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Introduction and preliminaries
In 2002, Aamri and El Moutawakil (2002) obtained the notion of (E.A.) property for a 
single pair of self-maps. In the recent past, Liu et al. (2005) introduced common prop-
erty (E.A.) and extend the concept of (E.A.) property defined by Aamri and El Mouta-
wakil (2002) to two pairs of self-maps.

Definition 1  (Liu et al. 2005) Two pairs (A, S) and (B, T) of self-maps of a metric space 
(X, d) are said to satisfy the common property (E.A.) if there exist two sequences {xn} 
and {yn} in X such that

In 1970, Takahashi (1970) introduced the notion of convexity into metric space and 
proved several fixed point theorems for nonexpansive mappings in the context of convex 
metric space. Then after, Beg and Azam (1987), Fu and Huang (1991), Ciric (1993), and 
many others have obtained fixed point theorems in convex metric spaces. Very recently, 
Kumar and Rathee (2014) defined the concept of (E.A.) property in the setup of convex 

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t for some t ∈ X .
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metric space and ensure the existence of common fixed point for a pair of maps satisfying 
this property by omitting the assumption that the range of one map is contained in other.

In the present work, we define the concept of common property (E.A.) in the con-
text of convex metric space and extend the results of Kumar and Rathee (2014) to four 
self-maps by utilizing this newly introduced concept. Further, we ensure the existence of 
common best proximity point for generalized non-expansive type maps.

Before going to the main work, we recall some standard notations, known definitions 
and results which is required in the sequel. Throughout this paper, N and R denote the 
set of natural numbers and the set of real numbers, respectively.

Definition 2  (Takahashi 1970) Let (X,  d) be a metric space. A continuous map-
ping W : X × X × [0, 1] → X is called a convex structure on X if, for all x, y ∈ X and 
� ∈ [0, 1] , we have

for all u ∈ X .

A metric space (X, d) equipped with a convex structure is called a convex metric space.

Definition 3  A subset M of a convex metric space (X, d) is called a convex set (Taka-
hashi 1970) if W (x, y, �) ∈ M for all x, y ∈ M and � ∈ [0, 1]. The set M is said to be q-star-
shaped (Guay et  al. 1982) if there exists q ∈ M such that W (x, q, �) ∈ M for all x ∈ M 
and � ∈ [0, 1].

Clearly, each convex set M is starshaped with respect to any q ∈ M but the converse 
assertion is not true. Thus, the class of starshaped set properly contains the class of con-
vex set.

Definition 4  (Guay et al. 1982) A convex metric space (X, d) is said to satisfy the Prop-
erty (I), if for all x, y, z ∈ X and � ∈ [0, 1],

A normed linear space X and each of its convex subset are simple examples of convex 
metric spaces with W given by W (x, y, �) = �x + (1− �)y for all x, y ∈ X and 0 ≤ � ≤ 1 . 
Also, Property (I) is always satisfied in a normed linear space. There are many convex 
metric spaces which are not normed linear space, for details (see Guay et al. 1982; Taka-
hashi 1970).

Definition 5  Let (X, d) be a convex metric space and M be a subset of X. A mapping 
I : M → X is said to be

(1)	� affine (Al-Thagafi and Shahzad 2006; Huang and Li 1996), if M is convex and 
I(W (x, y, �)) = W (Ix, Iy, �) for all x, y ∈ M and � ∈ [0, 1].

(2)	� q-affine (Al-Thagafi and Shahzad 2006; Kumar and Rathee 2014), if M is q-star-
shaped and I(W (x, q, �)) = W (Ix, q, �) for all x ∈ M and � ∈ [0, 1].

(1)d(u,W (x, y, �)) ≤ �d(u, x)+ (1− �)d(u, y)

(2)
d(W (x, z, �),W (y, z, �)) ≤ �d(x, y).
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Definition 6  Let (X, d) be a metric space, M a nonempty subset of X and let I and T be 
self-maps of M. A point x ∈ M is a coincidence point (common fixed point) of I and T if 
Ix = Tx(Ix = Tx = x). The pair {I ,T } is called

(1)		 commuting if ITx = TIx for all x ∈ M.
(2)		� compatible (Jungck 1986) if limn→∞ d(ITxm,TIxm) = 0, whenever {xn} is a 

sequence in X such that limn→∞ Ixn = limn→∞ Txn = t ∈ X.

For more details about these classes, one can refer to (see Agarwal et al. 2014). In 1998, 
Pant (1998) defined the concept of reciprocal continuity as follows.

Definition 7  (Pant 1998) Let (X, d) be a metric space and I ,T : X → X. Then the pair 
(I, T) is said to be reciprocally continuous if

whenever {xn} is a sequence in X such that limn→∞ Ixn = limn→∞ Txn = t ∈ X.

It is easy to see that if I and T are continuous, then the pair (I, T) is reciprocally contin-
uous but the converse is not true in general (see Imdad et al. 2011, Example 2.3). Moreo-
ver, in the setting of common fixed point theorems for compatible pairs of self-mappings 
satisfying some contractive conditions, continuity of one of the mappings implies their 
reciprocal continuity.

