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Abstract

Complex systems, in many different scientific sectors, show coarse-grain properties with simple growth laws with
respect to fundamental microscopic algorithms. We propose a classification scheme of growth laws which includes
human aging, tumor (and/or tissue) growth, logistic and generalized logistic growth and the aging of technical
devices. The proposed classification permits to evaluate the aging/failure of combined new bio-technical
“manufactured products”, where part of the system evolves in time according to biological-mortality laws and part
according to technical device behaviors. Moreover it suggests a direct relation between the mortality leveling-off for
humans and technical devices and the observed small cure probability for large tumors.
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Background
Complex systems with millions of interacting elementary
parts are often considered computationally irreducible
Wolfram (1984); Wolfram (2002) which means that the
only way to decide about their evolution is to let them
evolve in time.
On the other hand, there is an impressive number

of experimental verifications, in many different scien-
tific sectors, that coarse-grain properties of systems, with
simple laws with respect to fundamental microscopic
alghoritms, emerge at different levels of magnification
providing important tools for explaining and predicting
new phenomena.
In this respect, a priori unrelated systems show similar

emergent properties and if an unexpected effect is found
experimentally in a field, a similar effect, “mutatis mutan-
dis”, should also be sought in similar experiments in other
fields. Therefore a useful tool to greatly facilitate the cross
fertilization among different fields of research is a general
classification of growth laws Castorina et al. (2006).
A very important example is the Gompertz law (GL)

Gompertz (1825) which applies to human mortality tables
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(i.e. aging) and tumor growth Steel (1977); Wheldon
(1988); Norton (1988).
In general, a growth problem is characterized by a func-

tion f (t), which describes the time evolution of some
macroscopic quantity, and by the specific rate , α, defined
as (1/f )(df /dt) = α(t). In the GL α has an exponential
dependence on time:

(1/f )(df /dt) = α(t) = aebt , (1)

where a and b are constants. In aging f (t) indicates the
survival probability; while with regards to tumor growth
it corresponds to the number of cells N(t) (depending on
the specific case a and b can be positive or negative).
For technical devices the specific rate of the survival

probability has a power-law time behavior

(1/f )(df /dt) = α(t) = atn, (2)

with n > 1, calledWeibull law (WL) Barlow and Proschan
(1975); Rigdon and Basu (2000). The analogy with the
biological systems is intriguing (for clarity, as necessary,
one defines the specific rate αh(t) for the human mortal-
ity, αf (t) for the technical systems and αc(t) for tumor
growth) and deeper than the similarity between eq. (1) and
eq. (2).
Indeed, many independent analyses of experimental

data on humans and animals suggest that at advanced
ages (more than 85-90 years for humans) there is a
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deceleration in mortality Gavrilov and Gavrilova (1991);
Vaupel et al. (1998); Olshansky (1998): in the large range
20 - 85 years for humans the mortality rate is well
described by the Gompertz law and then there is a late-
life mortality (although a definite conclusion has yet to be
reached Gavrilov and Gavrilova (2011)). A similar trend is
observed for technical devices Economos (1979), confirm-
ing the analogy between biological and technical systems.
The understanding of aging and of late-life mortality

is still an open problem and many interesting models
have been proposed to explain the similar behavior in
metabolic systems and in technical devices Gavrilov and
Gavrilova (2001). Moreover, a unifying language for the
description of performance of metabolic and technical
production and distribution has been recently suggested
Becker et al. (2011) to implement the idea that the robust-
ness of metabolic systems with respect to enviromental
changes could represent a useful model for technical
systems.
In this letter, rather than focusing on specific models,

we shall address the generalization of the classification
scheme of growth laws to include human aging, tumor
(and/or tissue) growth, logistic and generalized logistic
growth and the aging of technical devices. We shall con-
sider two applications of the proposed approach: a) a
method to evaluate the aging/failure of combined new
bio-technical “manufactured product”, where part of the
system evolves in time according to biological-mortality
laws and part is a technical device; b) an interpretation
of the “tumor size effect”, i.e. the small cure probability
for large tumor Stanley et al. (1977); Bentzen and Thomas
(1996); Huchet et al. (2003), in analogy with the late-life
mortality in aging.

