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Background

In recent years, theory and numerical analysis of nonlinear time-delayed evolution equa-
tions have received considerable interest due to their numerous applications in the areas
of physics, biology, chemistry and so on. For better studying the nonlinear physical phe-
nomena of nonlinear time-delayed evolution equations, the solution is much involved.
In the past, several analytical and numerical methods have been used to find solutions of
nonlinear partial differential equations, such as homotopy perturbation method (Kumar
and Singh 2009; Kumar et al. 2012; He 1999), Laplace transform (Kumar 2014), vari-
ational iteration method (He 1997; He and Wu 2007; Tang et al. 2014), residual power
series method (RPSM for short) (Kumar et al. 2016b; Yao et al. 2015), auxiliary equation
method (Sirendaoreji 2003; Tang et al. 2016; Yomba 2004), homotopy analysis method
(Yin et al. 2015; Kumar et al. 2016a), < %)—expansion method (Wang et al. 2008; Zhang

et al. 2010; Tang et al. 2011; Islam et al. 2014; Khan and Akbar 2014) and so on.
In this paper, we apply the extended (%)-expansion method to obtain traveling wave

solutions of the following time-delayed generalized Burgers-type equations (Kar et al.
2003):

. © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

@ Sprlnger Open (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

— provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3765-1&domain=pdf

Tang et al. SpringerPlus (2016) 5:2094 Page 2 of 16

+ The time-delayed generalized Burgers equation:
TV + Ve + pVvx — Vg = 0.

where p, s are constants and tis a time-delayed constant.
+ The time-delayed generalized Burgers-Fisher equation:

Wy + A= tf)ve = Ve —pVive +f(v), f(v) =gqv(1 — V).

This paper is organized as follows: in “Methods” section, the main steps of extended
<§/ -expansion method for obtaining traveling wave solutions of nonlinear time-delayed
evolution equation are given. In “Results” section, we construct traveling solutions of the
time-delayed generalized Burgers-type equation. Some conclusions are given in “Con-

clusions” section.

Methods
Considering the following nonlinear evolution equation:

P(V,Vt,Vxl,sz,ng,...) =0, (1)
where P is a polynomial in v = v(x1,x2,%3, . . ., t) and its various partial derivatives.

Step1 By means of the traveling wave transformation
v=V(@), n = kix1 + koxy + ksxs + - - - + ht + no, )

where the coefficients k;, /1 are constants. Equation (1) can be transformated as follows:

PV (), V'), V' (n),..) =0. 3)
Step2 We suppose that the Eq. (3) has the following solution:

n G/ l
ZOEDY ﬂz<G) , 4)
I=—n

where a; are constants to be determined later, and G () satisfies the following equation:
G"(n) +aG'(n) + BG(1) =0, (5)

where o and B are arbitrary constants. Based on Eq. (5), we have

C1 sinh <7~‘*22’”"5")+c2 cosh (%)

2_
L - , a?—4B >0,
G/( ) C1 cosh( 2_4ﬁ">+Cgsinh a;w”
n o2 Jap—a?
— ¥ = — 7Clsin( 4f—a ">+C2cos( — ")
G | _g 4 i o2 —4p <0,
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Step 3 Determine the degree # in Eq. (3) by use of homogenous balanced principle
(Abdel Rady et al. 2010; Fan and Zhang 1998a, b; Senthilvelan 2001; Zhao and Tang
2002; Fan 2000; Eslami et al. 2014), namely balancing the highest order derivatives and

nonlinear terms in Eq. (3).

Step 4  Substituting Egs. (4) and (5) into Eq. (3) and clearing the denominator and col-
lecting all terms with the same order of ( ) together, then setting each coefficient of

<%) to zero, we get a system of under-determined algebraic equations for k;, # and a;.

Step 5 Solving the algebraic equations in Step 4 by Maple (www.maplesoft.com), we
can finally get traveling wave solutions of Eq. (1).

Results
In this section, we apply the extended (—)—expansmn method to obtain traveling wave
solutions of the time-delayed generalized Burgers-type equations.

