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Abstract

In this paper, Picard method is proposed to solve the Cauchy reaction-diffusion equation with fuzzy initial condition
under generalized H-differentiability. The existence and uniqueness of the solution and convergence of the proposed
method are proved in details. Some examples are investigated to verify convergence results and to illustrate the
efficiently of the method. Also, we obtain the switching points in examples.
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Introduction
As we know the fuzzy differential equations FDE are
one of the important part of the fuzzy analysis theory
that play major role in numerical analysis. For example,
population models (Guo et al. 2003), the golden mean
(Datta 2003), quantum optics and gravity (El Naschie
2005), control chaotic systems (Feng and Chen 2005; Jiang
2005), medicine (Abbod et al. 2001; Barro and Marin,
2002). Recently, some mathematicians have studied FDE
(Abbasbandy and Allahviranloo 2000; Abbasbandy et al.
2004; Abbasbandy et al. 2005; Allahviranloo et al. 2007;
Bede 2008; Bede and Gal 2005; Bede et al. 2007; Buckley
and Feuring 2000; Buckley and Jowers 2006; Buckley et
al. 2002; Chalco-Cano and Romn-Flores 2006; Chalco-
Cano and Romn-Flores et al. 2007; Chapko and Johansson
2012; Chen and Ho 1999; Cho and Lan 2007; Congxin
and Shiji 1993; Diamond 1999; Diamond 2002; Ding et
al. 1997; Dubois 1982; Dou and Hon 2012; Fard 2009a,b;
Fard and Bidgoli 2010; Fard and Kamyad 2011; Fard et al.
2009; Fei 2007; Jang et al. 2000; Jowers et al. 2007; Kaleva
1987,1990,2006; Lopez 2008; Ma et al. 1999; Mizukoshi
et al. 2007; Oberguggenberger and Pittschmann 1999;
Papaschinopoulos 2007; Puri and Ralescu 1983; Seikkala
1987; Solaymani Fard and Ghal-Eh 2011; Song et al. 2000).
The fuzzy partial differential equations FPDE are very
important in mathematical models of physical, chemical,
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biological, economics and other fields. Some mathemati-
cians have studied solution of FPDE by numerical meth-
ods (Afshar Kermani and Saburi 2007; Allahviranloo 2002;
Barkhordari Ahmadi and Kiani 2011; Buckley and Feuring
1999; Chen et al. 2009; Farajzadeh et al. 2010; Moghadam
and Jalal 2011; Rouhparvar et al. 2010; Verma et al. 2009).
In this work, we present the Picard method to solve the
Cauchy reaction-diffusion equation as follows:

ũt(x, t) = ũxx(x, t) + ũ(x, t), 0 ≤ t ≤ T ,
a ≤ x ≤ b, a, b,T ∈ R.

(1)

With fuzzy initial condition:

ũ(x, 0) = f̃ (x). (2)

The structure of this paper is organized as follows: In
section “Basic concepts”, some basic notations and defini-
tions in fuzzy calculus are brought. In section “Descrip-
tion of the method”, Eqs.(1,2) are solved by Picardmethod.
The existence and uniqueness of the solution and con-
vergence of the proposed method are proved in section
“Existence and convergence analysis” respectively. Finally,
in section “Numerical examples”, the accuracy of method
by solving some numerical examples are illustrated and a
brief conclusion is given in section “Conclusion”.

Basic concepts
Here basic definitions of a fuzzy number are given as
follows, (Allahviramloo 2005; Dubois and Prade 2005;
Kauffman and Gupta 1991; Nguyen 1978; Zadeh 1965)
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Figure 1 The results of Example 5.1 for (u(x, 0.6, 0.1), u(x, 0.6, 0.1)).

Definition 2.1. An arbitrary fuzzy number ũ in the para-
metric form is represented by an ordered pair of functions
(u,u) which satisfy the following requirements:

(i) u : r → u(r) ∈ R is a bounded left-continuous
non-decreasing function over [ 0, 1],

(ii) u : r → u(r) ∈ R is a bounded left-continuous
non-increasing function over [ 0, 1],

(iii) u(r) ≤ u(r), 0 ≤ r ≤ 1.

