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Background
Global optimization has been extensively applied in various science and engineering 
fields. Unconstrained global optimization is important in optimization. Thus, numerous 
studies on global optimization have been conducted using various strategies to achieve 
unconstrained global optimization (Deep et al. 2009; Fan and Yan 2015; Gwizdałła 2012). 
However, serious challenges in global optimization remain, such as non-linear, non-con-
vex, and non-differential problems.

Abstract 

Differential evolution (DE) is an efficient and robust evolutionary algorithm and has 
wide application in various science and engineering fields. DE is sensitive to the selec-
tion of mutation and crossover strategies and their associated control parameters. 
However, the structure and implementation of DEs are becoming more complex 
because of the diverse mutation and crossover strategies that use distinct parameter 
settings during the different stages of the evolution. A novel strategy is used in this 
study to improve the crossover and mutation operations. The crossover matrix, instead 
of a crossover operator and its control parameter CR, is proposed to implement the 
function of the crossover operation. Meanwhile, Gaussian distribution centers the best 
individuals found in each generation based on the proposed covariance matrix, which 
is generated between the best individual and several better individuals. Improved 
mutation operator based on the crossover matrix is randomly selected to generate the 
trial population. This operator is used to generate high-quality solutions to improve the 
capability of exploitation and enhance the preference of exploration. In addition, the 
memory population is randomly chosen from previous generation and used to control 
the search direction in the novel mutation strategy. Accordingly, the diversity of the 
population is improved. Thus, CCDE, which is a novel efficient and simple DE variant, 
is presented in this paper. CCDE has been tested on 30 benchmarks and 5 real-world 
optimization problems from the IEEE Congress on Evolutionary Computation (CEC) 
2014 and CEC 2011, respectively. Experimental and statistical results demonstrate the 
effectiveness of CCDE for global numerical and engineering optimization. CCDE can 
solve the test benchmark functions and engineering problems more successfully than 
the other DE variants and algorithms from CEC 2014.
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Differential evolution (DE) is one of the most efficient evolutionary algorithms (EAs) 
and has wide application in numerous numerical optimization problems in diverse fields 
(dos Santos Coelho et al. 2014). ED was first introduced by Storn and Price (1995). DE 
is a population-based optimization algorithm similar to other EAs. This algorithm pri-
marily consists of a mutation operator and a crossover operator (Storn and Price 1997). 
Each individual in the population in DE is called a target vector. First, a mutant vector 
is produced by the mutation operator. Then, a trial vector is confirmed by the crossover 
operator applied to the target and mutant vectors. Finally, the better solution is selected 
between the trial vector and its target vector according to their objective function values. 
DE has been successfully demonstrated in various continuous optimization problems in 
many science and engineering fields because of its simple structure, easy operation, con-
vergence property, quality of solution, and robustness. DE has also been used in robot 
control (Wang and Li 2011), sensor array interrogation (Venu et al. 2008), cluster analy-
sis (Maulik and Saha 2009), and other applications (Dong et al. 2014; Gundry et al. 2015; 
Zhang and Duan 2015; Zhang et al. 2015).

DE is sensitive to the choice of the mutation and crossover operators and their two 
associated control parameters, namely, the crossover control parameter CR and scaling 
factor F (Qin et al. 2009). The influence of these factors has been paid much attention, 
and a series of different DEs has been proposed to improve the optimization perfor-
mance. Brest et al. (2006) proposed the JDE algorithm, which is a DE with self-adaptive 
parameter control. In this algorithm, CR and F are encoded into the chromosome and 
participate in the evolution. Zhang and Sanderson (2009) improved F by Cauchy distri-
bution and CR by normal distribution in the parameter-adaptive DE algorithm called 
JADE. Moreover, self-adaptive equations for CR and F have been proposed to control 
their values with increased generation. Qin et al. (2009) proposed another self-adaptive 
DE called SaDE with a strategy pool as well as different parameter settings. Mallipeddi 
et al. (2011) proposed the EPSDE algorithm, which is a DE with an ensemble of control 
parameter and mutation strategies. EPSDE has a distinct trial vector generation strategy 
pool and controls parameter pool to self-adjust its search strategy along with the itera-
tion process. Wang et al. (2014) introduced the CoBiDE algorithm, which uses a covari-
ance matrix learning strategy based on the current population distribution to initialize 
the population of DE and a bimodal distribution strategy to control the value of the two 
control parameters. These DE-based algorithms and other improved DEs have enhanced 
the optimization performance of DE to some extent. However, the simple structure of 
standard DE has been considerably changed, resulting in the apparent difficulty in bal-
ancing between exploration (searching for better individuals) and exploitation (using the 
existing material in the population to obtain the best effect) (Fraa et al. 2015).

