tasis and genetic heterogeneity. The evidence of genetic
association for these five genes provides an alternative
explanation for the aetiology of T1D in the UK popula-
tion. It also confirms that SNPs which exhibit no marginal
single-locus effects from a genome-wide data set can be
useful for genetic association studies (Wongseree et al.
2009).

Methods

Purely epistatic model

A purely epistatic model is first defined by Culverhouse
et al. (2002). The model describes an interaction between
unlinked SNPs which leads to an epistatic effect while
each interacting SNP exhibits no marginal single-locus
effect. As a result, it is impossible to screen for SNPs con-
tributing to pure epistasis by by single-locus x? tests for
allelic and genotypic association. However, pure epistasis
can be detected by multi-locus analysis. In this study, each
model contains two, three or four causative SNPs. The
purely epistatic three- and four-locus interaction mod-
els also exhibit marginal two-locus effects. All models
yield the heritability of 0.01, which implies that genetic
factors partially contribute towards disease susceptibility.
The penetrance tables, which define the probability that
an individual with a specific genotype has the disease,
for purely epistatic two-, three- and four-locus interac-
tion models used throughout the simulations are given
in Tables 6, 7 and 8, respectively. Detailed derivation of
these models is given in Culverhouse et al. (2002) and
Wongseree et al. (2009).

genomeSIM

genomeSIM is a software package for simulating case-
control data in genetic association studies (Dudek et
al. 2006). genomeSIM takes penetrance-based models as
inputs necessary for dictating the case/control status of
each sample. A case-control data set can be generated
by a population-based simulation or a probability-based
simulation. A population of genotype strings is initialised



Setsirichok et al. SpringerPlus 2013, 2:230
http://www.springerplus.com/content/2/1/230

Table 6 Two-locus penetrances that lead to the heritability
of 0.01

Penetrance of genotype

Genotype BB Bb bb
AA 0 0 4K
Aa 0 2K 0
aa 4K 0 0

AA and BB denote homozygous wild-type genotypes. Aa and Bb denote
heterozygous genotypes. aa and bb denote homozygous variant genotypes. All
allele frequencies are equal (ps = pg = 0.5). K = 1/201.

according to the allele frequency of each SNP in the
population-based simulation. Successive generations are
subsequently created through a forward-time simulation
by crossing the genotype strings within each generation.
This is pursued until the predefined number of gener-
ations is reached. On the other hand, genotype strings
are incrementally created until the predefined numbers of
case and control samples are obtained in the probability-
based simulation. In this study, the probability-based
simulation is employed to generate all case-control data
sets. genomeSIM is available upon request to the Ritchie
Lab, Center for System Genomics, Pennsylvania State
University (Ritchie Lab 2013).

Multifactor dimensionality reduction

MDR is a wrapper technique which is capable of iden-
tifying causative SNPs that are associated with a dis-
ease from case-control data (Ritchie et al. 2001). MDR
functions by attempting to identify the best SNP combina-
tion that yields the highest prediction accuracy. The pre-
diction accuracy is calculated by means of a 10-fold cross-
validation. During the cross-validation, the data set is
randomly divided into 10 folds of combined case-control
samples in which 9 folds of samples are used to construct
the prediction model while the remaining fold is used
to test the model. The process of prediction model con-
struction and testing is then repeated 10 times where for
each time a different sample fold is chosen as the testing
fold. The prediction model embedded in MDR is a multi-
dimensional decision table with 3" cells when n, SNPs
and all three possible genotypes according to each SNP
are considered. Each cell in the decision table is filled with
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case and control samples for which their genotypes coin-
cide with the cell labels. The ratio between the numbers of
case and control samples dictates whether the genotype in
each cell is a protective or disease-predisposing genotype.
The prediction accuracy is then evaluated by counting the
number of testing samples that their disease status can be
correctly identified using the decision rules provided by
the table.

Similar to other wrapper techniques, the total num-
ber of possible prediction models that MDR can explore
is 2" — 1 where n is the number of available SNPs
in the data set. With the use of an exhaustive search,
MDR can generally identify the best SNP combination
that gives the highest prediction accuracy. However, the
search for the best model can also be limited to mod-
els that do not cover more than n; SNPs where n; < n.
After exploring multiple prediction models with a fixed
number of SNPs, MDR also returns an additional mea-
sure called cross-validation consistency. Basically, each
time that a testing fold is used to determine the accu-
racy of the interesting prediction model, the attained
accuracy can be compared with that from other models
which have the same number of SNPs as the interesting
model. The model with high cross-validation consistency
is the one that consistently ranks the first in compar-
ison to other models regardless of which testing fold
being used. A model with high cross-validation consis-
tency usually has high prediction accuracy. As a result,
prediction accuracy remains the principal criterion for
model selection while cross-validation consistency is only
applied as an auxiliary criterion. If two or more SNP com-
binations give the highest prediction accuracy and have
equally high cross-validation consistency, the most par-
simonious combination—the combination with the least
number of SNPs—is the one chosen as the best SNP
combination.

