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Abstract

Results of previous studies support the existence of a spatially coherent, secularly varying climate signal,
propagating through a network of synchronized climate indices across the Northern Hemisphere during the 20th

century. The signal was identified in both instrumental and proxy data sets. In this present study, we seek to detect
this same low-frequency signal propagating hemispherically through networks of model-simulated climate indices.
These simulated climate indices were reconstructed from a data set generated by models of the third Coupled
Model Intercomparison Project (CMIP3). Methods used in the earlier studies on climate-signal propagation guide
the strategy for this companion study, for which 60 network analyses were performed. Most analyses focused on
20th century behavior, several on pre-industrial conditions. None succeeded in reproducing a hemispherically
propagating signal. In light of previous results, we offer possible reasons for this finding. Among them is
speculation on whether mechanisms relevant to signal propagation might be missing from this suite of general
circulation models.
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1 Introduction
Recent work using instrumental data of the 20th century
suggests that a spatially coherent, low-frequency climate
signal propagates across the Northern Hemisphere
(Wyatt et al. 2011). Authors of this 2011 paper analyzed
a lagged covariance structure of a network of eight cli-
mate indices. Their results detailed the transmission of a
multidecadal-scale climate signal propagating through-
out the Northern Hemisphere through a sequence of
synchronizeda atmospheric and lagged oceanic telecon-
nections. The authors termed this signal propagation the
‘stadium wave’ - a term alluding to the behavior often
seen in a sports arena, where successive groups of spec-
tators stand with arms raised, and then sit, giving the
visual impression of a wave passing through the crowd.
Subsequent dissertation work by Wyatt ((2012) and sub-

mitted manuscript (2013)) probes both spatially expanded
data sets of geophysical indices and temporally expanded
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data sets of proxies (1700 to 2000). Hemispheric signal
propagation is found in all sets. All network combinations
of twentieth-century data, both proxy and instrumental,
reflect consistent results of apparent quasi-periodicity and
signal propagation. Prior to 1850, signal propagation is
evident; yet time scale of variability in the proxy-index
networks differs slightly from the time scale of variability
exhibited by the signal seen in all data sets post-1850.
This latter observation brings up an important point.

The significant finding regarding the ‘stadium-wave’ signal
identified in these diverse index sets is its propagating sig-
nature. Timescale of its variability can be characterized as
low-frequency, but we stop short of claiming periodicity,
or even quasi-periodicity. This we cannot statistically as-
sess. While all 20th-century data sets - the originally used
eight-member instrumental set, the 20th century portion
of the proxy set, and the spatially expanded instrumental
set - reflect similar secular-scaleb variability centered at
~64 years over this century-scale interval; a one-hundred-
year time series is too short a quantity over which to claim
identification of a statistically significant multi-decadal-
scale periodicity. In addition, proxy data sets, while longer,
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are inherently noisy, thereby adding challenge to statistical
significance assessment. These points made, it is hard to
ignore the pervasiveness of multidecadal (~50 to 70-year)
fluctuations identified in records of diverse, and perhaps
indirectly related indices: from numerous and varied
climate-related parameters (e.g. Kushnir 1994; Minobe
1997, Minobe 1999; Klyashtorin and Lyubushin 2007;
Frolov et al. 2009 and references therein; Nowak et al.
2011; Chambers Don et al. 2012) to similarly cadenced
variations in commercial-fish populations (Beamish and
Bouillon 1993; Beamish et al. 1997, 1999; Chavez et al.
2003; Klyashtorin 1998; Klyashtorin and Lyubushin 2007;
Klyashtorin et al. 2009), cosmogenic nuclide accumulations
(Ogurtsov et al. 2002; Patterson et al. 2004), geomagnetic-
field intensity (Courtillot et al. 2007, Roberts et al. 2007),
Earth’s rotational-rate anomalies (Beamish et al. 1999;
Sidorenkov et al. 2005; Sidorenkov 2005, Sidorenkov
2009), and solar-related aurora records of the mid-latitudes
(Scafetta 2011).
While the authors of the previous stadium-wave

studies were unable to assign statistical significance to a
quasi-oscillatory nature of the identified signal in
observed and proxy data, they were able to quantify the
likelihood that a low-frequency signal, characterized by
delayed alignment of spatially and dynamically diverse
indices, i.e. a hemispherically propagating signal, could
be due to mere random chance. That likelihood was
found to be less than 5% in observational data sets for
the 20th century.
Beyond instrumental and proxy data, the last realm of

data available to us is model-generated data. We want to
know if further support for the stadium-wave signal can
be identified by applying our statistical methods to simu-
lated indices reconstructed from model-generated raw
variables.
Section 2 details the methods and data; section 3 pro-

vides the results; section 4 offers discussion of results;
and 5 presents the conclusion.

2 Approach, data sets, and methods
2.1 Approach
The strategy underlying all stadium-wave studies involves
evaluating collective behavior within a network of syn-
chronized interacting nodes. In the case of climate, these
nodes represent climate indices - regional patterns of
ocean, atmosphere, or ice dynamics, for examples. View-
ing systems as networks is common in many disciplines,
from biology to electronics to social sciences. Funda-
mental to networks is the observation that behavior of a
system does not equal merely a sum of component
parts. The difference between the collective behavior of
interacting parts versus a collection of behaviors of
individual parts can be traced to how those parts
(nodes) are linked (coupled). The latter determines
communication. Communication is at the core of a net-
work’s breadth and stability (e.g. see Pikovsky et al. 2003).
This present model-based inquiry is an extension of pre-

vious instrumental and proxy work on the ‘stadium-wave’
climate signal. We repeat here the methodology followed
in those studies and use those results to guide our inter-
pretation of results derived from the model data.