Thus, we propose a covariance and crossover matrix-guided DE (CCDE) based on sev-
eral studies (Ghosh et  al. 2012; Santucci and Milani 2011; Zhabitsky and Zhabitskaya 
2013) to solve these problems. The covariance matrix between the current best individ-
ual and several better individuals can reflect the rotation information of the function to 
some extent. Thus, the covariance matrix is used to guide the generation of new indi-
viduals. We introduce the Gaussian distribution that centers the best individuals found 
in each generation based on the proposed covariance matrix. The crossover operator 
and its parameter CR are simplified and replaced by the crossover matrix, which is a 
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random binary integer-valued matrix composed of 0 and 1. In addition, the memory 
population M is introduced to enhance the exploration of the CCDE and is used to con-
trol the search direction of the generation. CCDE has been tested on 30 benchmarks 
chosen from the IEEE Congress on Evolutionary Computation (CEC) 2014 (Liang et al. 
2013) and 5 real-world engineering problems selected from CEC 2011 (Das and Sugan-
than 2010). The performance of CCDE is compared with those of JADE, SaDE, EPSDE, 
and CoBiDE, as well as five algorithms from CEC 2014. The experimental and statistical 
results suggest that the performance of CCDE is better than those of other compared 
algorithms.

The rest of this paper is organized as follows. Section “DEA” introduces DE briefly. 
CCDE is presented in section “CCDE”. The experimental results are presented in section 
“Experimental study”. Finally, section “Conclusion” elaborates the conclusion and future 
work.

DEA
DE is a population-based heuristic search algorithm and has four basic processes: ini-
tialization, mutation, crossover, and selection.

Initialization

DE performs an initialization by selecting several points from the search space randomly 
using Eq. (1), as follows:

where D denotes the dimension of the population and N denotes the population size. 
The vector element of xi,0 is a random number uniformly distributed in the range [low, 
up], where low and up are the boundaries of the search space.

Mutation

The standard mutation strategy used in DE is “DE/rand/1” and can be illustrated using 
Eq. (2), as follows:

where F is the scaling factor varied from 0.4 to 1; and r1, r2, and r3 are randomly chosen 
from [1, N]. i, r1, r2, and r3 are mutually different. G (G = 1, 2, 3, …, Maxgen) is the cur-
rent generation. Control parameter F is a random value for each individual. A larger F is 
effective for global search, while a smaller F is useful for local search.

Crossover

After mutation, the crossover operator is used by Eq. (3), as follows:

where CR is a crossover control parameter or a factor selected from the range [0,1), 
i = 1, 2, …, N and j = 1, 2, …, D. jrand is an integer value randomly chosen from [1, N]. 

(1)P0 = {xi,0 = (xi,1,0, xi,2,0, xi,3,0, . . . , xi,D,0), i = 1, 2, 3, . . . ,N }

(2)vi,G = xr1,G + F · (xr2,G − xr3,G)

(3)ui,j,G =

{

vi,j,G , if rand(0, 1) ≤ CR or j = jrand
xi,j,G , otherwise
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The trial vector ui,G is generated in the process. CR controls the mutation probability. 
The larger CR inherits more elements from the mutant vector.

Selection

In the selection process, DE chooses the better one between the target vector xi,G and 
trial vector ui,G according to their fitness value using Eq. (4), as follows:

where F(x) is the fitness value of vector x.

CCDE
CCDE is a novel DE variant designed to be a global minimizer. Unlike the standard DE, 
CCDE can be explained by dividing its functions into four steps: initialization, selection-
I, trial population generation, and selection-II. The trial population is generated by the 
crossover and covariance matrices. Algorithm 1 shows the general structure of CCDE.

The detailed description of CCDE is presented as follows.

Initialization

The initialization population P0 of CCDE is the same as those of other DEs using Eq. (1). 
Contrary to the other DE variants, M in CCDE is used to store the individuals of P with 
rearranged order. Moreover, M is used to control the search direction and thus enhance 
the capability of exploration. Given that P0 is definite, M0 is initialized by Eq.  (5), as 
follows:

Selection‑I

The fitness values of initialized population P0 are calculated, and the best individual is 
stored.