Definition 8  (Bouhadjera and Godet-Thobie 2009) Let I and T be two self-maps of 
a metric space (X, d). Then the pair (I, T) is said to be subcompatible if there exists a 
sequence {xn} such that

Obviously, compatible maps which satisfy (E.A.) property are subcompatible but the 
converse statement does not hold in general (see Rouzkard et al. 2012, Example 2.5)

Definition 9  (Kumar and Rathee 2014) Let M be a q-starshaped subset of a convex 
metric space (X, d) and let I ,T : M → M with q ∈ F(I). The pair (I, T) is said to satisfy 
(E.A.) property with respect to q if there exists a sequence {xn} in M such that for all 
� ∈ [0, 1]

where T�x = W (Tx, q, �).

Obviously, if the pair (I, T) satisfy (E.A.) property with respect to q, then I and T sat-
isfy (E.A.) property but converse assertion is not necessarily true (see Kumar and Rathee 
2014, Example 12).

lim
n→∞

ITxn = It and lim
n→∞

TIxn = Tt,

lim
n→∞

Ixn = lim
n→∞

Txn = t ∈ X , for some t ∈ X and lim
n→∞

d(ITxn,TIxn) = 0.

(3)lim
n→∞

Ixn = lim
n→∞

T�xn = t ∈ M,
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Main results
We start to this section with following definition.

Definition 10  Let M be a q-starshaped subset of a convex metric space (X, d) and let 
A, B, S and T : M → M. Two pairs (A, S) and (B, T) are said to satisfy common property 
(E.A.) with respect to q if there exist two sequences {xn} and {yn} in M such that for all 
� ∈ [0, 1]

where S�x = W (Sx, q, �) and T�y = W (Ty, q, �)

Remark 11  In Definition 10, if A = B and S = T , then Definition 9 can be obtained as 
a particular case of Definition 10. Therefore the common property (E.A.) defined here 
extends the notion of (E.A.) property in convex metric space defined by Kumar and 
Rathee (2014).

The following Lemma is particular case of the Theorem  4.1 of Chauhan and Pant 
(2014).

Lemma 12  Let A, B, S and T be self-maps of a metric space (X, d). If the pairs (A, S) and 
(B, T) are subcompatible, reciprocally continuous and satisfy

for some � ∈ (0, 1) and all x, y ∈ X. Then S and T have a unique common fixed point in X.
Now, we start with the following theorem.

Theorem 13  Let M be a nonempty q-starshaped subset of a convex metric space (X, d) 
with Property (I) and let A, B, S and T be continuous self-maps on M such that the pair 
(A, S) and (B, T) satisfying common property (E.A.) w.r.t. q. Assume that A and B  are 
q-affine, M is compact. If A, B, S and T are compatible and satisfy the inequality

for all x, y ∈ M, then M
⋂

F(A)
⋂

F(B)
⋂

F(S)
⋂

F(T ) �= φ.

Proof  For each n ∈ N , we define Tn : M → M and Sn : M → M by

for all x ∈ M, where �n is a sequence in (0, 1) such that �n → 1. Now we have to prove 
that for each n ∈ N , the pair (Sn,A) and (Tn,B) are subcompatible. Since A, B, S and T are 
satisfying the common property (E.A.) w.r.t. q, there exist two sequences {xm} and 

{

ym
}

 
in M such that for all � ∈ [0, 1]

(4)lim
n→∞

Axn = lim
n→∞

S�xn = lim
n→∞

Byn = lim
n→∞

T�yn = t ∈ M,

(5)d(Sx,Ty) ≤ �max{d(Ax,By), d(Ax, Sx), d(By,Ty), d(Ax,Ty), d(By, Sx)}

(6)

d(Sx,Ty) ≤ max
{

d(Ax,By), dist(Ax, [sx, q]), dist(By, [Ty, q]), dist(Ax, [Ty, q]), dist(By, [Sx, q])
}

(7)Tn(y) = W (Ty, q, �n) and Sn(x) = W (Sx, q, �n)
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for t ∈ M, where

Since �n ∈ (0, 1), by using Eqs. (7) and (8) for each n ∈ N , we have

Thus we have

Similarly

and so

Hence in light of Eqs. (9) and (10), we obtain

Taking in to account that A and B are q-affine and by using Property (I), we have

Similarly, we can show that

As (A, S) and (B, T) satisfy (E.A.) property w.r.t.q then these pairs also satisfy (E.A.) prop-
erty and hence by using the compatibility of A, S, B,and T we get

Taking limit m → ∞ in Eqs. (12) and (13), we obtain

(8)lim
m→∞

Axm = lim
m→∞

S�(xm) = lim
m→∞

Bym = lim
m→∞

T�ym = t

lim
m→∞

T�ym = lim
m→∞

W (Tym, q, �)

and lim
m→∞

S�xm = lim
m→∞

W (Sxm, q, �).

lim
m→∞

Tnym = lim
m→∞

W (Tym, q, �n)

= lim
m→∞

T�n
(ym)

= t ∈ M.

(9)lim
m→∞

Bym = lim
m→∞

Tnym = t ∈ M.

lim
m→∞

Snxm = lim
m→∞

W (Sxm, q, �n)

= lim
m→∞

S�nxm

= t ∈ M.

(10)lim
m→∞

Axm = lim
m→∞

Snxm = t ∈ M.