2.2 Data sets
Five steps were involved in data preparation. Details
follow.

2.2.1 Acquiring the raw model-simulated data
Data sets of model-generated raw variables - e.g. sea-
surface temperature (SST), sea-level pressure (SLP),
sea-surface height (SSH), wind strength and direction,
etc. - were obtained from the third Coupled Model
Intercomparison Project (CMIP3: Meehl et al. 2007) web
site (https://esg.llnl.gov:8443/about/registration.do) - a
site comprising a vast collection of data sets generated
by atmospheric-oceanic general circulation models used
in Intergovernmental Panel on Climate Change (IPCC)-
related projects. Acquisition of data from this site is
available to all researchers, requiring only registration
for its use.
Twenty-two models are represented by CMIP3. Doz-

ens of experiments have been performed by each model,
most with several runs each. Two experiments were of
interest to us: 1) 20th-century runs and 2) control runs.
Twentieth-century CMIP-model runs generally cover
the historical period 1850 to 2000. Such model runs in-
corporate observed radiative forcings (greenhouse gases
(with CO2 increases of 1% per year), aerosols, volcanic
eruptions, etc.) throughout the period, the exact levels
and proportions of forcings differing among models
(Reichler and Kim 2007). In contrast, control experi-
ments, also termed “long controls”, generally cover
500-plus years. Incorporated in the long controls are at-
mospheric forcings that are held constant, in particular,
that of CO2, which is held at pre-industrial levels of 280
parts per million (ppm).
We considered all 22 models participating in the

CMIP data base. For most model runs, data are available
on daily, monthly, and annual bases. We were interested
in monthly records. Data were extracted via varied codes
custom-tailored to the format and size of data files.
Once downloaded, these data were compiled in variable-
specific files for subsequent use. Upon completion of
this data-acquisition step, we had successfully extracted
data from 21 of 22 models. Information from one
model was unavailable. We evaluated at least one 20th-
century experiment for each of the 21 models. For
several of these, analysis of a second run of the 20th-
century experiment was performed. In addition, for six
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of the models, we analyzed one run of a pre-industrial
control experiment.
2.2.2 Reconstruction of indices
For the stadium-wave studies, in order to evaluate
collective behavior, we compact raw-variable data into
nodes, or climate indices. Sacrifice of some phenomeno-
logical detail due to this data compression is compen-
sated for by advantages that include potentially increased
interpretability, enhanced statistical significance, and an
apparent increase in signal-to-noise ratio.
Selection of indices for this study parallels the index

selection in the original study. This selection includes:
the Northern Hemisphere averaged-surface temperature
(NHT), the Atlantic Multidecadal Oscillation (AMO),
the North Atlantic Oscillation (NAO), a sea-surface-
temperature-anomaly-based index of the El Nino Southern
Oscillation (NINO3.4), the Pacific Decadal Oscillation
(PDO), the North Pacific Oscillation (NPO), and the Aleu-
tian Low-Pressure Index (ALPI). An eighth index was used
in the original instrumental-based study: atmospheric-
mass-transfer anomalies (AT). AT is an index representing
dominant flow direction of large-scale wind fields over the
mid-to-high latitudes of the North Atlantic basin and the
Eurasian continent. It reflects longitudinal shifts in position
of atmospheric centers-of-action and is considered a proxy
for atmospheric-heat transfer. Reconstruction of this index
proved impractical with the CMIP model-generated data;
thus it was omitted from this study. We cannot claim to
know if results of our work would have been the same with
this index’s inclusion, but we find rationale in its exclusion
based on results of a previous study by Wyatt (2012).
In that previous study, Wyatt analyzed an expanded

collection of instrumental and proxy data. The set con-
sisted of the original eight stadium-wave indices plus
about a dozen additional indices representing diverse
geographical regions and geophysical processes. Wyatt
performed analyses on the full set, as well as on numer-
ous subsets, some of which did not include AT. A statis-
tically significant stadium-wave signal was identified in
each assembled data set for the 20th century. The index,
AT, was not necessary for signal expression; although
statistical significance was increased with its inclusion.
To construct our model-based network of seven indi-

cesc out of monthly values of model-simulated raw vari-
ables, we use index-specific codes. For example, to
reconstruct a monthly sampled time series for the AMO
index, we rely on its standard definition (e.g. (Sutton
and Hodson 2003) (see Table 1)). Following this conven-
tional AMO construction, for each month of each
year considered we averaged the model-generated SST
anomalies over the region from 0° to 60°N and from
75°W to 7.5°W. This and all index codes used in this
study are readily available in the literature and in Table 1
in this paper.

2.2.3 Computing boreal-winter index averages
From the monthly values of reconstructed indices
(section 2.2.2), boreal-winter month (December, January,
February, March (DJFM)) values were extracted and
averaged. We chose this seasonal interval, as was done
in previous stadium-wave studies (where possible). This
is a time when atmospheric circulation is most intense
and atmospheric modes most pronounced. The boreal-
winter mean values for each year were used to construct
annually based time series for all reconstructed indices.

2.2.4 Choice of index-time-series length
The majority of analyses (section 2.3) in this study were
applied to 20th-century model-simulated climate indices.
For these analyses, we duplicated the original stadium-
wave study’s methodology exactly. This required that all
time series for this collection of models were truncated;
only the years 1900 to 1999 were used. In the cases
where pre-industrial (control or long runs) experiments
were analyzed, timescales were longer. For these special
cases, we varied time-series lengths of reconstructed in-
dices. Lengths varied from 150 years to 500 years.

2.2.5 Linear de-trending and normalization to unit variance
of index time series
Once a model run’s seven-member annually represented
(boreal-winter-mean) index set was complete, and prior
to analysis, time series of each index were linearly
detrended (least-squares method) and divided by the
index’s standard deviation to normalize it to a unit
variance.
Annual (boreal-winter mean) samplings were used on

all iterations. On series over 100 years, both annual sam-
pling and five-year smoothing were applied. A total of
60 analyses were completed on these time series. Meth-
odological details of these analyses follow.

2.3 Methods
2.3.1 General description of multivariate statistical method
To these simulated networks of prepared reconstructed-
index time series, we applied the multivariate statis-
tical method, Multi-channel Singular Spectrum Analysis
(M-SSA: (Broomhead and King 1986; Elsner and Tsonis
1996; Ghil et al. 2002)), to extract and characterize
dominant spatio-temporal patterns of data shared by
our networks of indices. A generalization of Empirical
Orthogonal Function (EOF; Preisendorfer 1988) ana-
lysis, M-SSA excels in its ability to detect a signal propa-
gating through a collection of indices (Ghil et al. 2002
and references therein) and is particularly effective in
picking up a signal from relatively short, noisy data sets.



Table 1 Indices used in study and descriptions for index-reconstructions

Index General description for index-reconstruction: Reference

NHT Average surface land temperature and SST of the Northern Hemisphere (Jones & Moberg 2003; Rayner
et al. 2006)

AMO SSTA averaged over 0 to 60°N, 75°W to 7.5°W (Kerr 2000; Enfield et al. 2001;
Sutton and Hodson 2003)

NAO Normalized pressure (SLP) difference between the Azores High-Pressure
system (~33.2°W, 32.2°N) and the Icelandic Low-Pressure system (~33.15°W, 59.6°N).