Generation of trial population

Generation of the crossover matrix

This step is the most important process in the CCDE. M is adjusted prior to the genera-
tion of the trial population to store the previous generation randomly using Eq. (6), as 
follows:

(4)xi,G+1 =

{

vi,G , if F(vi,G) ≤ F(xi,G)
xi,G , otherwise

(5)M0 = {yi,0 = (yi,1,0, yi,2,0, yi,3,0, . . . , yi,D,0), i = 1, 2, 3, . . . ,N }
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where a and b are random numbers with uniform distribution in the range (0,1). Per-
muting is a function to change the order of individuals in M and thus improve its diver-
sity. As a result, the population has a memory capability and is mainly used to improve 
the performance of exploration.

Then, the crossover matrix (Cr) is generated randomly instead of the crossover opera-
tor. This matrix is used to determine whether the individuals of P must be updated or 
not. CrG is composed of the integer 0 and 1, and initialized by Cr0 = 0 before the itera-
tion. When Cri,j (i = 1, 2, 3, …, N; j = 1, 2, 3, …, D) is equal to 0, xi,j,G remains unchanged. 
Otherwise, xi,j,G is updated and generated using Eq. (7), as follows:

where randa and randb are random values selected from the uniform distribution in 
the range (0,1). randi{D} is a function to randomly generate the integer value from 1 to 
D. u(i:randi{D}) represents the vector elements chosen from the vector u from the order 
number i to randi{D}. The elements of u are generated by permuting function about the 
integer numbers {1, 2, 3, … D}. In Eq. (7), when randa is less than randb, several vector 
elements of individual i is updated, while the others remain unchanged. Otherwise, only 
one vector element of individual i is changed.

The crossover matrix in this step is mainly used to balance the performance of the 
exploration and exploitation. The crossover matrix of CCDE is more complex and effi-
cient without CR than the crossover operator of other DEs because the diversity of its 
population is firmly enhanced.

Generation of covariance matrix

The best individual found during evolution is used as the leader to guide the search and thus 
improve the capability of exploitation. The newly generated individual must center the best 
individuals. The region around the best individual may be considered the potential region 
to find the next better individual. Therefore, this method is used to generate the covariance 
matrix. However, considering the avoidance of local optimum and based on the covariance 
matrix adaptation evolution strategy (CMA-ES) in Hansen and Ostermeier (2001), covariance 
matrix learning in CoBiDE in Wang et al. (2014), and differential covariance matrix adaptation 
EA in Ghosh et al. (2012), a novel covariance matrix strategy is proposed by learning from the 
previous best individual and present population. With the use of this strategy, the covariance 
matrix inherits the information accumulated during evolution and learns new information 
from the present population. The covariance matrix is generated by Eq. (8), as follows:

where cov(xbest1,G, xbest2,G, xbestλ,G,) calculates the covariance matrix of the λ best indi-
viduals in the current generation and � = ⌊N/4⌋. The covariance matrix, as indicated 
by CMA-ES and CoBiDE, is used to guide the generation of trial population and fully 

(6)
M =

{

P, if a < b
permuting(M), otherwise

(7)

{

Cri,u(i:randi{D})=1|u=permuting{1,2,3...,D}, if randa < randb

Cri,u = 1|u = randi{D}, otherwise

(8)CoG+1 = rand · CoG + (1− rand) · cov(xbest1,G , xbest2,G , . . . , xbest�,G)
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utilizes the information of the individuals to improve the convergence speed. However, 
contrary to CMA-ES and CoBiDE, the information of the λ best individuals is consid-
ered in the covariance matrix of CCDE.

Generation of trial population

The trial population is generated in this step. The covariance matrix is used as a guide to 
search the region around the best individual by Gaussian distribution and thus improve 
the exploitation. The exploration is enhanced using the form of “DE/rand/1” with the 
improved search direction confirmed by memory and target populations. As a result, we 
choose one of the two strategies randomly to balance the exploration and exploitation, 
which can be formulated as follows:

where MG is a memory population and PG
’ is a random-ordered individual of population 

PG. F is the scale control parameter of DE as illustrated by Eq. (2). F = R [R–C(1, 0.1), 
where C(1, 0.1) is the Cauchy distribution with local parameter 1 and scale parameter 
0.1] (Wang, Lib, and Huang 2014). Xbest,G is the current best population consisting of the 
current best individual. N(0, CoG) is the Gaussian distribution with mean value 0 and 

variance value CoG. r = rand1

(

1− rand

(

1− G
Maxgen

)0.7

2

)

 is the adaptive step size, which is 

similar to that in simulated annealing algorithm (Edmonds 1971). This step size gradu-
ally decreases the search range, and rand is a random value in [0, 1].

From Eq.  (9), the search range around the current best individual narrowed with r 
tends to 0 and G tends to Maxgen to exploit the individual. Meanwhile, falling into local 
optimum is avoided via the improved mutation operator based on the crossover matrix 
using a random selection strategy as indicated by Eq. (9). Figure 1 illustrates the genera-
tion of the trial vector defined by Eq. (9).