Solutions to the time-delayed generalized Burgers equation
We consider the following time-delayed generalized Burgers equation:

TV + Ve + pVivy — Ve = 0. (6)
By using transformations v(x,¢) = V() and n = k(x — wt), Eq. (6) can be reduced as
follows:

(t? = DKV — ko V' 4 pkVSV' = 0. @)

Balancing V" with V¥V gives n = 1 which is not an integer as s # 1. So we use a trans-
formation V = W5 to change Eq. (7) into the form:

(t0? — DK* {W”W + (1 - 1) W’Z} — koW'W + pkW'W? = 0. (8)

We suppose that the solutions of (8) have the form (4) and (5), so

n -1 2
G/ G//G _ G/
W/(U) = Z aj () T

n G/ -1 / G/ 2
=-Ya(g) |re(E)+ ()]
n G\ 2 G\ 2 2
W) = Z ﬂl<G) 5"'05( ) <G
I=—n

+Za lla+2€ ﬁ+a€+€2
: G G G
From above two equations, we can get the degrees of W”W and W/ W? are 2n + 2

and 37 + 1 respectively. Balancing W”W and W’ W? in Eq. (8) yields 2# +2 = 3n + 1,
namely n = 1. Therefore Eq. (8) have the following solutions:
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1 G/ 1
LZOEDY ﬂz<G> : )

I=—1

Substituting Egs. (9) and (5) into Eq. (8), we get a set of under-determined algebraic
equations for a;(I = 0, 1), k, w,x and B.

G \* k(to? — 1)(1 — s)a?
(G) :2(tw? — Dka? + ; L _pad =0,

G/ 3
<G> 3(rw? — l)kaa% + 2(tw? — Dkayag
N 2ka(tw? — 1)(1 — s)a?

s
(G/>2 ) (tw? = k(1 = s)(=2aja_; + 261%/3 + a%az)

+ a)a% - Zpaoa% —pom“;’ =0,

; + paja; (1 + 2a)

+ (tw?® — Dk(a? +28)a? + 3(rw? — Vkaarag — pas3
+ 2(tw? — Dkaja_i + waga; + a)a%a —pa%a_l =0,

(G/>l (@0 — k(1 = 9)(~4a-1 + 241 plaa

P — para(ara_y + ai)

+ (tw? — Dkay(a108 + 4a_1a + aga® + 2a0B)
— 2paga’ B + wai(aox + a1p) =0,

0
(> : (ra)2 — Dk(da—1a18 + 2a_1a1a2 + apa1 o + a_1apa)
+ (a-1 — a1p)(a-_1a1 + ag)p — wapa_, — wapa

2
tw* — 1Dk(1l —s
+ ( s) ( )(—461_1611,3 — 2u_1a1a2 + a2_1 + a%ﬁz) =0,

G\
() : (ra)2 — Dk(da_1a1aB + 2a_1a08 + a_japa’ + az_loz)

— wa_1(a—1 + apx) —i—pa%lala + pa_1a9(2a_1 + aox)
2

tw” — Dka(l —s

n ( Yko( )

(—4a_ja1B +24>)) =0,

Qa_1p —2a1* + a_1a?)

(G’> 7 (t0* — Dka_1(1 - s)
' s

— wa-1(a-1a +aoP) +p012_1(2a0a +a18) —l—pail —f—pa(z)a_lﬂ
+ (ra)2 — 1)k(2a_1a1ﬂ2 + 3a_1ap0f + 2612_1/1, + az_laz) =0,

<G/>_3 2(t0* — Dka? jaB(1 —s)
G :

; + (tw? — Dka_18Q2aoB + 3a_1c)

— wa%lﬁ +pa%1(a,1a + 2ap8) =0,

<G/>_4 (t0? — Dka* | B2(1 —s)
c :

S + 2(tw? — 1)ka* | B> + pa® |8 = 0.