A permutation test can subsequently be applied to
estimate the probability that the null hypothesis of no
association is true. Each permutation replicate is con-
structed by randomly assigning the case/control status
to each sample with the constraint that the numbers of
case and control samples must remain unchanged. MDR
is then performed on each permutation replicate to obtain

Table 7 Three-locus penetrances that lead to the heritability of 0.01

Penetrance of genotype

cC Cc cc
Genotype BB Bb bb BB Bb bb BB Bb bb
AA 0 0 16K 0 0 0 0 0 0
Aa 0 0 0 0 4K 0 0 0 0
aa 0 0 0 0 0 0 16K 0 0

AA, BB and CC denote homozygous wild-type genotypes. Aa, Bb and Cc denote heterozygous genotypes. aa, bb and cc denote homozygous variant genotypes. All
allele frequencies are equal (pa = pg = pc =0.5). K = 1/901.
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Table 8 Four-locus penetrances that lead to the heritability of 0.01

Penetrance of genotype

cC Cc cc
Genotype DD Dd dd DD Dd dd DD Dd dd
BB 0 0 0 0 0 0 0 0 0
AA Bb 0 0 0 0 0 0 0 0 0
bb 0 0 64K 0 0 0 0 0 0
BB 0 0 0 0 0 0 0 0 0
Aa Bb 0 0 0 0 8K 0 0 0 0
bb 0 0 0 0 0 0 0 0 0
BB 0 0 0 0 0 0 64K 0 0
aa Bb 0 0 0 0 0 0 0 0 0
bb 0 0 0 0 0 0 0 0 0

AA, BB, CC and DD denote homozygous wild-type genotypes. Aa, Bb, Cc and Dd denote heterozygous genotypes. aa, bb, cc and dd denote homozygous variant

genotypes. All allele frequencies are equal (pa = pg = pc = pp =0.5). K=1/3501.

the best SNP combination together with its prediction
accuracy and cross-validation consistency. The empirical
p-value is given by the fraction of permutation replicates
with the interesting measure larger than or equal to that
obtained from the original data where the measure can be
either prediction accuracy or cross-validation consistency
(Hahn et al. 2003). MDR used in this study is publicly
available from the Computational Genetics Laboratory,
Dartmouth Medical School, Dartmouth College (Com-
putational Genetics Laboratory at Dartmouth Medical
School 2013).

Random forest

RF refers to a collection or ensemble of decision trees
(Breiman 2001). Each tree in RF is constructed in a top-
down manner. The tree construction begins at the root
node where an attribute (SNP) is selected as the test.
Descendants of the root node are then created accord-
ing to the values of this attribute (genotypes of this
SNP). Next, the (case-control) data samples are sorted to
the appropriate descendant node. The entire process is
repeated using the samples associated with each descen-
dant node to select another attribute to test at that point
in the tree. This forms a forward search for an accept-
able decision tree in which the search never backtracks to
reconsider earlier node choices. Since there are multiple
trees in the forest, RF takes a majority vote from the trees
as the class decision. Hence, the trees should be diverse
in order for the majority-vote concept to be applicable. It
is suggested that an attribute for each node in a tree can
be selected according to its suitability for being used as
the test from a small group of randomly picked attributes.
Empirical studies indicate that an attribute group size of

{\/total number of attributes—‘ is sufficient. Consequently,

the samples allocated to each descendant node, which is

created after selecting the most suitable attribute as the
test, have lesser class variety. Moreover, each tree in RF is
allowed to grow to its maximum size. This does not lead
to data over-fitting because the overall class decision relies
on outcomes from multiple trees in the forest.

Unlike MDR, a bootstrap aggregating or bagging
approach provides a means to determine the prediction
accuracy of RF. Given a (case-control) sample set, a boot-
strap sample set with the size equals to original sample set
is generated by sampling from the original sample set uni-
formly and with replacement. It is expected that 63.2% of
bootstrap samples are unique while the remaining samples
are duplicates. Original samples that are absent from the
bootstrap sample set are referred to as out-of-bag samples.
Bootstrap samples are employed during the tree construc-
tion while out-of-bag samples are used to evaluate the pre-
diction accuracy. A new bootstrap sample set is generated
for the construction of each tree. As a result, the votes are
only counted across the trees that the sample is out-of-bag
during the prediction accuracy evaluation. The applica-
tion of a bootstrap aggregating approach also leads to a
means to quantify attribute importance, which is com-
monly referred to as variable importance. The variable
importance is measured using a permutation approach.
By randomly permuting the value of the attribute of inter-
est, the correlation between the attribute and the (case-
control) class can be determined. When the permuted
attribute and the remaining non-permuted attributes are
used as inputs for RF to identify the class of out-of-bag
samples, the prediction accuracy reduces markedly if the
attribute of interest is correlated with the class. The aver-
age difference between the prediction accuracy obtained
using the original attribute inputs and that obtained using
the inputs with one permuted attribute over the trees
is the variable importance. The standardised variable
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importance is defined as the quotient between the vari-
able importance and a standard error derived from the
between-tree variance of the variable importance. In other
words, the standardised variable importance follows a
standard normal distribution (Random Forests 2004). An
attribute with variable importance in the top five per-
centiles of a normal distribution is considered to be in a
top rank in comparison to other attributes and is hence
correlated with the class. This decision criterion is similar
to the one based on the extremity of variable importance
suggested by Strobl et al. (2009). RF used in this study
is publicly available from the Department of Statistics,
University of California, Berkeley (Random Forests 2004).
A review of RF for genetic association studies can be found
in Goldstein et al. (2011). Interested readers should also
refer to Schwarz et al. (2010) and Wei et al. (2013) for
RF-based techniques that are computationally feasible for
genome-wide association studies.