If the kth component vi,k,G+1 of vi,k,G+1 is out of the allowed search space, then it is 
regenerated by Eq. (10), as follows:

(9)VG+1 =

{

PG + CrG · F · (PG −MG), if randa < randb
Xbest,G + r ·N(0,CoG), otherwise

x2

x1O

Mi,G

Pi,G Vi,G

Xbest,G

Vi,G

r·N(0,CoG)

Global Optimal

Fig. 1 Two dimensional example of an objective function showing its contour lines and the process for 
generating trial vector in scheme Eq. (9)
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where low and up are the boundaries of the search space.

Pseudo code for CCDE

The pseudo code can be presented in Algorithm 2 according to the description of CCDE 
in the previous subsections.

(10)
vi,k ,G+1 =

{

up+ 0.5 · rand · (vi,k ,G+1 − up), if vi,k ,G+1 > up
low + 0.5 · rand · (low − vi,k ,G+1), if vi,k ,G+1 < low
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CCDE has a very simple structure as indicated by Algorithm 2. Combining the crossover 
matrix, covariance matrix, and M can achieve a good tradeoff between exploration and 
exploitation.

Experimental study
We analyze the performance of our CCDE by conducting a set of experiments as well 
as a statistical analysis of the experimental results. We use MALLBA 2013a to develop 
the CCDE algorithm. Non-parametric statistical tests are used in the experimental com-
parisons because numerical distributions of results sometimes do not follow the con-
ditions of normality and homoscedasticity (García et al. 2009). Therefore, our analyses 
are mainly focused on the mean errors of 30 or 51 independent runs. Statistical tests 
are accomplished using the KEEL software, including multi-problem Wilcoxon’s test and 
Friedman’s test (Alcalá et al. 2009).

We also conduct a series of comparisons with the canonical versions of DE as well as 
five algorithms from CEC 2014 to clarify the competitiveness of CCDE. All experiments 
are performed on a computer with 2.9 GHz Intel(R) Core(TM) i5-2310 processor and 
4.0 GB of RAM in Windows XP. The set of benchmarks and the parameter settings are 
described in detail.

Benchmark functions

A total of 30 benchmark functions developed for IEEE CEC 2014 (Liang et al. 2013) are 
used, as well as 5 real-world engineering optimization problems selected from IEEE 
CEC 2011 (Das and Suganthan 2010). The 30 benchmarks are first presented and then 
the 5 real-world engineering optimization problems are expressed in the following sec-
tion. The 30 benchmarks can be divided into 4 classes:

1. Unimodal Functions: F1–F3;
2. Multimodal Functions: F4–F16;
3. Hybrid Function: F17–F22; and
4. Composition Functions: F23–F30.

Each function of the above test functions has shift data. F8 and F10 are separable func-
tions, while the rest are non-separable. Some test functions are rotated using different 
rotation matrices to determine the correlation among variables. The global optima of 
some test functions are shifted to avoid being at the center of the search space. Con-
trary to other test functions in previous IEEE CEC, the rotation matrix for each sub-
component is generated from standard normally distributed entries by Gram–Schmidt 
orthonormalization. The variables in the hybrid functions are randomly divided into 
subcomponents, and then different basic functions are used for different subcompo-
nents. A local optimum with the smallest bias value is the global optimum in the com-
position functions, and is set to the origin as a trap for each composition function 
included in this benchmark suite. Table 1 shows the set of the 30 test functions, which 
are described in detail in Liang et al. (2013).

In this section, the mean errors and standard deviations of the function error value 
[f(x) − f(x′)] are calculated over 30 or 51 independent runs for each test function; x is the 
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best solution in the population when the algorithm terminates, and x′ is the global opti-
mal value. Multi-problem Wilcoxon’s test and Friedman’s test at a 0.05 significance level 
are performed to test the statistical significance of the experimental results among the 
compared algorithms. The parameter N in this section is set to 100.