(11)lim
m→∞

Axm = lim
m→∞

Snxm = lim
m→∞

Bym = lim
m→∞

Tnym = t ∈ M.

(12)

d(SnAxm,ASnxm) = d(W (SAxm, q, �n),A(W (Sxm, q, �n)))

= d(W (SAxm, q, �n),W (ASxm, q, �n))

≤ �nd(SAxm,ASxm).

(13)d(TnBym,BTnym) ≤ �nd(TBym,BTym).

lim
m→∞

d(BTym,TBym) = 0

and lim
m→∞

d(ASxm, SAxm) = 0.
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Taken into account Eqs. (11) and (14), it follows that (Tn,B) and (Sn,A) are subcompat-
ible for each n ∈ N . Since A, B, S and T are continuous for each n ∈ N , the pair (Sn,A) 
and (Tn,B) are reciprocally continuous.

By using equation (6) and Property (I), we get that

for each x, y ∈ M and �n ∈ (0, 1). By Lemma 12, for each n ∈ N , there exists xn ∈ M such 
that

Now by taking the compactness of M, we know continuous image of compact set is 
compact so T(M) and S(M) are compact and every compact set is sequentially com-
pact. Therefore there exist subsequences {Txm} of {Txn} and {Sxm} of {Sxn} such that 
limm→∞ Txm = z and limm→∞ Sxm = y.

Now, we have to prove that y = z.

On the contrary suppose that y �= z, then we have

This implies that the sequence {xm} converges to two points which is contradiction. 
Hence y = z.

Since xm → z as m → ∞ and the mappings A, B, S and T are continuous, it follows

So, z is common fixed point of A, B, S and T.
This implies that M

⋂

F(A)
⋂

F(B)
⋂

F(S)
⋂

F(T ) �= φ.�  �

Corollary 14  Let M be a nonempty q-starshaped subset of a convex metric space (X, d) 
with Property (I) and let A, B, S and T be continuous self-maps on M such that the pair 
(A,  S) and (B,  T) satisfying common property (E.A.) w.r.t. q. Assume that A and B are 
q-affine, M is compact. If A, B, S and T are compatible and satisfy the inequality

for all x, y ∈ M, then M
⋂

F(A)
⋂

F(B)
⋂

F(S)
⋂

F(T ) �= φ.

(14)lim
m→∞

d(BTnym,TnBym) = lim
m→∞

d(ASnxm, SnAxm) = 0.

(15)

d(Snx,Tny) = d(W (Sx, q, �n),W (Ty, q, �n))

≤ �nd(Sx,Ty)

≤ �n max
{

d(Ax,By), dist(Ax, [Sx, q]), dist(By, [Ty, q]), dist(Ax, [Ty, q]), dist(By, [Sx, q])
}

≤ �n max
{

d(Ax,By), d(Ax, Snx), d(By,Tny), d(Ax,Tny), d(By, Snx)
}

Axn = Snxn = Bxn = Tnxn = xn.

xm = Tmxm = W (Txm, q, �m) → z asm → ∞

and xm = Smxm = W (Sxm, q, �m) → y asm → ∞.

Az = Tz = Sz = Bz = z.

(16)

d(Sx,Ty) ≤ max
{

d(Ax,By), dist(Ax, [sx, q]), dist(By, [Ty, q]),

1

2
[dist(Ax, [Ty, q])+ dist(By, [Sx, q])]

}
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Corollary 15  Let M be a nonempty q-starshaped subset of a convex metric space (X, d) 
with Property (I) and let A, B, S and T be continuous self-maps on M such that the pair 
(A, S) and (B, T) satisfying common property (E.A.) w.r.t. q. Assume that A and B are q-aff-
ine, M is compact. If A, B, S and T are R-subweakly commuting and satisfy the inequality

for all x, y ∈ M, then M
⋂

F(A)
⋂

F(B)
⋂

F(S)
⋂

F(T ) �= φ.

Now we present an example in support of our theorem.

Example 16  Let X = R endowed with usual metric and let M =

[

−1, 23

]

. Define A, B, S 
and T : M → M by:

Then (X,  d) is a convex metric space with the convex structure W (x, y, �) =

(�)x + (1− �)y.
We have to check the following: 

(i)		� A and B are q-affine with q = 1
3

(ii)	� The pair (A, S) and (B, T) satisfying common property (E.A.) w.r.t. q = 1
3.

(iii)	� A, B, S and T are compatible.

Proof  (i) If x ∈

[

−1, 13

]

, then W
(

x, 13 , �
)

= (�)x + (1− �) 13 ∈

[

−1, 13

]

.

That implies A
(

W
(

x, 13 , �
))

= W
(

Ax, 13 , �
)

.