[~1st PC of SLP in North Atlantic]

(Hurrell 1995)

NINO3.4 Average SSTA 5°N to 5°S, 170°W to 120°W (Trenberth 1997)

NPO 2nd EOF of SLPA from 100°E to 120°W, 0 to 90°N (Wang et al. 2007)

PDO Leading PC of SSTA north of 20°N in North Pacific; globally averaged SSTA subtracted
from SSTA in Pacific to remove global-warming signal.

(Mantua et al. 1997)

ALPI Relative intensity of SLP in North Pacific around 50°N in winter (DJFM). The mean
area in km^2 with SLP less than 100.5kPa. Expressed as anomaly relative

to 1950 to 1997 mean.

(Beamish et al. 1997)
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The reader is directed to http://en.wikipedia.org/wiki/
Singular_Spectrum_Analysis where a good description
of this relatively standard and increasingly utilized
method is given, relevant formulas outlined, and further
references offered.
In brief, M-SSA is used to decompose a multivariate

time series into oscillatory components and noise. Within
this noise, a low-frequency signal is possible. In the case of
high-frequency periodic oscillations and low-frequency
secularly varying trends, for either to be considered as sig-
nals distinct from noise, significance testing, tailored to
the signal’s time scale, must show the null hypothesis of
random occurrence likely to be rejected.

2.3.2 Preparing the index data set for M-SSA application
Prior to M-SSA application, an extended matrix is con-
structed for each model-simulated index network. Col-
umns of index time series are referred to as channels.
The time series of each of the seven indices is augmen-
ted by M shifted, or lagged, copies thereof. M=20 is used
in this studyd. Lag-window size, as represented by M, is
chosen based mostly on time series length and partly on
the range of periodicities of variability one expects to
find in the data. This will be re-visited in section 2.3.3.

2.3.3 Identifying patterns of simultaneous and lagged co-
variability in an index network
M-SSA is applied to each network’s extended data
matrix. Patterns, or modes, of variability shared by all
network members at a zero or non-zero lag are thereby
identified. In the stadium-wave studies, each index time
series represents a spatial region. Because of the net-
work’s spatial character, an eigenfunction – a function
that best describes the shared pattern of variability – of
this extended lagged covariance matrix provides a
spatio-temporal filter. It is through these filters that pat-
terns of hemispherically shared climate variability are
defined within our index network. The mode whose pat-
tern explains the most variance in the extended time
series is the leading mode – mode one. The variances
explained by modes two, three, etc. decrease progres-
sively as the mode numbers increase. Mean values of
leading modes are then plotted on an M-SSA spectrum.
Figure 1a shows an example of an M-SSA spectrum
adapted from (Wyatt et al. 2011). This spectrum identifies
the first ten leading modes of variability identified in the
original stadium-wave data set. Note that modes one and
two stand out far from the remaining modes. Figure 1b
depicts the cumulative variance accounted for by the first
twenty modes identified in that original study.
If one is seeking oscillatory patterns, one looks to the

plotted M-SSA spectrum. A pair of leading modes, both
well separated from all remaining modes, and whose
variances and periodicities are similar to one another,
presents potential. But a caveat arises. Only those identi-
fied pairs with a periodicity less than or equal to M (usu-
ally set at about one-fifth of the time-series length) can
be tested for statistical significance (Allen and Robertson
1996) of the detected oscillation period.
But this limitation does not preclude extraction of

low-frequency behavior. In addition to the M-SSA-
extracted higher frequency oscillations, low-frequency
patterns of network co-variability, both simultaneous
and lagged, can be mined from the residual data. Such
patterns can be expressed through a leading single mode
or through a combination of leading modes of similar
variance and frequency. And while those patterns exhi-
biting time scales of variability greater than the value of
M cannot be tested for statistical significance in the con-
text of an oscillatory pair (Allen and Robertson 1996);
they can be considered to be secular-scale trends. Often,
such secularly varying trends can be attributable to
red-noise, i.e. randomness. But randomness is not always
the source of low-frequency signals. If potential low-

http://en.wikipedia.org/wiki/Singular_Spectrum_Analysis
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Figure 1 Statistical Results from Original Stadium-Wave analysis, given here for comparison to model results. (a) Shows individual
variances (%) and (b) cumulative variances (% of the total) of the modes of variability shared by the collection of eight instrumental climate
indices. The M-SSA window size is M=20. The error bars in (a) are based on (North et al. 1982) criterion, with the number of degrees-of-freedom
set to 40, based on the decorrelation time scale of ~2.5 years. The red lines in panel (a) represent the 95% spread of M-SSA eigenvalues based on
100 simulations of the eight-valued red-noise model (1), which assumes zero true correlations between the members of the eight-index set. Note
the leading two modes of variability; they are widely separated from the remaining modes; their error bars overlap. (c) Depicts reconstructed
components (RCs) for each of the eight modes of variability derived. RCs of the leading modes show similar variability. (d) Normalized
reconstructed components (RCs) of M-SSA leading two modes of variability are plotted. Note that each index carries this signal, and that the
signal propagates through the network of regionally diverse indices. (Adapted from Wyatt et al. 2011). RC time series have been normalized to
have unit variance. Note: RCs of NHT and AMO are negative.
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frequency signals are identified through M-SSA, statis-
tical testing (section 2.3.4) then is used to quantify the
likelihood that the signal (not its oscillation period) is, in
fact, random. We then document that signal’s behavior
(sections 2.3.6 and 2.3.7) if its statistical-significance
results are robust.

2.3.4 Assessing statistical significance of the identified
signal
To assess the unlikelihood that the low-frequency modes
identified, and properties associated with them, are not a
random pattern of a noisy data set, a red-noise model
(1) is fitted to the non-filtered time series of each index.

xnþ1 ¼ axn þ σw; ð1Þ

where xn is the simulated value of a given index at time
n; xn+1 is its value at time n+1; w is a random number
drawn from a normal distribution with zero mean and
unit variance; parameters a and σ are computed from
such fits by linear regression. The red-noise model gen-
erates surrogate time series. An extended matrix of these
surrogate indices then is generated, to which M-SSA is
applied - steps consistent with treatment of the original
time series.
By construction, cross-correlations between any time

series of this collection of randomly generated surrogate
values would be zero at any lag. Finding any patterns, or
modes, of variability in the extended surrogate matrix
would be a product of chance. It is this chance that we
want to evaluate in order to compare with patterns
found in the extended matrix of real data.
The range of mean variances of modes identified in

the surrogate data sets is determined. The range of
standard uncertainty, the 95% confidence level, sets an
envelope of uncertainty by which comparison can be
made with results of M-SSA applied to the real data.
Patterns of shared variability found among time series in
the network of “real data” are considered to be statisti-
cally significant only if these “real-data” modes lie out-
side the envelope of values predicted by multiple
surrogate simulations of this data set generated by
model (1). If they do fall outside this envelope, as
defined by the surrogate data, there is a presumed 5%
chance or less that the occurrence of this signal, as
represented by the leading modes of variability, is due to
mere random chance. In the original stadium-wave study
for 20th century observational data, this chance of the
identified signal being due to random chance was com-
puted to be less than 3%.