Definition 2.2. For arbitrary fuzzy numbers ũ, ṽ ∈ E1,
we use the distance (Hausdorff metric) (Goetschel and
Voxman 1986) D(u(r), v(r)) = max{supr∈[0,1] |u(r) −
v(r)|, sup |u(r) − v(r)|}, and it is shown (Puri and Ralescu
1986) that (E1 , D) is a complete metric space and the
following properties are well known:

D(̃u + w̃, ṽ + w̃) = D(̃u, ṽ),∀ ũ, ṽ ∈ E1,
D(kũ, k̃v) =| k | D(̃u, ṽ),∀ k ∈ R, ũ, ṽ ∈ E1,
D(̃u + ṽ, w̃ + ẽ) ≤ D(̃u, w̃) + D(̃v, ẽ),∀ ũ, ṽ, w̃, ẽ ∈ E1.

Definition 2.3. Consider x̃, ỹ ∈ E. If there exists z̃ ∈ E
such that x̃ = ỹ + z̃ then z̃ is called the H- difference of x̃
and ỹ, and is denoted by x̃ � ỹ (Bede and Gal 2005).

Proposition 1. If f̃ : (a, b) → E is a continuous fuzzy-
valued function then g(x) = ∫ x

a f (t) dt is differentiable,
with derivative g ′

(x) = f (x) (Bede and Gal 2005).

Definition 2.4. (see (Bede and Gal 2005)) Let f̃ : (a, b) →
E and x0 ∈ (a, b). We say that f̃ is generalized differen-
tiable at x0 (Bede-Gal differentiability), if there exists an
element f ′

(x0) ∈ E, such that:

i) for all h > 0 sufficiently small, ∃ f (x0 + h) � f (x0),
∃ f (x0) � f (x0 − h) and the following limits hold:

lim
h→0

f (x0 + h) � f (x0)
h

= lim
h→0

f (x0) � f (x0 − h)
h

= f
′
(x0)

or
ii) for all h > 0 sufficiently small, ∃ f (x0) � f (x0 + h),

∃ f (x0 − h) � f (x0) and the following limits hold:

lim
h→0

f (x0) � f (x0 + h)
−h

= lim
h→0

f (x0 − h) � f (x0)
−h

= f
′
(x0)

or
iii) for all h > 0 sufficiently small, ∃ f (x0 + h) � f (x0),

∃ f (x0 − h) � f (x0) and the following limits hold:

lim
h→0

f (x0 + h) � f (x0)
h

= lim
h→0

f (x0 − h) � f (x0)
−h

= f
′
(x0)

or
iv) for all h > 0 sufficiently small, ∃ f (x0) � f (x0 + h),

∃ f (x0) � f (x0 − h) and the following limits hold:

lim
h→0

f (x0) � f (x0 + h)
−h

= lim
h→0

f (x0) � f (x0 − h)
h

= f
′
(x0)

Definition 2.5. Let f̃ : (a, b) → E. We say f̃ is (i)-
differentiable on (a, b) if f̃ is differentiable in the sense
(i) of Definition (2.7) and similarly for (ii), (iii) and (iv)
differentiability.

Definition 2.6. (see (Chalco-Cano and Romn-Flores
2006)) Let f̃ : (a, b) → E and x0 ∈ (a, b). A point
x0 ∈ (a, b) is said to be a switching point for the differ-
entiability of f̃ , if in any neighborhood V of x0 there exist
points x1 < x0 < x2 such that

(type 1) f̃ is differentiable at x1 in the sense (i) of
Definition (2.6) while it is not differentiable in the
sense (ii) of Definition (2.6), and f̃ is differentiable at
x2 in the sense (ii) of Definition (2.6) while it is not
differentiable in the sense (i) or Definition (2.6), or

(type 2) f̃ is differentiable at x1 in the sense (ii) of
Definition (2.6) while it is not differentiable in the
sense (i) of Definition (2.6), and f̃ is differentiable at
x2 in the sense (i) of Definition (2.6) while it is not
differentiable in the sense (ii) or Definition (2.6).
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Proposition 2. (see (Chalco-Cano and Romn-Flores
2006)) Let f̃ : (a, b) → E and x0 ∈ (a, b).

(a) If x0 ∈ (a, b) is a switching point for the
differentiability of f̃ of type 1, then f̃ is differentiable
at x0 in the form (iv).

(b) If x0 ∈ (a, b) is a switching point for the
differentiability of f̃ of type 2, then f̃ is differentiable
at x0 in the form (iii).