Again, if x ∈

[

1
3 ,

2
3

]

, then W
(

x, 13 , �
)

= (�)x + (1− �) 13 ∈

[

1
3 ,

2
3

]

, so we get

and

(17)

d(Sx,Ty) ≤ max
{

d(Ax,By), dist(Ax, [sx, q]), dist(By, [Ty, q]),

dist(Ax, [Ty, q]), dist(By, [Sx, q])
}

A(x) =

{

1
3

if − 1 ≤ x ≤ 1

3

5
3
− 4x if

1
3
≤ x ≤ 2

3

and S(x) =

{

1
3

if − 1 ≤ x ≤ 1

3

x
2
+ 1

6
if

1
3
≤ x ≤ 2

3

B(x) =

{

1
3

if − 1 ≤ x ≤ 1

3

1− 2x if
1

3
≤ x ≤ 2

3

and T (x) =

{

1

3
if − 1 ≤ x ≤ 1

3

x
4
+ 1

4
if

1

3
≤ x ≤ 2

3
.

A

(

W

(

x,
1

3
, �

))

=
5

3
− 4

(

W

(

x,
1

3
, �

))

=
5

3
− 4�x − 4(1− �)

1

3

=
1

3
− 4�x +

4

3
�

=
1

3
+ 4�

(

1

3
− x

)



Page 8 of 18Rathee et al. SpringerPlus  (2016) 5:1940 

Thus, A
(

W
(

x, 13 , �
))

= W
(

Ax, 13 , �
)

 for all x ∈ M and hence A is q-affine with q = 1
3 .

Now we shall prove that B is q-affine with q = 1
3 .

For this, if x ∈

[

−1, 13

]

, then B
(

W
(

x, 13 , �
))

= W
(

Bx, 13 , �
)

. and if x ∈

[

1
3 ,

2
3

]

, then 

W
(

x, 13 , �
)

= (�)x + (1− �) 13 ∈

[

1
3 ,

2
3

]

. Therefore, we have

and

So, B
(

W
(

x, 13 , �
))

= W
(

Bx, 13 , �
)

 for each x ∈ M. This implies that B is q-affine with 
q = 1

3.�  �

Proof  (ii) Clearly A
(

1
3

)

= B
(

1
3

)

= 1
3 .

Consider xn = 1
3 − 1

n+2 , n ≥ 1 and yn = 1
3 − 1

3n , n ≥ 1 then for each n, xn and 
yn ∈ [0, 13 ] and for each � ∈ [0, 1], we have

This implies that the pair (A,  S) and (B,  T) satisfying common property (E.A.) with 
respect to q = 1

3 . � �

W

(

Ax,
1

3
, �

)

= W

(

5

3
− 4x,

1

3
, �

)

= �

(

5

3
− 4x

)

+ (1− �)
1

3

=
5

3
�− 4�x +

1

3
− �

(

1

3

)

=
1

3
+ 4�

(

1

3
− x

)

.

B

(

W

(

x,
1

3
, �

))

= 1− 2

(

W

(

x,
1

3
, �

))

= 1− 2�x − 2(1− �)
1

3

=
1

3
+ 2�

(

1

3
− x

)

W

(

Bx,
1

3
, �

)

= �(1− 2x)+ (1− �)
1

3

= �− 2�x +
1

3
−

1

3
�

=
1

3
+ 2�

(

1

3
− x

)

.

lim sup
n→∞

S�xn = W

(

1

3
,
1

3
, �

)

=
1

3
= lim

n→∞
Axn

and lim sup
n→∞

T�yn = W

(

1

3
,
1

3
, �

)

=
1

3
= lim

n→∞
Byn.
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Proof  (iii) Here, we shall prove that the pairs (A, S) and (B, T) are compatible.

If {xn} and {yn} are two sequences in M such that

Then t and k lies in the closure of A(M), S(M) and B(M), T(M) respectively, where

So t = k = 1
3 .

Therefore, by using the continuity of A, B, S and T, we have

This implies that the pair (A, S) is compatible. Similarly we can prove that the pair (B, T) 
is compatible.�  �

Finally we have to prove the inequality (6). There are two possibilities: (i) x = y and (ii) 
x �= y. (i)	 If x = y, then

	 Subcase (i): if x = y ∈
[

−1, 13

]

, then d(Sx,Tx) = 0. So the inequality holds trivially.

	 Subcase (ii): if x = y ∈
[

1
3 ,

2
3

]

, then

lim
n→∞

Axn = lim
n→∞

Sxn = t for some t and

lim
n→∞

Byn = lim
n→∞

Tyn = k for some k .

Cl(A(M)) =

[

−1,
1

3

]

and Cl(S(M)) =

[

1

3
,
1

2

]

Cl(B(M)) =

[

−1

3
,
1

3

]

and Cl(T (M)) =

[

1

3
,
5

12

]

.

lim
n→∞

ASxn = A lim
n→∞

Sxn = A

(

1

3

)

=
1

3

lim
n→∞

SAxn = S lim
n→∞

Axn = S

(

1

3

)

=
1

3
.

d(Sx,Tx) =

∣

∣

∣

∣

x

2
+

1

6
−

x + 1

4

∣

∣

∣

∣

=

∣

∣

∣

∣

6x + 2− 3x − 3

12

∣

∣

∣

∣

=

∣

∣

∣

∣

3x − 1

12

∣

∣

∣

∣

=
1

4

∣

∣

∣

∣

x −
1

3

∣

∣

∣

∣

d(Ax,Bx) =

∣

∣

∣

∣

5

3
− 4x − 1+ 2x

∣

∣

∣

∣

=

∣

∣

∣

∣

1

3
− 2x

∣

∣

∣

∣

= 2

∣

∣

∣

∣

x −
1

3

∣

∣

∣

∣

.
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That implies d(Sx,Tx) ≤ d(Ax,Bx).