Results
Let us start with the general classification scheme. It turns
out that a classification of the growth laws according to
the simple equation (1/f )(df /dt) = α(t) is obtained by
considering the power expansion in α of the function ( see
ref. Castorina et al. (2006) for details)

�(α) = dα

dt = �ibiαi i = 0, 1, 2... (3)

which for b0 = 0 and bi = 0 for i > 1 gives a time
independent specific rate α0 and therefore an exponential
growth; for b0 �= 0 and bi = 0 for i > 1 describes a lin-
ear time dependent specific rate and again an exponential
growth; at the first order in α, for b0 = 0, b1 �= 0 and
bi = 0 for i > 1, reproduces an exponential time behav-
ior of the specific growth and therefore the GL; the second
order term , O(α2), for b0 = 0, b1, b2 �= 0 and bi = 0
for i > 2 generates the logistic and generalized logistic
growth.

The feedback effect, that is the dependence of the spe-
cific growth rate α on the function f (t), can be easily
derived by the temporal behaviour of the specific rate. For
the GL for a growing number of cells, N(t), one has the
well known logarithmic non linearity,

1
N(t)

dN(t)
dt = a− b ln N(t)

N0
= b ln N∞

N(t) Gompertz,

(4)

and for the (generalized) logistic law one gets the typical
power-law behavior

1
N(t)

dN(t)
dt = c[ 1 − (

N(t)
N∞

)γ ] gen. logistic, (5)

where a, b, c, γ are constants and the carrying capacity,
N∞ ,corresponds to α = 0.
In order to describe technical devices, the previous clas-

sification scheme has to be generalized since the specific
growth rate of Weibull law has a power law dependence
on time which is not reproduced by eq. (3). The behav-
ior αf (t) � tn,with n positive integer, corresponds to
terms O( α(n−1)/n) in the expansion of �(α) and there-
fore for a general classification scheme of the specific
growth/aging/failure rate of biological and technical sys-
tems one has to consider:

�(α) = �∞
n>2cnα(n−1)/n + �n≥1bnαn (6)

Note that: a) 0 < (n − 1)/n < 1 and the nth term in the
power series in α(n−1)/n tends for large n to α, i.e. to the
Gompertz law; b) the term b0 �= 0, i.e. the exponential
growth, has been neglected because one considers the GL,
the generalized logistic or more complex growth laws for
the biological systems (there is no problem to include this
term in the expansion) ; 3) the first sum in the expansion
has fractional powers that recall a Puiseux expansion.
As a by-product of the proposed classification scheme

one can easily evaluate the aging/failure of combined
new bio-technical “manufactured products” by taking
explicitely into account the mutual “interference” between
the aging behavior of the biological part and the failure
of the technical one. The “interference” effect strongly
depends on the typical time scales in the coefficients cn
and bn in the previous expansion: if the life-time of the
technical device is much larger than the life-time of the
biological part ( or viceversa) there is essentially no effect
Muller et al. (1988).
Let us first consider aging/failure of a combined bio-

technological “manufactured product”, where part of the
system evolves in time according to GL, i.e. the termO(α),
and the behavior of technical part is described by a single
term O(αn−1/n),i.e.

�(α) = cnα(n−1)/n + b1α (7)
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By introducing dimensionless variables in time unit 1/b1,
i.e. τ = b1t, ᾱ = α/b1 and c̄n = cnb−1−1/n

1 , after sim-
ple calculations the time dependence of the specific rate is
given by:

eτ = ᾱ

ᾱ0

[ 1 + (c̄n)ᾱ−1/n]n

[ 1 + (c̄n)ᾱ−1/n
0 ]n

(8)

where ᾱ0 = ᾱ(τ = 0). Of course in the limit cn → 0
one recovers the GL and for b1 → 0 the Weibull one. By
previous equation, for ᾱ0 = 1, one obtains:

ln ᾱ = n ln [ (1 + c̄n)eτ/n − c̄n] (9)

which describes the combined effect of the two growth
laws. The quantitative effect is depicted in Figures (1,2)
where the previous function is plotted for different values
of n at fixed c̄n and for various values of c̄n at fixed n.
The next step is to include the term b2α2 in the expan-

sion of �(α) (b2 is dimensionless) which corresponds to a
generalized logistic evolution. As we shall see this term is
crucial in understanding the late-life mortality effect.
By repeating analogous calculations it turns out that

τ = ln(ᾱ/ᾱ0) −
∫ ᾱ

ᾱ0
dx b2 + c̄nx−(1−n)/n

1 + b2x + c̄nx−1/n (10)