Definition 2.7. A triangular fuzzy number is defined as a
fuzzy set in E1, that is specified by an ordered triple u =
(a, b, c) ∈ R3 with a ≤ b ≤ c such that u(r) =[u(r),u(r)]
are the endpoints of r-level sets for all r ∈[ 0, 1], where
u(r) = a+ (b− a)r and u(r) = c− (c− b)r. Here, u(0) =
a,u(0) = c,u(1) = u(1) = b, which is denoted by u(1).
The set of triangular fuzzy numbers will be denoted by E1.

Definition 2.8. (see (Chalco-Cano and Romn-Flores
2006)) The mapping f̃ : T → En for some interval T
is called a fuzzy process. Therefore, its r-level set can be
written as follows:

(f (t))(r) =[ f (t, r), f (t, r)] , t ∈ T , r ∈[ 0, 1] .
Definition 2.9. (see (Chalco-Cano and Romn-Flores
2006)) Let f̃ : T → En be Hukuhara differentiable
and denote (f (t))(r) =[ f (t, r), f (t, r)]. Then, the boundary
function f (t, r) and f (t, r) are differentiable (or Seikkala
differentiable) and

(f
′
(t))(r) =[ f

′
(t, r), f

′
(t, r)] , t ∈ T , r ∈[ 0, 1] .

If f is (ii)-differentiable then

(f
′
(t))(r) =[ f

′
(t, r), f

′
(t, r)] , t ∈ T , r ∈[ 0, 1] .

Description of themethod
To obtain the approximation solution of Eqs.(1,2), based on
Definition (2.6) we have two cases as follows:

Case (1): ũ(x, t) is (i)-differentiable, in this case we
have,

ũ(x, t) = f̃ (x) +
∫ t

0
[ ũ(x, t) + ũxx(x, t)] dt. (3)

Case (2): ũ(x, t) is (ii)-differentiable, in this case we
have,

ũ(x, t) = f̃ (x) � (−1).
∫ t

0
[ ũ(x, t) + ũxx(x, t)] dt.

(4)

Now, we can write successive iterations (by using Picard
method) as follows:

Case (1):

ũ0(x, t) = f̃ (x),
ũn+1(x, t) = f̃ (x) + ∫ t

0 [ ũn(x, t) + ũnxx(x, t)] dt, n ≥ 0.
(5)

Case (2):

ũ0(x, t) = f̃ (x),

ũn+1(x, t) = f̃ (x) � (−1).
∫ t

0
[ ũn(x, t) + ũnxx(x, t)] dt,

n ≥ 0.
(6)

Remark 1. For ũxx we have cases as follows:

Case (1): ũ and ũ′ be (i)-differentiable and ũ and ũ′ be
(ii)-differentiable

ũxx(x, t) =[uxx(x, t, r),uxx(x, t, r)] .

Case (2): ũ is (i)-differentiable and ũ′ is
(ii)-differentiable and ũ is (ii)-differentiable and ũ′ is
(i)-differentiable

ũ′′
(x, t) =[u′′

(x, t, r),u′′
(x, t, r)] .

Remark 2. We discuss about switching points as follows:

Case (1): ũ is (i)-differentiable
If ∂u(x,t,r)

∂x < 0, ∂u(x,t,r)
∂x > 0, x ∈[ a, x0] and

∂u(x,t,r)
∂x > 0, ∂u(x,t,r)

∂x < 0, x ∈ (x0, b] and r ∈[ 0, 1]
then we have ũ′

(x, t) =[u′
(x, t, r),u′

(x, t, r)] and x0 is
a switching point in the form (iv).
If ∂2u(x,t,r)

∂x2 < 0, ∂2u(x,t,r)
∂x2 > 0, x ∈[ a, x1] and

∂2u(x,t,r)
∂x2 > 0, ∂2u(x,t,r)

∂x2 < 0, x ∈ (x1, b] and r ∈[ 0, 1]
then we have ũ′′

(x, t) =[u′′
(x, t, r),u′′

(x, t, r)] and x1
is a switching point in the form (iv).
Case (2): ũ is (ii)-differentiable
If ∂u(x,t,r)

∂x > 0, ∂u(x,t,r)
∂x < 0, x ∈[ a, x0] and

∂u(x,t,r)
∂x < 0, ∂u(x,t,r)

∂x > 0, x ∈ (x0, b] and r ∈[ 0, 1]
then we have ũ′

(x, t) =[u′
(x, t, r),u′

(x, t, r)] and x0 is
a switching point in the form (iii).
If ∂2u(x,t,r)