2.3.5 Estimating error bars
We further test for the chance that our signal may be a
product only of random chance by estimating error bars
for the modes. Attached to the mean variances (of iden-
tified modes) plotted on the M-SSA spectrum, error bars
will serve to further test results from real data against
those results from surrogate data. Here we estimate the
spread of the eigenvalues, or error-bar length, using the
95% spread of variances obtained by the red-noise
model. Each error bar attached to the mean variance on
the M-SSA plot (see Figure 1a) can be considered to be
the observed variance of the real-data’s mode plus/minus
the standard deviation of the variances generated by the
red-noise data (section 2.3.4).
To calculate the error bars, the variance of the mode

is multiplied by the square root of 2/N*, where N* = the
number of degrees of freedom. N* is estimated from the
formula of (Bretherton et al. 1999): N* =N(1 − r2)/(1 +
r2), where N is the length of each time series in the
index set. In the earlier stadium-wave studies, where an-
nually (boreal-winter) sampled, 100-year time series for
each index were auto-correlated. The autocorrelation
plots showed that the maximum autocorrelation after
one year among the eight indices was r≈0.65. Using this
auto-correlation value of r≈0.65 in the Bretherton for-
mulae, the effective number of degrees of freedom was
estimated to be 40. From this, the projected decorrela-
tion time is N/N* = 100/40 = 2.5. This is considered the
amount of time after which each data point can be con-
sidered independent from the ones preceding and fol-
lowing it. For the longer time series used in the control
runs, where N was not equal to 100, the formula (2/N*)
1/2 was adjusted accordingly.

2.3.6 Visualizing the patterns of variability – reconstructed
components (RCs)
M-SSA modes are represented in their original index
space by reconstructed components (RCs). More specif-
ically, a RC is effectively the narrow-band filtered version
of an original index time series. With its construction,
variability related to a given mode within a given index
is easily visualized. The sum of RCs of each M-SSA
mode of an index is identical to the index’s original time
series. We generate RCs of the individual indices for
each of the leading modes and plot them (Figure 1c).
Time scale of variability is considered for the leading
modes. In the case of the original stadium-wave, RCs for
the leading two modes share similar time scales of vari-
ability. They were combined and their result normalized.
This was that signal’s filter.

2.3.7 Computing the filtered signal and visualizing its
propagation
We see that the original stadium-wave-signal’s filter was
constructed by summing RCs for the M-SSA “pair” of
modes - leading modes one and two. Important to note
is that while that signal’s identified “pair” cannot be
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statistically justified as an oscillatory pair, it is these two
leading modes that together capture the spatiotemporal
complexity of the secularly varying hemispheric-wide
pattern.
The normalized RC sum is used as a sieve, of sorts, to

extract the stadium-wave signal from the original time
series of the network indices. If different channels of this
computed filtered signal have non-zero phase lags, this
would suggest a propagating signature. Indeed, non-zero
lags were identified between indices of the original
stadium-wave network. Normalized RCs of this joint sig-
nal are plotted in Figure 1d, reflecting the signal’s propa-
gation through the hemispherically spanning collection
of 20th century indices.
We make note that additional tests were applied to

the index collection in the original study to further test
for robustness of results and to verify that this identified
signal was expressed to one degree or another in all indi-
ces of the network (see Wyatt et al. 2011). Furthermore,
recognizing that correlation cannot imply causation, nu-
merous observational and model studies that support
index coupling within the network were invoked in
previous stadium-wave studies, their details described in
(Wyatt et al. 2011) and (Wyatt (2012); submitted
manuscript (2013)). Support appears strong for the
hemispheric-wide existence of this secularly varying,
propagating signal. It is this signal we seek in the current
study. If such cannot be found, we will consider, in
addition, any statistically significant signal propagation
whose variability is inter-decadal-scale or larger, perhaps
finding that models generate their own versions of sta-
dium wave behavior.
Using the described methods and standards by which

to judge results, we found the following outcomes in our
model-generated data.

3 Results
In total, 60 model runs were analyzed. Of these, 20 runs
showed at least one mode of variability to be significant at
the p < 5% level. Most of these leading modes were single
modes. And of those single modes, no propagating signal
among the indices was found. Only five model runs
showed evidence of a pair. Three of these five exhibited
high frequency variability – bi-annual to sub-decadal, one
with non-stationary trends (IAP_fgoals_1_0_g_20csm_-
run1) – but none were consistent with stadium-wave
propagation, observed or otherwise. Two of the five iden-
tified RC-pairs varied at a relatively a low-frequency time
scale – 35-year variability. Further testing on this pair
showed no signal propagation. Thus, of all runs evaluated
from the CMIP data base, none reproduced a statistically
significant, hemispherically propagating signal. We found
no stadium wave analogous to that found in observational
and proxy data. We found no stadium wave of any kind.
Table 2 shows model results for 20th century analyses.
Table 3 shows model results for control (or long) runs.
Table 4 summarizes those models for which at least one
mode of statistically significant variability could be
identified.
3.1 Results of select models
Results for select models are detailed in this section.
These results are representative of results of all analyses
performed. Their plots are shown in Figures 2, 3, 4, 5, 6,
7, 8, 9, 10, 11 and 12.
Model results from run 1 of the 20th-century experi-

ment of GFDL_2_0 appeared promising at first glance.
The M-SSA spectrum (Figure 2a) indicated two leading
modes mostly outside the red-noise envelope that were
well-separated from the remaining modes. Their error
bars overlapped, indicating similar mean variances. We
show plots of reconstructed components (RCs) of the in-
dices for each of seven modes of variability. Those for
modes one and two are the ones of interest. They appear
to display similar periodicities (Figure 2b). We combined
the RCs for modes one and two to obtain the dominant
signal characterizing this data set. It can be seen that sig-
nal expression in each of the seven indices occurs either
in-phase or 180° out-of-phase. There is no signal propa-
gation through the indices (Figure 2c).
The M-SSA plot for the 20th-century experiment for