In Figure 3 is shown that the term b2α2 completely
changes the time evolution with respect to GL and/orWL
producing a leveling-off of the specific rate.
Therefore the general expansion of �(α) in eq. (6) can

describe the aging/failure of any biological and technical
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Figure 1 Comparison of the GL, the WL and the combined effect
for a biotechnical device for ln ᾱ. τ = b1t and the curves are for a
fixed value of the coefficient c̄n = 2 and different values of n = 4, 6, 8.

system including the leveling-off at late mortality which is
obtained by taking into account the term O(α2) in �(α),
i.e. by the transition from the GL or WL to a logistic type
law Horiuchi and Wilmoth (1998).
The proposed unification scheme suggests a practical

method to understand growth patterns. Given a set of data
on some growth process, the first step of the analysis is a
fit in power of α of the derivative of the specific growth
rate, i.e. of the function �(α). Therefore : a) if the best fit
is linear, the growth is a Gompertzian one; b) if the best
fit is quadratic, look at the sign of the coefficients of the
expansion. For b1 > 0 and b2 < 0 the growth is logis-
tic (or generalized logistic) corresponding to a competitive
dynamics; c) if the best fit indicates a fractional power the
growth follows the WL. Of course, it is always possible
to obtain a better agreement with data by increasing the
number of coefficients. However, should increasing the
number of parameters indicate only a marginal improve-
ment in the description of data one concludes that the
added terms in the expansion are irrelevant.

Discussion and conclusions
Let us now consider the cross-fertilization among differ-
ent sectors.
As previously discussed, there is a deceleration of mor-

tality in aging at late time which is described as a “transi-
tion” from a Gompertz law to a generalized logistic behav-
ior. On the other hand, tumors evolve in time according
to the GL. The obvious indications is to verify if a phe-
nomenon corresponding to the deceleration of mortality,
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Figure 2 Comparison of the GL, the WL and the combined effect
for a biotechnical device for ln ᾱ. τ = b1t and the curves are for
n = 6 and the coefficient c̄n = 2, 4, 8.
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Figure 3 Comparison for ln ᾱ of the GL, the WL and the effects of
O(α2) term for n = 6, c̄n=8 and b2 = −0.02.

i.e. a transition from the GL to a power law, exists for can-
cer growth at a later time. As we shall see, this aspect has
strong consequences on the therapy.
For tumor growth the b1α term gives the GL in eq. (4)

and the introduction of the O(α2) term corresponds to
the power law non-linear feedback in eq. (5). Therefore
one has to investigate if at late-life of a tumor growth
there is such a modification in the dependence of the spe-
cific growth rate on the cell number N(t). Since direct
informations “in vivo” are almost impossible, the ques-
tion has to be addressed in an indirect way by considering
radiotherapy.
The radiotherapic tumor treatment consists in series of

radiation doses at fixed time intervals. However tumors
start to re-grow in the interval between two treatments :
the re-growth during radiotherapy is therefore an impor-
tant clinical parameter Kim and Tannock (2005) and the
probability of treatment benefit critically depends on the
tumor re-growth pattern.
The so called “tumor size effect” is a reduction of radio-

therapeutic results for large tumors ( which , presumably,
has grown since long time). The dependence of the surviv-
ing fraction on the tumor volume was already observed by
Stanley et al. in 1977 in lung tumors Stanley et al. (1977)
and re-emphasized by Bentzen et al. and Huchet et al. in
Bentzen and Thomas (1996); Huchet et al. (2003).
The effect of re-growth rate on radiotherapy has been

quantitatively investigated in ref. Castorina et al. (2007)
and the results clearly indicate that to understand the
tumor size effect the re-growth rate for large tumor has to
follow a power law Guiot et al. (2003) rather than the GL.

From this point of view the “tumor size effect” is a phe-
nomenon which indicates that in late -time tumor growth
there is a change from a GL specific rate to a power law
behavior, corresponding to the deceleration in mortality
at advanced age.
One should conclude that such a common feature in

aging and in failure in biological and/or technical systems
should be considered as a “bifurcation” or a “phase transi-
tion” in the specific growth rate at large time from GL or
WL to a logistic or generalized logistic behavior.
In closing, the general expansion of �(α) in eq. (6) can

describe the growth/aging/failure of biological and tech-
nical systems and the transition to a different (“phase”)
specific growth rate at late-life could be a common fea-
ture of those systems independently on the microscopic
dynamics.
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