∂x2 > 0, ∂2u(x,t,r)
∂x2 < 0, x ∈[ a, x1] and

∂2u(x,t,r)
∂x2 < 0, ∂2u(x,t,r)

∂x2 > 0, x ∈ (x1, b] and r ∈[ 0, 1]
then we have ũ′′

(x, t) =[u′′
(x, t, r),u′′

(x, t, r)] and x1
is a switching point in the form (iii).
Case (3): ũ is (i)-differentiable
If ∂u(x,t,r)

∂x < 0, ∂u(x,t,r)
∂x > 0,∀x ∈[ a, b] then we have

ũ′
(x, t) =[u′

(x, t, r),u′
(x, t, r)].

If ∂2u(x,t,r)
∂x2 < 0, ∂2u(x,t,r)

∂x2 > 0, x ∈[ a, x0] and
∂2u(x,t,r)

∂x2 > 0, ∂2u(x,t,r)
∂x2 < 0, x ∈ (x0, b] and r ∈[ 0, 1]
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then we have ũ′′
(x, t) =[u′′

(x, t, r),u′′
(x, t, r)] and x0

is a switching point in the form (iv).
Case (4): ũ is (ii)-differentiable
If ∂u(x,t,r)

∂x > 0, ∂u(x,t,r)
∂x < 0,∀x ∈[ a, b] then we have

ũ′
(x, t) =[u′

(x, t, r),u′
(x, t, r)].

If ∂2u(x,t,r)
∂x2 > 0, ∂2u(x,t,r)

∂x2 < 0, x ∈[ a, x1] and
∂2u(x,t,r)

∂x2 < 0, ∂2u(x,t,r)
∂x2 > 0, x ∈ (x1, b] and r ∈[ 0, 1]

then we have ũ′′
(x, t) =[u′′

(x, t, r),u′′
(x, t, r)] and x1

is a switching point in the form (iii).

Existence and convergence analysis
In this section we are going to prove the existence and
uniqueness of the solution and convergence of themethod
by using the following assumptions.
Consider f̃ (x) is bounded for all x ∈[ a, b] and

D(̃uxx(x, t), ũ∗
xx(x, t)) ≤ LD(̃u(x, t), ũ∗(x, t)), L > 0.

Let,

α = (T + TL).

Lemma 1. If ũ, ṽ, w̃ ∈ En and λ ∈ R, then,

(i) D(̃u � ṽ, ũ � w̃) = D(̃v, w̃),
(ii) D(�λ̃u,�λ̃v) =| λ | D(̃u, ṽ).

Proof (i). By the definition of D, we have,

D(̃u � ṽ, ũ � w̃)

=max{supr∈[0,1] | u(r) − v(r) − u(r) − w(r) |,
supr∈[0,1] | u(r) − v(r) − u(r) − w(r) |}

=max{supr∈[0,1] | (u(r) − v(r)) − (u(r) − w(r) |,
supr∈[0,1] | (u(r) − v(r)) − (u(r) − w(r)) |}

=max{supr∈[0,1] | w(r) − v(r) |, supr∈[0,1] | w(r) − v(r) |}
=max{supr∈[0,1] | v(r) − w(r) |, supr∈[0,1] | v(r) − w(r) |}
=D(̃v, w̃). �

Proof (ii):

D( � λ̃u,�λ̃v)
=max{supr∈[0,1]|λu(r)−λv(r) |,

supr∈[0,1]|λu(r) − λv(r) |}
=max{supr∈[0,1] | λu(r) − λv(r) |,

supr∈[0,1] | λu(r) − λv(r) |}
=D(λ̃u, λ̃v) =| λ | D(̃u, ṽ). �

Table 1 Numerical results for Example 5.1

x (u, r = 0.1, n = 25, t = 0.6) (u, r = 0.1, n = 25, t = 0.6)

−0.2 0.34245 0.68532

−0.1 0.35571 0.67259

0.0 0.36438 0.66135

0.1 0.35724 0.67056

0.2 0.34862 0.67843

0.3 0.33597 0.68453

0.4 0.32551 0.69064

Theorem 1. Let 0 < α < 1, then Eqs.(1,2), have
an unique solution and the solution ũn(x, t) obtained
from the relation (8) using Picard method converges to
the exact solution of the problems (1,2) when ũ is (ii)-
differentiable.