(ii)		 If x �= y, then

	 Subcase (i): if x �= y ∈ [0, 13 ], then d(Sx,Ty) = 0. Inequality trivially holds.

	 Subcase (ii): if x �= y ∈
[

1
3 ,

2
3

]

, then

This implies d(Sx,Ty) ≤ d(Ax,By).

	 Subcase (iii): if x ∈

[

−1, 13

]

 and y ∈
[

1
3 ,

2
3

]

, then

Therefore, we get d(Sx,Ty) ≤ d(Ax,By).

	 Subcase (iv): if x ∈

[

1
3 ,

2
3

]

 and y ∈
[

−1, 13

]

, then

d(Sx,Ty) =

∣

∣

∣

∣

x

2
+

1

6
−

y+ 1

4

∣

∣

∣

∣

=

∣

∣

∣

∣

6x + 2− 3y− 3

12

∣

∣

∣

∣

=

∣

∣

∣

∣

6x − 3y− 1

12

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

x −
y

2
−

1

6

∣

∣

∣

∣

d(Ax,By) =

∣

∣

∣

∣

5

3
− 4x − 1+ 2y

∣

∣

∣

∣

=

∣

∣

∣

∣

2

3
− 4x + 2y

∣

∣

∣

∣

= 4

∣

∣

∣

∣

x −
y

2
−

1

6

∣

∣

∣

∣

.

d(Sx,Ty) =

∣

∣

∣

∣

1

3
−

y+ 1

4

∣

∣

∣

∣

=

∣

∣

∣

∣

4 − 3y− 3

12

∣

∣

∣

∣

=

∣

∣

∣

∣

1− 3y

12

∣

∣

∣

∣

=
1

4

∣

∣

∣

∣

1

3
− y

∣

∣

∣

∣

d(Ax,By) =

∣

∣

∣

∣

1

3
− 1+ 2y

∣

∣

∣

∣

=

∣

∣

∣

∣

2y−
2

3

∣

∣

∣

∣

= 2

∣

∣

∣

∣

1

3
− y

∣

∣

∣

∣

.
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So, we have d(Sx,Ty) ≤ d(Ax,By).

Thus, for each x, y ∈ M, the mappings A, B, S and T satisfying the inequality (6). Also M 
is compact and A, B, S and T are continuous. Thus we conclude that A, B, S and T satis-
fying all the conditions of Theorem 13 and consequently

Here 13 ∈ M is such a common fixed point of A, B, S and T.

Remark 17  It is to be noted that, in Example 16, S(M) �⊂ A(M) and T (M) �⊂ B(M). 
Therefore all the existing common fixed point theorems which ensure the existence of 
common fixed point for the maps under the hypothesis that range of one set is contained 
in other are not applicable to Example 16 (see Chen and Li (2007), Rathee and Kumar 
(2014a, b), Shahzad (2001)).

Application to invariant approximation
For a nonempty subset M of a metric space (X, d) and p ∈ X, an element y ∈ M is called a 
best approximation to p if d(p, y) = dist(p,M), where dist(p,M) = inf{d(p, z) : z ∈ M} . 
The set of all best approximations to p is denoted by PM(p).

As an application of Theorem 13, we present an invariant approximation theorems.

Theorem 18  Let A, B, S and T be self-maps of a convex metric space (X, d) with Property 
(I), p ∈ F(S) ∩ F(T ) ∩ F(A) ∩ F(B), and M be a subset of X such that S(δM ∩M) ⊆ M 
and T (δM ∩M) ⊆ M, where δM denotes the boundary of M. Suppose that PM(p) is non-
empty, q-starshaped with A(PM(p)) ⊂ PM(p) and B(PM(p)) ⊂ PM(p) and also the maps 
A and B are q-affine and continuous on PM(p). If the pairs (A, S) and (B, T) are com-
patible, satisfy the common property (E.A.) w.r.t. q and also satisfy the inequality for all 
x, y ∈ PM(p) ∪ {p}

Then A, B, S and T have a common fixed point in PM(p), provided that PM(p) is compact 
and the maps T and S are continuous on PM(p).

d(Sx,Ty) =

∣

∣

∣

∣

x

2
−

1

6

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

x −
1

3

∣

∣

∣

∣

d(Ax,By) =

∣

∣

∣

∣

5

3
− 4x −

1

3

∣

∣

∣

∣

= 4

∣

∣

∣

∣

1

3
− x

∣

∣

∣

∣

.

M
⋂

F(A)
⋂

F(B)
⋂

F(S)
⋂

F(T ) �= φ.