Solving this algebraic equations by Maple, we can obtain the two results:
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Casel
_ 4 s+ Dpw n a(s+ Dw +(s+1)a)

a1 =F+———, ay= ,
pVa—48 2p\/a? — 4B 2p
ar=0, k=7 = : (10)
(tw? — 1)\/a? — 48

where o, 8 and w are arbitrary constants.

a(s+ 1w n s+ 1w

2p\/a? — 4B 2

s+ 1w

sw
ag=t——-—, k== , (11)
! pVoa?—4p (tw? — 1)\/a? — 48
where «, 8 and w are arbitrary constants.
Using Egs. (9) and (10), we obtain the following solution of Eq. (6):
1
as+Do  +Do  (+DBw /G\ °
vi(n) = |£ + ( , (12)
! l wV/a—4p 2w pJa?-4p\G
wheren = q:(rwz_l)w (x — wt).
Based on Eqgs. (9) and (11), we get the solution of Eq. (6) as follows:
1
as+ Do s+ Dw s+ Dw (G’> ¢
2 [ 20/ a2 — 4B 2p pVa? -4\ G

where n o) Ja—1 (x — wt)

Substituting the general solutions of Eq. (5) into Eq. (12), we have two kinds of travel-
ling wave solutions as follows:
When o? — 48 > 0,

s+ Dw Vo -4+« 28
vix, t) = +
VY, a? — 48 2 - \/m Cj sinh ¥ “2;43” +Cy cosh Y&~ 4P ”22’4‘@”
Cy cosh Y4 ==£1 ”2{4ﬁ'7 +Cy sinh Y& -4P1 ”2’”"
(14)
wheren = F——3¢ — (v — wt).
1= F ey T
When o? — 48 < 0,
1) s+ Do Va2 -4 fa n 28
v(x, =
P a? — 48 2 —Cj sin ¥ 4’57"’2”+C2 cos Y 4p—ay
—a + 4’3 — a2 2 > 2 .
Cy cos Y2221 4ﬂ;°‘ 1 4+Cy sin 74‘32’“ 1

15)
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where n q:(rwz_l)m(x wt)

Substituting the general solutions of Eq. (5) into Eq. (13), we have the following two
kinds of travelling wave solutions:
When o? — 48 > 0,

o |

s+ Do N (s + 1w [ Cjsinh 7“122_4&7 + Cy cosh 7“122_4/3"

(16)
2p 2p Cj cosh ¥=——"7% a22—4ﬂr1 + Cy sinh ¥——""1 0122—4/377

ulx,t) =

h — :l:siw _ X
where n ol D25 (x — wt)

When o? — 48 < 0,

@ =

—2? 2

(s+1)a)q:(s+1)w, —Clsiniﬂt;a"%—CgcostZa" (7
i

2p 2p Cj cos 7\/4/92—“2'7 1 Cysin 7\/4/32_"‘2’7

ux, t) =

h — :l:siw _ X
where n ol D Jaap (x — wt)

In Figs. 1, 2, 3 and 4, we show the effect of the time-delayed solution (14). It should be
noted that when 7 — 0, we can recover some traveling wave solutions of the generalized

Burgers equation.
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Fig. 2 The solution (14)fort = 10ats=1,p=0lw =02 a=5B8=4t=1C =0

=20

Fig. 3 The solution (14) fort = 20ats=1p=0lw=02a=58=4t=1(=0

Solutions to the time-delayed generalized Burgers-Fisher equation
In this section, we consider the time-delayed generalized Burgers—Fisher equation:

™y + (1 — Tfi)ve = v — pVve +f(v), f(v) =gv(l —V%), q #0. (18)
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u2-

0 T
-60 -40

Fig. 4 The red, green and black lines represent the solution (14) fort = 0,10, 20 respectively ats = 1, p = 0.1,
w=02a=5B=4t=1C=0

By using the transformation

vix, ) =v(n), n=kx—ot) (19)
Equation (18) is converted into the following ordinary differential equation:

K(ro? — 1) — ko1 —tq + (s + D)gv*)V + pkv’v' — qv(1 — ) = 0. (20)

Balancing v" and v*v' in Eq. (20) gives n = % By using the transformation v = W's, we
convert Eq. (20) into

kK (rw? — 1) C — 1> (W2 +WW") — ko1 —tq+ (s + 1)gW)WW’ on

+ pkv*W' —sqW?(1 — W) = 0.