model CCCMA_cgcm3 run 1 is shown in Figure 3a.
Mode one falls outside the red-noise envelope, indicat-
ing its statistical significance. There is no second mode
of a similar mean value. This single mode reflected in
the companion RC plot (Figure 3b) shows a multideca-
dal character. It is likely a radiative signal. All other indi-
ces show only a slight undulation, and all indices are
either in-phase or 180° out-of-phase. No stadium-wave
signal propagation is indicated.
For the CNRM 20th-century model, run 1, three

modes fall outside the red-noise envelope of the M-SSA
spectrum and several others are almost outside it
(Figure 4a). The first two overlap. In fact, they are paral-
lel. Their mean values are essentially identical. A glance
at their associated RCs reveals they are high-frequency
modes, likely seasonal. These are not candidates for the
signal we seek. Other modes might be considered; yet
no pair meets the criterion of being widely separated
from their neighbors. Furthermore, the associated RCs
show no signals of similar periodicities. Nor is there any
single mode that is widely separated from the others.
Thus, again, we detect no stadium-wave signal.
GISS_aom is the next 20th century model whose

results are shown. These results are for run 2. No modes
fall outside the red-noise envelope, rendering the results
negative (Figure 5a). Non-stationarity of data characterizes



Table 2 20thc model results (total of 50 runs of 20th-century simulations)

Model Run Sample interval Significant RCs Grouping character Frequency/Propagation traits

BCCR_bcm2_0 1 Annual None

BCCR_bcm2_0 1 5y None

CCCMA_cgcm3 1 Annual RC1 Single No propagation

CCCMA_cgcm3 1 5y None

CNRM_cm3 1 Annual RCs 1,2,3 RCs 1,2 = pair Bi-annual

RC3=single

CNRM_cm3 1 5y None

CSIRO_mk3 1 Annual RCs 3,4,5,6,7 RCs 6,7 pair Bi-annual

All others single Non-stationary

CSIRO_mk3 1 5y RC1 Single No propagation

CSIRO_mk3 2 Annual None

CSIRO_mk3 2 5y None

GFDL_2_0 1 Annual RCs 1,2 Pair Non-stationary

No propagation

GFDL_2_0 1 5y RCs 1,2 Pair No propagation

GFDL_2_0 2 Annual RC3 Single No propagation

Non-stationary

GFDL_2_0 2 5y None

GFDL_2_1 1 Annual None

GFDL_2_1 1 5y None

GFDL_2_1 3 Annual None

GFDL_2_1 3 5y Rcs 1,2 Pair No propagation

GISS_aom 1 Annual None

GISS_aom 1 5y None

GISS_aom 2 Annual None

GISS_aom 2 5y None

GISS_e_h 1 Annual None

GISS_e_h 1 5y None

GISS_e_r 1 Annual None

GISS_e_r 1 5y None

IAP_fgoals1_0_g 1 Annual RCs 1,2,3 Singles No propagation

IAP_fgoals1_0_g 1 5y RC1 Single No propagation

INGV_echam4 1 Annual None

INGV_echam4 1 5y None

INMcm3_0 1 Annual None

INMcm3_0 1 5y None

IPSL_cm4 1 Annual None

IPSL_cm4 1 5y None

MIROC3_2_hires 1 Annual None

MIROC3_2_hires 1 5y None

MIROC3_2_medres 1 Annual None

MIROC3_2_medres 1 5y None

MIUB_echo_g 2 Annual RCs 1,2,3 (4,5 marginal) Singles high-frequency
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Table 2 20thc model results (total of 50 runs of 20th-century simulations) (Continued)

non-stationary

MIUB_echo_g 2 5y RCs 1,2 marginal Singles No propagation

MPI_echam 1 Annual None

MPI_echam 1 5y None

MRI_cgcn_2_3_2 1 Annual None

MRI_cgcn_2_3_2 1 5y None

NCAR_CCSM3_0 1 Annual None

NCAR_CCSM3 1 5y None

NCAR_pcm1 1 Annual RC3 high-frequency

non-stationary

NCAR_pcm1 1 5y None

UKMO_hadcm3 1 Annual RCs 1,2,3 (all marginal) Singles No propagation

UKMO_hadcm3 1 5y None

All statistically significant modes were considered (p < 5% level). Of the statistically significant single modes, no low-frequency (decadal or longer) modes showed
both propagation and stationarity. Five of the fifty runs showed significance (p < 5% level) for a pair of leading modes. Despite passing the red-noise significance
test, none showed a propagating signal.
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all associated RCs (Figure 5b). There is no stadium-wave
signal found in this data set.
Twentieth-century runs of models MRI_cgcm_2_3_2

(run 1), NCAR_CCSM3_0 (run 3), and NCAR_pcm1
(run 1) show no significant modes in their results
(Figures 6, 7 and 8). No mode falls outside the red-noise
envelope. Thus, no stadium-wave signal is identified,
despite the fact that the first modes of each of the mod-
els show a multidecadal character. For the two versions
of the NCAR models (Figures 7 and 8), the first mode is
a single one. A strong expression exists in the NHT and
AMO, but all indices are either in-phase or 180° out-of-
phase. No propagation is evident.
In the MRI model, no modes can be considered statis-

tically significant. Nor are the leading modes one and
two well separated from the remaining modes. This is
enough to disqualify them from our search; yet the
Table 3 Control models (total of 10 runs of Pre-industrial sim

Model Run Sampling interval S

BCCR_bcm2_0 1 5y n

CCCMA_cgcm3 1 Annual n

CCCMA_cgcm3 1 5y R

CNRM_cm3 1 Annual n

CNRM_cm3 1 5y R

CSIRO_mk3 1 Annual n

CSIRO_mk3 1 5y R

GFDL_2_0 1 5y R

GISS_aom 1 Annual n

GISS_aom 1 5y n

No significant pairs were identified in any of the control runs analyzed. No propaga
similar multidecadal tempos of modes one and two are
interesting. Normalized RCs of the sum of these two
modes (Figure 6c) suggest signal propagation; although
not analogous to the original ‘wave’. That aside, it is sta-
tistically non-significant. And additional caveats prevent
its candidacy. It displays weak spatial and temporal co-
herence. This example, while intriguing, cannot be con-
sidered a stadium-wave signal.
The UKMO_hadcm3 20th-century model results (run

1) show three leading modes whose error bars overlap,
are distinct from the remaining modes, and are almost
fully outside the red-noise envelope (Figure 9a). Despite
these positive results, the first two RCs show decadal
variability with non-stationarity in the time series. The
third RC is a multidecadal mode; yet it is a single one
with no propagation (Figure 9b). Thus, no stadium wave
is found in this data pool.
ulations)

ignificant modes RC Character Comments

one

one

C1 single non-stationary

no propagation

one

C1 single No propagation

one

C2 single No propagation

Cs 1,2 singles No propagation

one

one

tion occurred in the statistically significant single modes.