(18)

d(Tx, Sy) ≤











d(Ax,Bp) if y = p

max{d(Ax,By), dist(Ax, [sx, q]), dist(By, [Ty, q]),

dist(Ax, [Ty, q]), dist(By, [Sx, q])} if y ∈ PM(p),

d(Sx,Tp) ≤ d(Tx, Sp).
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Proof  Let x ∈ PM(p). Then for all � ∈ (0, 1), we have

Therefore W (x, p, �) /∈ M for any � ∈ (0, 1) and hence x ∈ δM ∩M. Thus, as 
S(δM ∩M) ⊆ M and T (δM ∩M) ⊆ M, we have Tx ∈ M and Sx ∈ M. Also, since 
Ax ∈ PM(p) and p ∈ F(S) ∩ F(T ) ∩ F(A) ∩ F(B), by using Eq. (18), we get

and

Thus, Tx ∈ PM(p) and Sx ∈ PM(p). So A, B, S and T are self-maps on PM(p). In view of 
Theorem 13, we can say that A, B, S and T have a common fixed point in PM(p). � �

Define D = PM(p) ∩ CA,B
M (p), where CA,B

M (p) = {x ∈ M : Ax ∈ PM(p) and

Bx ∈ PM(p)}

Theorem 19  Let A, B, S and T be self-maps of a convex metric space (X, d) with Property 
(I), p ∈ F(S) ∩ F(T ) ∩ F(A) ∩ F(B), and M be a subset of X such that S(δM ∩M) ⊆ M 
and T (δM ∩M) ⊆ M, where δM denotes the boundary of M. Suppose that D is non-
empty, q-starshaped with A(D) ⊂ D and B(D) ⊂ D and also the maps A and B are q-aff-
ine and nonexpansive on D. If the pairs (A, S) and (B, T) are compatible, satisfy the com-
mon property (E.A.) w.r.t. q and also satisfy the inequality for all x, y ∈ D ∪ {p}

Then A, B, S and T have a common fixed point in PM(p), provided that D is compact and 
the maps T and S are continuous on D.

Proof  Let x ∈ D. Then by following the steps as we have done in Theorem  18, we 
get that Tx ∈ PM(p) and Sx ∈ PM(p). Since the maps A and B are nonexpansive and 
p ∈ F(S) ∩ F(T ) ∩ F(A) ∩ F(B), by using Eq. 19, we have

and

That imply ATx and BTx ∈ PM(p) and hence Tx ∈ CA,B
M (p). Similarly we can show that 

Sx ∈ CA,B
M (p). Thus we can say A, B, S and T are self-maps on D and so Theorem 13 guar-

antees the existence of z ∈ PM(p) such that z is a common fixed point of A, B, S and T.� �

d(p,W (x, p, �)) ≤ �d(p, x)+ (1− �)d(p, p) = �d(p, x) < dist(p,M).

d(Tx, p) = d(Tx, Sp) ≤ d(Ax,Bp) = d(Ax, p) = dist(p,M)

d(Sx, p) = d(Sx,Tp) ≤ d(Tx, Sp) ≤ d(Ax,Bp) = d(Ax, p) = dist(p,M).

(19)
d(Tx, Sy) ≤











d(Ax,Bp) if y = p

max{d(Ax,By), dist(Ax, [sx, q]), dist(By, [Ty, q]),

dist(Ax, [Ty, q]), dist(By, [Sx, q])} if y ∈ D,

d(Sx,Tp) ≤ d(Tx, Sp).

d(ATx, p) = d(ATx,Ap) ≤ d(Tx, p) = d(Tx, Sp) ≤ d(Ax, p) = dist(p,M)

d(BTx, p) = d(BTx,Bp) ≤ d(Tx, p) = d(Tx, Sp) ≤ d(Ax, p) = dist(p,M).
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Best proximity point
First we discuss the concept of best proximity. Let T : A → B be a map where A and B 
are two nonempty subsets of a metric space (X, d) and let A and B are disjoint subsets 
of a metric space then the equation Tx = x might have no solution. Therefore in case of 
nonself-maps we are not sure about the existence of fixed point. In such a case we try 
to minimize the distance d(x, Tx) and a point x for which d(x, Tx) is minimum is called 
a best proximity point. In the recent years there have been many interesting best prox-
imity point theorems are proved, for example, see De la Sen et  al. (2013), Eldred and 
Veeramani (2006), Prolla (1983), Reich (1978), and Sankar Raj (2011), Sehgal and Singh 
(1988). In the present section we prove a new best proximity theorem for four maps but 
before this we recall some definitions which are required in the sequel.

Definition 20  Let (X, d) be a convex metric space and A, B be two nonempty subsets 
of X. A mapping f : A → B is called pq-affine if 

(i)		� A is p-starshaped set and B is q-starshaped set;
(ii)	� f (W (x, p, �)) = W (fx, q, �).

Definition 21  Let A and B be two nonempty subsets of convex metric space (X, d). 
Let A be a p-starshaped set and B be a q starshaped set. Let f, g, S,  and T be four non-
self-maps from A to B. Two pairs (f, S) and (g, T) are said to satisfy common property 
(E.A.) with respect to q if there exists two sequences {xn} and {yn} in A such that for all 
� ∈ [0, 1]

where S�x = W (Sx, q, �) and T�y = W (Ty, q, �).

Definition 22  Let (X,  d) be a convex metric space and A and B be two non-
empty subsets of X such that B is q-starshaped set. A pair (f,  S) of two nonself-maps 
from A to B is said to be proximally commuting if for some � ∈ [0, 1] whenever 
d(x,W (Su, q, �)) = d(y, fu) = d(A,B) =⇒ W (Sy, q, �) = fx.