By balancing W’? and W2W’ in Eq. (21), we suppose that Eq. (21) have the following
solutions:

1

G\
W= ﬂz<G> : (22)

I=—1

Using the same procedure as in the previous example, we get a set of simultaneous alge-
braic equations for a;, k, w, o« and B.



Tang et al. SpringerPlus (2016) 5:2094 Page 9 of 16

G/ 4 1

<G> : —pka% + ko (s + l)qtai’ + (t0? — 1)/(251% (1 + s) =0,
G/
G

3
1
( ) K (ta? — 1) {2 <1 — >om1 + ao] a; + ko(1l — qr)a%
s
+ (w(s+1) — p)k(Q2ag + aal)a% + squ? =0,

7\ 2 2 2
<Z> : M((a2 +2B)a1 + (2s — )a—_1 + 3apas)

— pkay(a_1a1 + ap + 2aapa; + a%ﬂ) + kol —gt)(ag + a10)a;
+ kw(s + Dgra; (a% +a_1a1 + 2apa;1a + a%,B) + sqa%(?)ao -1 =0,

7\ L 2 2 _
<G> : M[(Ss — Da_1o + 2 — s)a1 Ba + s(a® + Bao]

+ sqai1(Ba_1a1 + 311(2) —2ap) + ko(1 — q7)(apar1o + a%ﬂ)

+ pkal(_ﬂflﬂla — ﬂ%Ot + 26171ﬂ0 — 2&0611/3) =0,

G\°
<G> ko (s + 1)gt(a_iar — ad) (a1 p — a_1) + sq(6a_1apar — 2a_1az)
— ko(1 —gr)aga—1 + ko1 — gt)a1 B + pk(a—1 — a18)(a—1a1 + a(z))
20,2
-1
+ sq(—u(z) + a%) + %[4(% —Da_j1a18 + (5s — 2)a_iai0>

+ (1= 8)(@®, +aiB?) +saag(aip +a_1)] =0,

G'\!
<> —ko(l—gr)a_1(a—1 + aox) + pka_1(2a_1a0 + a(z)oz +a_j1a10)

1
+ 2k2(ra)2 — Doaa_1 <s — 1> (a1 —2a18) +sqa_1(3a_1a1 — 2a¢ + Su(z))

+ K2 (tw? — Da_i(4arap + 2a0f + ape® + a_1c)
— kw(s+ gra_12a_1a0 + a_1a10 + a%a) =0,

-2
<> :pka_l(az_1 + 2a_1a00 +a_1a18 + a%ﬂ) + qsa2_1(3ao -1

— k(1 — qr)a_i(a_1a + aoB + a*, — a_1a1B)
K (tw* — Da_;
s
— ko (s+ 1)gra_1(2a_jaoa + 2a_1a18 + a%ﬂ) =0,
G\ ° K(tw? - Da_ip
(G) ==t

(2a_1B + 2(2s — a1 + a_10% + 3apafBs)

((s + Da_1a + 2saoB) + gsa’
+ kazfl(afloz +2a0B8)(p — w(s + 1)g7) — k(1 — qt)a%lﬁ =0,
N —4
1
(Z) kK (rw? — 1) (S + 1>a2_1,32 +pka3_1,3 —kw(s+ l)qtél?ilﬂ =0.