Table 4 Summary of all analyses whose results included at least one statistically significant mode (p < 5%)

RC
#

Group Period Model Experiment Run Significant w/ annual
sampling

Significant w/ 5y rm
sampling

Comments

1 single ~70y CCMA_cgcm3 20c 1 yes no no
propagation

1,2 pair bi-annual CNRM_cm3 20c 1 yes no high-frequency

no
propagation

3 single ~25y CNRM_cm3 20c 1 yes no no
propagation

non-stationary

3 single sub-
decadal

CSIRO_mk3 20c 1 yes no no
propagation

non-stationary

5 single sub-
decadal

CSIRO_mk3 20c 1 yes no no
propagation

non-stationary

6,7 pair bi-annual CSIRO_mk3 20c 1 yes no no
propagation

non-stationary

1 single ~70y CSIRO_mk3 20c 1 no yes no
propagation

1,2 pair ~35y GFDL_2_0 20c 1 marginal yes no
propagation

1,2 pair ~35y GFDL_2_1 20c 3 no marginal no
propagation

1 single ~100y IAP_fgoals_1_0 20c 1 yes yes no
propagation

2,3 pair bi-annual IAP_fgoals_1_0 20c 1 yes no non-stationary

1 single inter-
annual

MIUB_echo_0 20c 2 yes high-
frequency

non-stationary

no
propagation

1 single ~60y MIUB_echo_0 20c 2 yes no
propagation

2 single ~60y MIUB_echo_0 20c 2 yes no no
propagation

3 single ~25y MIUB_echo_0 20c 2 yes no no
propagation

3 single ~55y UKMO_hadcm 20c 1 marginal no no
propagation

1 single ~50y CNRM_cm3 control 1 n/a marginal no
propagation

2 single ~25y CSIRO_mk3 control 1 n/a yes no
propagation

1 single ~55-75y GFDL_2_0 control 1 n/a yes no
propagation

2 single ~25y GFDL_2_0 control 1 n/a yes no
propagation

Of all analyses with statistically significant modes identified, none capture a propagating signal.
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Figure 2 Output from certain GFDL 20thc models showed promise. While the two M-SSA-identified leading modes showed potential for an
oscillatory pair in GFDL_2_0_20thc Run 1, (a) as deduced from the two leading modes (at p < 5% significance) being mostly outside the red-
noise-established envelope of uncertainty in the M-SSA spectrum; (b) and the RCs of leading modes one and two showing similar periodicity;
(c) their failure to produce a propagating signal is due to the normalized RCs of the combined modes being in exact phasing, not offset
(see text). Thus, this cannot be considered the “stadium wave”.
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Results from control experiments CCCMA_cgcm3
(run 1) and CNRM_cm3 (run 1) are shown in Figures 10
and 11. No modes fall outside the red-noise envelope.
Centennial-scale variability characterizes mode one of
the CCCMA model and a more inter-decadal character
can be seen in modes 2 and 3. The remaining modes in
this model and all the modes of the CNRM model are
high-frequency modes. No results for these models sug-
gest a stadium-wave signal.
The last model discussed here is the control experi-

ment of GFDL_2_1 (Figure 12). The leading two modes
of variability fall outside the red-noise envelope, overlap,
and are mostly separated from the remaining modes
(Figure 12a). RCs for mode one indicate a multidecadal
tempo; RCs for mode two reflect a higher frequency
(Figure 12b). No propagation of signal is evident in any
mode. Again, no stadium-wave signal is detected.

4 Summary and discussion
We analyzed networks of reconstructed indices from
model-generated data from the third Coupled Model
Intercomparison Project (CMIP3). Our goal in so doing
was to determine if a hemispherically propagating cli-
mate signal, previously detected at secularly varying time
scales in analogous index networks reconstructed from
20th-century instrumental data, could be identified. That
secular-scale signal found in 20th century instrumental
data, termed the ‘stadium wave’, was characterized by
two leading modes of low-frequency variability, whose
normalized sum of RCs documented a spatiotemporally
complex signature propagating across the Northern
Hemisphere. Subsequent to identification of stadium-
wave behavior in 20th-century instrumental data (Wyatt
et al. 2011), analogous stadium-wave behavior was found
in a companion study, which was based on a variety of
spatially and dynamically diverse instrumental-data sets,
and temporally expanded proxy-data sets (Wyatt (2012);
submitted manuscript (2013)).
In the present model-data based study, we adapted

methods identical to those used in two prior companion
studies. And in this study, we were unable to identify a
‘wave’ analogous to the original stadium wave detected
in observations. While results of some model experi-
ments hinted at signal propagation, none of these signals



Figure 3 CCCMA 20thc run1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model. It shows
leading mode 1 is significant. There is no indication of a pair. The second plot in (a) is the cumulative variance of the first 20 modes identified.
(b) Shows the RCs for each mode. Mode 1 is likely a forced radiative signal.
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Figure 4 CNRM 20thc run 1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model. It shows
leading modes 1&2 to be outside the red-noise envelope. Their error bars overlap; yet there is no separation from the remaining modes. The
second plot in (a) shows the cumulative variance accounted for by the first twenty modes. (b) Shows RCs of the individual modes. RCs for modes
one and two are high-frequency modes. RCs for mode three are decadal-plus, but no propagation.
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Figure 5 GISS_aom 20thc run 2: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model. No
modes fall outside the red-noise envelope; thus no significant mode can be identified. The second plot in (a) shows the cumulative variance
accounted for by the first twenty modes. (b) Shows the RCs. The first two are interdecadal; yet their phasing is in-phase. The signal, therefore,
does not propagate through the indices. All tests for a stadium-wave signal are failed for this model’s data set.
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Figure 6 MRI_cgcm_2_3_2 20thc run 1: No statistically significant stadium-wave signature. (a) Two plots are given. The first is the M-SSA
spectrum for this model. No modes fall outside the red-noise envelope and no modes are well-separated from others; thus no significant mode
can be identified. The second plot in (a) shows the cumulative variance accounted for by the first twenty modes. (b) Shows the RCs of individual
modes one through seven. (c) Shows the statistically non-significant “stadium-wave-like” propagation of normalized RCs of joint modes one and
two. Many caveats are attached to this “wave”, lack of statistical significance being only one. The spatial pattern differs from the original stadium
wave, with ALPI non-aligned with NPO and PDO as an example. Temporal character of NINO is unlike that of the original ‘wave’. For the entire
mri_20thc ‘wave’, time scale of variability progressively increases as signal progresses through the time series. Sequence of signal propagation
appears to fall apart with time.
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Figure 7 NCAR_CCSM3 20thc run 1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model. No
modes fall outside the red-noise envelope and no modes are well-separated from others; thus no significant mode can be identified. The second
plot in (a) shows the cumulative variance accounted for by the first twenty modes. (b) Shows the RCs for this model. RC1 has a multidecadal
character, but it is not a propagating signal. It is a moot point, as none of the modes fall outside the red-noise envelope.