If A and B are two nonempty subsets of a metric space (X, d), we define the following 
two sets.

Definition 23  (Sankar Raj, preprint) If A0 �= φ, then the pair (A,  B) is said to have 
P-property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0

Now we presents a best proximity point theorem:

lim
n→∞

fxn = lim
n→∞

S�xn = lim
n→∞

gyn = lim
n→∞

T�yn = t

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

d(x1, y1) = d(A,B) and d(x2, y2) = d(A,B) =⇒ d(x1, x2) = d(y1, y2).
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Theorem 24  Let (A, B) be a pair of nonempty, closed subsets of a convex metric space 
(X, d). Suppose that A is p-starshaped and B is q-stasrshaped set with Property (I). Also 
suppose that A0 is closed. Let f, g, S and, T be continuous nonself maps from A to B satis-
fying the conditions: 

(i)		� Two pairs (f, S) and (g, T)   satisfying common property (E.A.) w.r.t q and proxi-
mally  commuting;

(ii)	 T (A) ⊆ f (A), S(A) ⊆ g(A), f (A0) ⊆ B0, g(A0) ⊆ B0;
(iii)	 The pair (A, B) has P-property;
(iv)	� f, g, S and, T satisfying the condition d(Sx,Ty) ≤ max{d(fx, gy), dist(fx, [Sx, q]),

dist(gy, [Ty, q]), 1
2
[dist(fx, [Ty, q])+ d(gy, [Sx, q])]};

(v)		 Two mappings S and T are pq-affine.

then f, g, S and T have a best proximity point.

Proof  For each n ∈ N , we define sequences Tn : A → B and Sn : A → B by 
Tny = W (Ty, q, �n) and Snx = W (Sx, q, �n) for all x, y ∈ A and �n is a sequence in (0, 1) 
such that �n → 1

Consider

By using Property (I) for the set B

=⇒ d(Snx,Tny) ≤ �nmax{d(fx, gy), dist(fx, Snx), dist(gy,Tny),
1
2 [dist(fx,Tny) +

dist(gy, Snx)]}  

Now T (A) ⊆ f (A) we can prove that Tn(A) ⊆ f (A). For this purpose, consider

T is pq-affine and A is p-starshaped set

Similarly it can be proved that Sn(A) ⊆ f (A). Now Tn(A) ⊆ f (A) so for fixed x0 ∈ A, 
there exists an element x1 ∈ A such that Tnx0 = fx1 similarly a point x2 ∈ A can be cho-
sen such that Snx1 = gx2, continuing in process, we can obtain a sequence {x2n} ∈ A such 
that

d(Snx,Tny) = d(W (Sx, q, �n),W (Ty, q, �n)).

d(W (Sx, q, �n),W (Ty, q, �n)) ≤ �nd(Sx,Ty)

≤ �n max{d(fx, gy), dist(fx, [Sx, q]), dist(gy, [Ty, q]),
1

2
[dist(fx, [Ty, q])+ dist(gy, [Sx, q])]}

≤ �n max{d(fx, gy), dist(fx, Snx), dist(gy,Tny),
1

2
[dist(fx,Tny)+ dist(gy, Snx)]}

y ∈ Tn(A)

y = Tnx for some x ∈ A

y = W (Tx, q, �n).

y = T (W (x, p, �n)) ⊆ T (A) ⊆ f (A)

=⇒ y ∈ f (A)

=⇒ Tn(A) ⊆ f (A).
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Since f (A0) ⊆ B0 and g(A0) ⊆ B0, there exists {un} ∈ A0 such that

As the pair (A, B) has P-property then by Eq. (21) d(u2n,u2n+1) = d(fx2n+1, gx2n+2).

By using Eq. (20), we have d(u2n,u2n+1) = d(Tnx2n, Snx2n+1). Using Property (I)

and the condition (iv), we can write the expression

Hence d(u2n,u2n+1) ≤ �nmax{d(u2n,u2n−1), d(u2n,u2n+1),
1
2d(u2n−1,u2n+1)}

Similarly

From Eqs. (22) and (23), we obtain

This implies

Let m, n ∈ N and m < n, we have

By using Eq. (25), we come across

(20)fx2n+1 = Tnx2n and gx2n+2 = Snx2n+1.

(21)d(u2n, fx2n+1) = d(A,B) and d(u2n+1, gx2n+2) = d(A,B).

d(Snx2n+1,Tnx2n) ≤ �nmax{d(fx2n+1
, gx2n), d(fx2n+1, Snx2n+1), d(gx2n,Tnx2n),

1

2
[d(fx2n+1,Tnx2n)+ d(gx2n, Snx2n+1)]}

= �nmax{d(u2n,u2n−1), d(u2n,u2n+1), d(u2n−1,u2n),

1

2
[d(u2n,u2n)+ d(u2n−1,u2n+1)]}

= �nmax{d(u2n,u2n−1), d(u2n,u2n+1),
1

2
d(u2n−1,u2n+1)}.

(22)=⇒ d(u2n,u2n+1) ≤ �nd(u2n,u2n−1).