Solving the under-determined algebraic equations, we have the following results:

Case 1
B 1 o
a1=t——, ag=-%t ———, a1 =0,
o — 4B 27 2y/a2—4pB
B s(s + (1 +qo)p oo PP+ (23)

B :F(‘rp2 — s+ D)) Ja2 -4 ps+DA+4qr)
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Case 2
1 o 1
a1=0, aqp=-—*——r——, a1=F————,
2 2/a2—4p a? —4p
24
L s6EDAtqup PG ey
(‘L’pz—(s—i-l)Z) /012—4/3, p(s+1)(1+qr)'
By using Egs. (23) and (24), expression (22) can be written as:
=ty 4 P (G/>_1 (25)
viln) = - el ’
2 2\/a2—4f a2 —-48\G
_ s(s+1)(1+q1)p _ pstDg )
where n= :F(sz_(s_‘_l)Z)\/aZ_leg ( P(S+1)(1+q7)t :
- 1 N a N 1 <G’>
vo(n) = =< - | 2
2 2ya2—48 Ja?2—-4B\G (26)
_ s(s+D(1+q7)p _ p2t+<s+1>2qt)
where n = i(rpt(sﬂ)z)\/ahétﬂ ( PeHD(I+qD) )

Substituting general solutions of Eq. (5) into Egs. (25) and (26), we have two types of
travelling wave solutions of the generalized time-delayed Burgers-Fisher equation as
follows:

When o? — 48 > 0,

1 24+ 2
u(x, t) = ~ v W a:t /?/27 V) )
w2 — _ 7 Cj sinh D‘%W+C2 cosh u%w
ot m(cl cosh @" +Cy sinh @
(27)
_ s+ (A+q1)p - p2t+(S+1)2qt)
wheren = :F(Tp27(5+1)2)\/a274[5 ( ps+1)(A+4q7) )
1
f2_ a2— 5
) 1 L 1 [ Cisinh %4'3" + C; cosh w (28)
ux,t) = (- = 3 an /
2 2_
2 2\ ¢ cosh af‘lﬁn + Cy sinh afw
— ss+1)A+qT)p R STl )
wheren = i(rp27(5+1)2)«/a2*4/3 ( p(S+1)(1+qT)t '
When o? — 48 < 0,
u(x, £) = Vel -apte 2

a2 —4p 2

[1h—a? [1h—a? ’
—at /70{2 Y —C sin 4!*;“ 1 +Cy cos A‘ﬁ;a s
/ 2 / 2
Cj cos %+C2 sin %

(29)

Page 10 of 16
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where n==F s(s+1)(A+gT)p ( _ p2+(5+1)2q t)'

(Tp27(s+1)2)«/062*4ﬂ p(s+1)(1+4g7)

1
. . AJ4B—a? NI s
i [ —Cisin Y20 4 €, cos YA

1
u(x’ t) = " :F ‘" ’ (30)
/4B—a? A 4p—a?
202 Clcosw-l-czsmw
_ s+ (A4qT)p - il )
wheren = i(fp2—(s+1)2)«/oz2—4ﬁ ( perD+n ! )

In Figs. 5, 6, 7 and 8, we show the effect of the time-delayed solution (27). It should be
noted that when v — 0, we can recover some traveling wave solutions of the generalized
Burgers—Fisher equation.

Remark 1 By using extended (%)—expansion method, we can obtain solutions includ-
ing all the solutions given in Deng et al. (2009) as special cases. For example, if setting
Ca = 0, then solution (28) is the same as Eq. (19) in Deng et al. (2009). Similarly, solution
(28) is also the same as Eq. (20) obtained in Deng et al. (2009) when we set C; = 0. It
shows that extended (%)—expansion method is more powerful than the method in Deng

et al. (2009) in constructing exact solutions.

Remark 2 Rosa et al. (2015) applied Lie classical method and (%)—expansion
method to Fisher equation and derived some new traveling wave solutions. If setting
aj(l =—n...—1) =0, then Eq. (4) becomes Eq. (14) in Rosa and Gandarias, (2015). So
if we applied Lie classical method and extended %)—expansion method to Fisher equa-
tion, then many more exact solutions can be obtained. Searching exact solutions by use

of Lie classical method and extended (%)—expansion method is our future work.