Wyatt and Peters SpringerPlus 2012, 1:68 Page 16 of 25
http://www.springerplus.com/content/1/1/68



Figure 8 NCAR pcm1 20thc run 1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model. No
modes fall outside the red-noise envelope and no modes are well-separated from others; thus no significant mode can be identified. The second
plot in (a) shows the cumulative variance accounted for by the first twenty modes. (b) Shows the RCs for this model. As in the other NCAR
model (Figure 7), RC1 exhibits a multidecadal tempo. It is a single mode with no propagating signal. It is a moot point, as none of the modes fall
outside the red-noise envelope.
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Figure 9 UKMO_hadcm3 20thc run 1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model.
The first three modes in UKMO_hadcm3 20thc run 1 overlap and are fairly well separated from the remaining modes; yet error bars for these
three are not completely out of the envelope of uncertainty. The second plot in (a) shows the cumulative variance accounted for by the first
twenty modes. (b) Shows the RCs for this model. Even if we were to consider the first few modes as being significant, one can see that modes
one and two are higher frequency modes (not what we are looking for) and those modes display some non-stationarity in the data (again, not
what we are looking for). Mode 3 exhibits multidecadal behavior; yet no propagation is evident.
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Figure 10 CCCMA_cgcm3_control run1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model.
No modes fall outside the red-noise envelope. The second plot in (a) shows the cumulative variance accounted for by the first twenty modes.
(b) Shows the RCs for this model. Most modes display high frequency variability, with the first mode showing some of the indices displaying a
multidecadal timescale; while the amplitude of the other index RCs is minimal to zero. There is no signal propagation.
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Figure 11 CNRM_cm3_control run1: No stadium-wave signature. (a) Two plots are given. The first is the M-SSA spectrum for this model. No
modes fall outside the red-noise envelope. Nor are any modes widely separated from the others. The second plot in (a) shows the cumulative
variance accounted for by the first twenty modes. (b) Shows the RCs for this model. Most modes display high frequency variability. No semblance
of a stadium-wave signal is seen.
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Figure 12 GFDL_2_1 control run1 (smoothed with 5-y running mean): No stadium-wave signature. (a) Two plots are given. The first is the
M-SSA spectrum for this model. Modes 1&2 fall outside the red-noise envelope. Their error bars overlap and they are somewhat separated from
the remaining modes. The second plot in (a) shows the cumulative variance accounted for by the first twenty modes. (b) Shows the RCs for this
model. Most modes display high frequency variability. Mode one reflects a multidecadal character, but mode two is of a different, much higher
frequency. No oscillatory or propagating signal can be identified.
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were found to be statistically significant or stationary. Fur-
thermore, none were spatially or temporally analogous to
the “wave” found in observational and proxy data.
As a whole, co-variability among indices of seven-

member networks assembled from data generated by
models of the CMIP3-ensemble simulations appears to
be dominated by high-frequency fluctuations, with the
most dominant ones at biannual to sub-decadal periodi-
cities. These are often marked by non-stationarity across
the time interval evaluated. Radiative-forcing signatures
(in the NHT, in particular) are apparent at the secular-
scale in some runs. These signatures are characterized
by a long, non-periodic variation with at most only one
full cycle in a one-hundred-year span. Statistically sig-
nificant signal propagation is absent among the model
sets analyzed. These features stand in contrast to those
of the observed stadium wave. Furthermore, consistency
of results from model to model, or even model-run to
model-run of the same model was not an outstanding
feature in our analysis; while in previous stadium-wave
studies, the same secularly varying, hemispherically
propagating, spatio-temporal signal emerged consist-
ently, time-after-time, in one index set after another.
Negative results from a study such as this are not

capable of definitively claiming the existence of deficien-
cies in model design. We conducted this experiment not
to evaluate model design, nor to support or refute the
stadium-wave signal detected in other data sets in previ-
ous studies. This research was conducted simply to an-
swer the question, ‘is the hemispherically propagating
climate signal found in observational and proxy data sets
also found in model-simulated data sets of the CMIP3
ensemble?’ The answer is ‘no’. With this unexpected re-
sult, we are left to question, why not. We submit this
question invites curiosity.
Our methods used in this study to generate data sets

may be the culprit. Were our index reconstructions
sound? Or did the omission of the index, AT (atmos-
pheric-mass transfer anomalies), from our reconstructed
networks negatively affect the modeled outcome? Perhaps
these possible deficiencies deserve closer scrutiny. As far
as the former, we did test each reconstruction code
designed for the model data. We did so by substituting
“real” data for the modeled data. Our results were good.
But this does not rule out the possibility of undetected
small errors that grew when combined with other small
index errors. As far as the latter caveat, as discussed in
section 2.2.2, the ‘stadium-wave’ signal emerged as statisti-
cally significant in data sets with the AT index omitted;
yet that statistical significance was not as robust as with
AT’s inclusion. This may have made a difference when
using the model-simulated indices. Perhaps we performed
too few analyses. Or perhaps our studies suffer from defi-
ciencies we have yet to recognize.
But we also posit that these results - the failure of the
model-generated data to yield a propagating signal –
might speak to a missing ingredient in modeling de-
sign. We offer that this missing ingredient includes
dynamics that play significant roles in hemispheric sig-
nal propagation, in linking one regional circulation pat-
tern with another.
For example, in observation-based studies, geograph-

ical positioning of large-scale oceanic and atmospheric
centers-of-action (COA)f has been found to be critical to
connectivity among regional circulations, establishing
communication links that help make sense of intra-
hemispheric signal propagation (Kirov and Georgieva
2002; Polonsky et al. 2004; Dima and Lohmann 2007,
Wang et al. 2007; Msadek et al. 2010 for examples). For
instance, the Icelandic and Aleutian Lows shift longitu-
dinally and latitudinally (Dima and Lohmann 2007;
Georgieva et al. 2007) on decadal-plus timescales, influ-
encing, among other things, dominant basin-scale wind
flow. Inter-basin connectivity modifies accordingly.
One related example is drawn from research by (Wang