Omnibus permutation test on ensembles of two-locus
analyses

2LOmb is a filter technique which is specifically
designed for detecting pure epistasis in case-control data
(Wongseree et al. 2009). 2LOmb consists of four steps as
follows.

Two-locus analysis

2LOmb begins by exhaustively performing two-locus
analysis by x2 tests. Each x2 test determines the differ-
ence between the distribution of two-locus genotypes in
case and control samples. For a case-control data set con-
taining 7 SNPs, (1) two-locus analyses are attained. Sub-
sequently, the x?’s p-value from each two-locus analysis
is adjusted by a Bonferroni correction. The Bonferroni-
corrected x?’s p-value from each two-locus analysis is
min((}) x uncorrected x*’s p-value, 1).

Permutation test

A permutation test is performed to test the null hypo-
thesis H{ that the ensemble e of two-locus analyses is
not associated with the disease. To achieve this, a scalar
statistic is first computed for the original case-control
data set by combining Bonferroni-corrected x?’s p-values
for SNP pairs through a Fisher’s combining function
(—2 ), log(p:)). The calculation of the Fisher’s test statis-
tic is then repeated for a set of permutation replicates.
Each permutation replicate is constructed by randomly
permuting the case/control status of each sample, which
leads to different Bonferroni-corrected x*’s p-values and
Fisher’s test statistic. The p-value of the null hypothesis H
is then given by

po=Wi:1<i<tT;>Tg}l/t 1
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where T7 is the Fisher’s test statistic calculated for the
permutation replicate i, T is the Fisher’s test statistic
calculated for the original case-control data set, ¢ is the
number of permutation replicates and | - | denotes the size
of a set.

Global p-value determination

Since multiple ensembles of two-locus analyses can be
explored, the calculation of global p-value is required to
adjust for multiple hypothesis testing. The result is the p-
value of the global null hypothesis Hy = (., H{ in
which none of E explored ensembles is associated with the
disease. Similar to other omnibus permutation tests, the
same set of permutation replicates that gives the raw or
unadjusted p-value for each ensemble is also used to esti-
mate the global p-value. To obtain the global p-value, the
unadjusted p-value for the permutation replicate i of each
hypothesis H is first calculated from

pi=Wi:0<j<tj#iTf > T}/t. @

The p-value of the global null hypothesis Hy is then given
by

Palobal = [{i : 1 < i < t,p™" < piny|/t (3)

where p™" = min,p¢ is the minimum of unadjusted
p-values over the explored ensembles in the permuta-
tion replicate i and pg““ = min, p{ is the minimum of
raw p-values over the explored ensembles in the original

case-control data set.

Search for the best ensemble of two-locus analyses

The search for the best ensemble of two-locus analy-
ses initialises by selecting the SNP pair with the lowest
Bonferroni-corrected x*’s p-value, which is a part of result
from the first step of algorithm. A permutation test is then
performed for this two-locus analysis, yielding both raw
and global p-values because only one hypothesis has been
explored. If the raw and global p-values of this first ensem-
ble are statistically insignificant, the search terminates and
the null hypothesis of no association cannot be rejected.
Otherwise, the search continues by merging the SNP pair
with the next lowest Bonferroni-corrected x?’s p-value to
the current best ensemble and re-evaluating the raw and
global p-values. The search continues progressively in this
manner until either an increase in the raw or global p-
value is observed or all possible SNP pairs are included in
the ensemble. If the search terminates prior to the inclu-
sion of all possible SNP pairs, the best ensemble is the one
from the previous iteration.

In this study, the significance level («) to determine
whether an ensemble is associated with the disease is 0.05
and the number of permutation replicates is 10,000, which
is proven to be sufficient in the early study (Wongseree et
al. 2009). 2LOmb is publicly available from its homepage
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(Detecting Purely Epistatic Multi-locus Interactions by an
Omnibus Permutation Test on Ensembles of Two-locus
Analyses 2009).

Java LINkage disequilibrium plotter

A Java LINkage disequilibrium plotter (JLIN) is a software
package for the illustration of linkage disequilibrium pat-
terns (Carter et al. 2006). JLIN is used to display D’ and 72
calculated for SNPs which are associated with T1D. JLIN
is publicly available from the Centre for Genetic Epidemi-
ology and Biostatistics, University of Western Australia
(JLIN 2010).
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