Fig. 5 The solution 27)fort = 0atp=g=s=la=5B=4t=10C=0
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~.
19 <>
03 | i
0.6
0.4+
02_' f
r “ ‘
0 4l
0 2 || ¢ -60
5 Soseoeseoedri | | i -40
e /i -20
10 <% ol 170
- 1
t 15 ""‘T 40 x
60
7=0.5
Fig.6 The solution (27)fort = 05atp=g=s=1la=58=4t=10=0

15 J
0.8
0.6
0.4
0.2
0- 4
0 el
5 TS
10 T
t 15 ™%
60
=1
Fig.7 The solution 27)fort = latp=g=s=la=5B8=4t=10C =0
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0.8

0.6

0.4+

0.2+

0 T T
-60 -40 -20

a=58=4t=1C=0

Fig. 8 The red, green and black lines represent the solution (27) fort = 0,0.5, Trespectivelyatp =g =5 =1,

Conclusions

Based on the extended (—)—expansmn method, we have constructed many traveling
wave solutions of the time-delayed generalized Burgers-type equation which include the
hyperbolic function solutions, trigonometric function solutions. The results show that
the proposed method is very effective and can be used to handling many other nonlinear

time-delayed evolution equations.

Declarations

In this section, we illustrate how to get the solutions presented after Eq. (5).

The general solutions of Eq. (5) can easily obtained as follows:

S Yy
ae =ty + ase 2 4ﬁ", a’ —48 >0,
G(n) = eg”<a1 cos 7'/32_0”]—1—012 sin ‘4/32_01277), a2 —48 < 0.
(a1 + azme™ 27, o — 4B =0.

Wheno? — 48 > 0

G = UFVL T ey Ta T VO A e,

then
— 2_4 a2-4p —a—nSa2—4 —/a2—4p
G'(n) ot—h/zoc ’Sale S «/za ﬁa2e72 n
G - —a++/a2-48 —a—+/a2—48
() ae 2 T+ aze 2 n
a2—4p —Ja2—4p
a+ a2 —4Bare” 2 T—are 2z "
) 2 u2—4p —Ja?—ap

Page 13 of 16
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Taking C; = @, Co=45%,r = “2274‘9 n, we can convert Eq. (31) into the following
form:
Ja?—ap S
G'(n) \/— (€1 + Ce T (c, - Cz)e@”
- 24, —Ja2—
G =2 (Q+Qk‘z"+w1cmef7%

\/ BCie —e™)—Cale +e7)

2 Cile"+e )+ Cy(e" —eT)

. (et o)

2 2 (e”re )_’_CZ(e’fe ’)
012 Cj sinh < w") + C; cosh (W)
=——+
2 2 Cj cosh < ﬂn> + Cy sinh (W’)

Wheno? — 48 <0

» 4B — o2 4B — o2
Gy = e (m cos % ¢ aysin 1320“7>

VAB —a*n - 4B — o’y 4B —a’n
X e M| —gy sin Y¥——— + a3 cos ———— |,
+ 5 ( 1 5 + ax 5
then
G —Je 2 <a1 cos 7“}’32_“2" + ay sin W)

G - _a 48—a? . 4B —a
(m e 5n ﬂlcosix/ﬂzwn +a2sm#

V4p—a? . A/4p—a? 4p—a?
ﬂ""ezﬂ(—alanﬂZ“”-+azanﬂ2“">
_a JaB—a? . 4B—a?

e 2’7<alcosﬁza"+agsmﬁza">

(32)

+

Taking C; = aj, Cy = ay, we can convert Eq. (32) into the following form:
G’ o 48 — o
i __« Vb

5 [ —Cisin <~4/32—a%,> + C; cos (VM{“Zn)
Gn) 2 2 C1 cos <‘ 4ﬁ2_a2"> + Cy sin (4/32_“2")

Wheno? —48 =0

ol _«a
G'(n) = |ay— (m +azn)§}e 27,
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then

G [ar— (a1 +axm)§]e 2"

G(n) (a1 + azn)e 2" (33)
o an

4+
2 a1 +axm

Taking C; = a1, Cy = ay, we can convert Eq. (33) into the following form:

G _ a, G

G 2 Ci+GCn
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