Proof. Let ũ and ũ∗ be two different solutions of Eqs.(1,2)
then

D(̃u(x, t), ũ∗(x, t))

= D(̃f (x) � (−1).
∫ t

0
[ ũ(x, t) + ũxx(x, t)] dt,

f̃ (x) � (−1).
∫ t

0
[ ũ∗(x, t) + ũ∗

xx(x, t)] dt)

= D(�(−1).
∫ t

0
[ ũ(x, t) + ũxx(x, t)] dt,

� (−1).
∫ t

0
[ ũ∗(x, t) + ũ∗

xx(x, t)] dt)

≤ T(D(̃u(x, t), ũ∗(x, t))) + TL(D(̃u(x, t), ũ∗(x, t)))
= αD(̃u(x, t), ũ∗(x, t)).

From which we get (1 − α)D(̃u(x, t), ũ∗(x, t)) ≤ 0. Since
0 < α < 1, then D(̃u(x, t), ũ∗(x, t)) = 0. Implies ũ(x, t) =
ũ∗(x, t).
Also, we have

D(̃un+1(x, t), ũ(x, t)) ≤ αD(̃un, ũ).

Since, 0 < α < 1, then D(̃un(x, t), ũ(x, t)) → 0 as n → ∞.
Therefore, ũn(x, t) → ũ(x, t). �

Table 2 Numerical results for Example 5.2

x (u, r = 0.2, n = 17, t = 0.7) (v, r = 0.2, n = 17, t = 0.7)

0.1 0.3726508 0.7023467

0.2 0.3827526 0.6939411

0.3 0.3957162 0.6848745

0.4 0.4136805 0.6612719

0.5 0.4372286 0.6559328

0.6 0.4438574 0.6337306
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Table 3 Numerical results for Example 5.2

x (u, r = 0.2, n = 21, t = 0.7) (v, r = 0.2, n = 21, t = 0.7)

0.1 0.4646316 0.7954225

0.2 0.4717726 0.7844835

0.3 0.4823549 0.7737607

0.4 0.5074658 0.7528153

0.5 0.5263437 0.7474326

0.6 0.5309183 0.7215178

Remark 3. The proof of other case is similar to the
previous theorems.

Numerical examples
In this section, we solve the Cauchy reaction-diffusion
equation by using the Picard method. The program has
been provided with Mathematica 6 according to the fol-
lowing algorithm where ε is a given positive value.

Algorithm :

Step 1. Set n ← 0.
Step 2. Calculate the recursive relations (7) or (8).
Step 3. IfD(̃un+1(x, t), ũn(x, t)) < ε then go to step 4,
else n ← n + 1 and go to step 2.
Step 4. Print ũn(x, t) as the approximate of the exact
solution.

Example 5.1. Consider the Cauchy reaction-diffusion
equation as follows:

ũt(x, t) = ũxx(x, t) + ũ(x, t). (7)

With initial condition:

ũ(x, 0) = f̃ (x) = ((1 − r)x3, (r − 1)x3). (8)

ε = 10−4. x = 0 is a switching point.

Case (1): n = 22 and α = 0.8652.
Case (2): α = 0.84569.
Table 1 shows that, the approximation solution of
the Cauchy reaction-diffusion equation is convergent
with 25 iterations by using the Picard method when
ũ is (ii)-differentiable.

Example 5.2. Consider the Cauchy reaction-diffusion
equation as follows:

ũt(x, t) = ũxx(x, t) + ũ(x, t). (9)

With initial condition:

ũ(x, 0) = f̃ (x) = (x2 + 1, x2 + 2, x2 + 3). (10)

ε = 10−3.

Case (1): α = 0.7546.
Table 2 shows that, the approximation solution of
the Cauchy reaction-diffusion equation is convergent

with 17 iterations by using the Picard method when
ũ is (i)-differentiable.
Case (2): α = 0.7762.
Table 3 shows that, the approximation solution of
the Cauchy reaction-diffusion equation is convergent
with 21 iterations by using the Picard method when
ũ is (ii)-differentiable.

Conclusion
The Picard method has been shown to solve effectively,
easily and accurately a large class of nonlinear problems
with the approximations which convergent are rapidly
to exact solutions. In this work, the Picard method has
been successfully employed to obtain the approximate
solution of the Cauchy reaction-diffusion equation under
generalized H-differentiability.
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