(23)

d(u2n+1,u2n+2) = d(fx2n+3, gx2n+2) = d(Tnx2n+2, Snx2n+1)

d(u2n+1,u2n+2) = d(Tnx2n+2, Snx2n+1) and

d(Snx2n+1,Tnx2n+2) ≤ �n max{d(fx2n+1, gx2n+2), d(fx2n+1, Snx2n+1), d(gx2n+2,Tnx2n+2),

1

2
[d(fx2n+1,Tnx2n+2)+ d(gx2n+2, Snx2n+1)]}

= �n max{d(u2n,u2n+1), d(u2n,u2n+1), d(u2n+1,u2n+2),

1

2
[d(u2n,u2n+2)+ d(u2n+1,u2n+1)]}

=⇒ (u2n+1,u2n+2) ≤ �n max{d(u2n,u2n+1), d(u2n+1,u2n+2),
1

2
d(u2n,u2n+2)}

Hence (u2n+1,u2n+2) ≤ �nd(u2n,u2n+1).

(24)d(un,un+1) ≤ d(un−1,un).

(25)d(un,un+1) ≤ (�n)
nd(u0,u1).

d(um,un) ≤ d(um,um+1)+ d(um+1,un)

≤ d(um,um+1)+ d(um+1,um+2)+ d(um+2,un)

≤ d(um,um+1)+ d(um+1,um+2)+ · · · + d(un−1,un).
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=⇒ d(um,un) → 0 when m → ∞ this implies {un} is a Cauchy sequence. Since 
{un} ⊂ A0 and A0 is closed subset of the complete metric space (X, d), we can find u ∈ A0 
such that limn→∞ un = u.

Since (f, S) and (g, T) have common property (E.A.) with respect to q so there exists a 
sequence {um} in A such that

Since �n ∈ (0, 1), we have

Thus, we have

Similarly

and so

Hence in light of Eqs. (26) and (27), we obtain

Since f, g, S and, T are continuous so f , g , Sn and Tn are continuous and un → u. Then 
from Eq. (28)

d(um,un) ≤ (�n)
md(u0,u1)+ (�n)

m+1d(u0,u1)+ · · · + (�n)
n−1d(u0,u1)

≤ (�n)
m[d(u0,u1)+ �nd(u0,u1)+ · · · + (�n)

n−m−1d(u0,u1)]

= (�n)
m[1+ �n] + (�n)

2 + · · · + (�n)
n−m−1]d(u0,u1)

= (�n)
m

[

1

1− �n

]

d(u0,u1) → 0 when m → ∞.

lim
m→∞

fum = lim
m→∞

S�um = lim
m→∞

gum = lim
m→∞

T�um = t

lim
m→∞

T�um = lim
m→∞

W (Tum, q, �)

and lim
m→∞

S�um = lim
m→∞

W (Sum, q, �).

lim
m→∞

Tnum = lim
m→∞

W (Tum, q, �n)

= lim
m→∞

T�n
(um)

= t ∈ B.

(26)lim
n→∞

gun = lim
n→∞

Tnum = t ∈ B.

lim
m→∞

Snum = lim
m→∞

W (Sum, q, �n)

= lim
m→∞

S�num

= t ∈ B.

(27)lim
m→∞

fum = lim
m→∞

Snum = t ∈ B.

(28)lim
m→∞

fum = lim
m→∞

Snum = lim
m→∞

gum = lim
m→∞

Tnum = t ∈ B.

(29)fu = Snu = gu = Tnu.
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Since f (A0) ⊆ B0, there exists x ∈ A0 such that

As (f , Sn) and (g ,Tn) proximally commuting, so

Taking limit n → ∞ in Eqs. (29) and (31) we have

Since f (A0) ⊆ B0, there exists z ∈ A0 such that

Because the pair (A, B) has P-property so d(x, z) = d(Snu,Tnx)

This implies that (1− �n)d(x, z) ≤ 0. So, x = z and hence

Suppose that y is another best proximity point of the mappings f, g, S and T such that

Using Eqn. (29) and  P-property for the pair (A, B), we get that x = y.�  �

Conclusion
In this note, we defined the common property (E.A.) in the context of convex metric 
space that means here we assign the algebraic structure to the common property (E.A.) 
that is already exists in metric space. Due to this, we have been able to obtained a set of 
common fixed point theorems in which to ensure the existence of common fixed points 
the condition of range of one set is contained in other is not required. Thus, this newly 
introduced concept plays a great role in solving many kinds of physical sciences prob-
lems which can be recast in terms of common fixed point problems.
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(30)d(x, fu) = d(x, gu) = d(x, Snu) = d(x,Tnu) = d(A,B).

(31)fx = gx = Snx = Tnx.

(32)fu = Su = Tu = gu and fx = gx = Sx = Tx.

d(z, fx) = d(z, gx) = d(z, Snx) = d(z,Tnx) = d(A,B).

d(x, z) = d(Snu,Tnx)

≤ �nmax{d(fu, gx), dist(fu, Snu), dist(gx,Tnx),
1

2
[dist(fu,Tnx)+ dist(gx, Snu)]}

≤ (�n){d(x, z)}.

(33)d(A,B) = d(x, fx) = d(x, gx) = d(x, Sx) = d(x,Tx).

(34)d(A,B) = d(y, fy) = d(y, gy) = d(y, Sy) = d(y,Ty).
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