et al. 2007). They find that COA migrations generate
intervals when climate patterns over the North Pacific
and over the Eurasian continent upstream are linked.
Likewise, regions downstream are linked. These linkages
can be traced to an enhanced Pacific North American
(PNA) pattern and to an eastwardly extended jet stream.
These nuanced factors influence El Nino’s relationship
with the Aleutian Low Pressure system.
Another example can be found in works by (Sugimoto

and Hanawa 2009) and (Frankignoul et al. 2011). These
works suggest that low-frequency latitudinal shifts in
atmospheric COAs, influence migrations of western-
boundary currents and their extensions (ocean-gyre
frontal boundaries), with consequent impact on western-
boundary dynamics and air-sea interaction (Kwon et al.
2010; Frankignoul et al. 2011). Ocean-atmospheric dy-
namics related to western-boundary currents are not
typically well modeled, spatial resolution and representa-
tion of heat flux out of the ocean being among the limit-
ing factors (Dong and Kelly 2004; Kelly and Dong 2004;
Kelly et al. 2010). We offer this limitation may play a
role in the contrasting results of the stadium-wave stud-
ies, observation-based versus model-based.
Geographical placement of the Arctic High (Kwok

2011) presents another illustration of this theme. Mean
and shifting geographical placements of the polar high-
pressure system play strong roles in Arctic sea-ice dy-
namics, freshwater balance, and by extension, in climate
response Wyatt (2012); submitted manuscript (2013).
Most models inadequately simulate the Northern Hemi-
sphere’s polar-high placement. (Kwok 2011) evaluated
simulations of Arctic sea-ice motion in the CMIP3 col-
lection. Sea-ice motion is largely wind-driven. The
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impacts of these winds are a function of, among other
things, the geographical placement of the polar-high.
This placement indirectly scripts regional sea-ice inven-
tory, distribution, spatial pattern of ice thickness, and
sea-ice export. Kwok examined groups of models. He
found the overall CMIP3 simulations of sea-ice dynam-
ics and related features to be poor, with some models
performing better than others. He suggests the culprit is
the significant displacement of the mean high-pressure
pattern in the southern Beaufort region. Its modeled
position tends to be skewed toward the central Arctic
Basin rather than its observed mean position in the
southern Beaufort Sea. Misplacement of related large-
scale mean features of the circulation pattern follows.
Other influences on the Arctic freshwater balance derive
from sea-ice extent north of the Bering Strait. This, too,
has been linked to non-static geographical placement of
the Aleutian Low (Niebauer 1998). And according to
(Jun et al. 2008), errors related to sea-ice north of the
Bering Strait are common among models: GFDL, GISS,
NCAR, and UKMO.
Geographical placement of centers-of-action and dy-

namics of western-boundary currents are but two identi-
fied features that appear to determine whether a regional
circulation pattern’s reach remains regional or extends be-
yond, via direct or indirect means. These features are
examples of small variations begetting disproportionately
large results. The classic work on network theory by soci-
ologist Mark Granovetter (1973) points to such small links
yielding profound consequences. In his seminal work, he
describes the crucial role of weak ties in enlarging and sta-
bilizing a network. He describes the phenomenon in terms
of societal behavior; yet this concept applies to any
network. We suggest the “weak-tie” details of inter-
connectivity within the climate network may be a neces-
sary ingredient for hemispheric signal propagation. It may
be that regional patterns are well modeled. But is their
connectivity equally well modeled, be that through geo-
graphical positioning of oceanic and atmospheric centers-
of-action; western-boundary currents, their extensions,
and their relationship to overlying jet-stream tracks; or
other such “small-scale” features?
And finally, along that same vein, (Van den Berge

et al. 2011) have considered connectivity among nodes
when modeling climate. They invoke the influential
work done by (Pecora and Carroll 1990) on non-linear
systems, applying principles of synchronized theory to
modeling climate. In essence, they have found that with
a limited amount of information exchanged, a system’s
behavior can be reconstructed. This information ex-
change is accomplished by connecting each variable of a
model to each variable of two other models. By linking
chaotic systems, synchronization of the network of sys-
tems follows (Pecora and Carroll 1990). Here, consistent
with what we see in stadium-wave dynamics, links be-
tween nodes are critical to capturing the full spatio-
temporal signature of the climate network.
5 Conclusion
Analyses performed on indices reconstructed from data
generated by models archived in the CMIP3 database
failed to detect a statistically significant stadium-wave
climate signal. Results were the same for both 20th-cen-
tury experiments and long-control runs of pre-industrial
experiments. We cannot offer an explanation for this,
only speculation.
In previous stadium-wave studies, this signal was

identified for the 20th century in a wide variety of
geographically and dynamically diverse instrumental
and proxy-reconstructed geophysical indices. Ocean-
ice-atmospheric coupling is hypothesized as lying at the
heart of signal propagation (Wyatt 2012; submitted
manuscript (2013).
Weak ties in network behavior are critical to network

stability and function. Weak ties within the climate net-
work appear to include, among other things, geographical
positioning of oceanic and atmospheric centers-of-action.
These features have been shown to be poorly represented
in many models. This may offer insight to a physical
mechanism that may be relevant to signal propagation
that appears to be missing from this suite of models.
Endnotes
aSynchronization refers to the matching of rhythms of

self-sustained quasi-oscillators (our intrinsically variable
climate indices); whereas synchronous is distinct from
synchronization. Synchronous means “same timing”.
The stadium-wave signal involves a network of synchro-
nized climate indices.

bOccurring one or fewer times per century.
c(NHT, AMO, NAO, NINO3.4, NPO, PDO, and ALPI)
dIn the original study, we used M=20, but in addition,

M was varied. No changes in outcome resulted; thus we
justify use of only M=20 for the window size in this
study.

eThe majority of other indices in this network had
much lower auto-correlation values, suggesting our esti-
mated degrees-of-freedom may be on the low side, im-
plying the statistical-significance of the stadium-wave
signal in observed data may be larger than is stated here.

fThe term ‘centers-of-action’ (COA) refers to circula-
tion centers. In the atmosphere, the Aleutian Low and
Icelandic Low are examples of COAs. In the ocean, the
subpolar and subtropical gyres are COAs.
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