Comparison with other DEs

CCDE is compared with four other DE variants, namely, JADE (Zhang and Sanderson 
2009), SaDE (Qin et al. 2009), EPSDE (Mallipeddi et al. 2011), and CoBiDE (Wang et al. 
2014). The covariance matrix used in CoBiDE is also based on CMA-ES, and its per-
formance is superior to that of CMA-ES (Wang et al. 2014). Thus, we only choose the 
CoBiDE, instead of CMA-ES, as the competitor for comparison. The parameter set-
tings for the four algorithms are the same as those in the original papers. JADE adopts 

Table 1 IEEE CEC2014 functions with  functions’ features: unimodal (U), multimodal (M), 
separable (Sep.) and  non-separable, rotated (Rot.) and  non-rotated, asymmetrical (Asy.) 
and symmetrical

Optimal stands for global optimal value

Function Name U/M Asy. Sep. Optimal

F1 Rot. high conditioned elliptic function U N N 100

F2 Rot. bent cigar function U N N 200

F3 Rot. discus function U N N 300

F4 Shif. Rot. Rosenbrock’s function M N N 400

F5 Shif. Rot. Ackley’s function M N N 500

F6 Shif. Rot. Weierstrass function M N N 600

F7 Shif. Rot. Griewank’s function M N N 700

F8 Shif. Rastrigin’s function M N S 800

F9 Shif. Rot. Rastrigin’s function M N N 900

F10 Shif. Schwefel’s function M N S 1000

F11 Shif. Rot. Schwefel’s function M N N 1100

F12 Shif. Rot. Katsuura function M N N 1200

F13 Shif. Rot. HappyCat function M N N 1300

F14 Shif. Rot. HGBat function M N N 1400

F15 Shif. Rot. Exp. Griewank’s + Rosenbrock’s function M N N 1500

F16 Shif. Rot. Exp. Scaffer’s F6 function M N N 1600

F17 Hybrid function 1 (N = 3) M N N 1700

F18 Hybrid function 2 (N = 3) M N N 1800

F19 Hybrid function 3 (N = 4) M N N 1900

F20 Hybrid function 4 (N = 4) M N N 2000

F21 Hybrid function 5 (N = 5) M N N 2100

F22 Hybrid function 6 (N = 5) M N N 2200

F23 Composition function 1 (N = 5) M A N 2300

F24 Composition function 2 (N = 3) M N N 2400

F25 Composition function 3 (N = 3) M A N 2500

F26 Composition function 4 (N = 5) M A N 2600

F27 Composition Function 5 (N = 5) M A N 2700

F28 Composition Function 6 (N = 5) M A N 2800

F29 Composition Function 7 (N = 3) M A N 2900

F30 Composition function 8 (N = 3) M A N 3000

Search range: [−100, 100] Dimension: Dim = 10 and 30
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self-adaptive parameter setting with Finitial = 0.5 and CRinitial = 0.9. SaDE uses the nor-
mal distribution N (0.5, 0.3) to produce F and the normal distribution N (CRm, 0.1) to 
adjust CR self-adaptively. EPSDE sets F = 0.9 and CR = 0.1. CoBiDE sets pb = 0.4 and 
ps = 0.5. In this experiment, D of the 30 test functions is set to 10, and each test function 
independently runs 30 times with 300,000 function evaluations (FEs) and error value 
Error = 10−8 as the termination criterion.

The experimental results of CCDE and four other algorithms are summarized in 
Table 2. The portions in italic in Table 2 represent the best results among the algorithms 
in terms of the optimization of the test functions. CCDE, JADE, SaDE, and CoBiDE 
exhibit the best performance on the three unimodal functions F1–F3. However, the per-
formance of EPSDE on the three functions is not better than those of the four other 
algorithms. For the simple multimodal functions F4–F16, CCDE exhibits the best per-
formance on F4–F9 and F11–F14 compared with the four other algorithms. In particu-
lar, CCDE can reach the global best value on F4 and F6–F8. CoBiDE shows the best 
performance on F10 and F15 among all algorithms. EPSDE outperforms the four other 
algorithms in F16. The outstanding performance of CCDE can be attributed to its pro-
posed strategies that can balance exploration and exploitation. The five algorithms can-
not find the global best values for the hybrid functions F17–F22. However, Table 2 shows 
that the performance of CCDE outperforms the other algorithms on the majority of the 
test functions, except F18 in which CoBiDE performs better than CCDE. The results of 
the five algorithms for the composition functions F23–F30, which are the most difficult 
test functions among the 30 benchmarks, are far from the global optima. Table 2 shows 
that CCDE is statistically better than the other algorithms on F23–F26 and F28–F30. 
CoBiDE exhibits the best performance on F27.

We also perform the multi-problem Wilcoxon’s test, which is accomplished using the 
KEEL software, to check the behavior of the algorithms (Alcalá et al. 2009). Tables 3 and 
4 summarize the results of the Wilcoxon’s and Friedman’s tests.  The portions in italic in 
Tables 3 and 4 represent the best results among the algorithms in terms of the optimi-
zation of the test functions. Table 3 shows that CCDE provides higher R+ values than 
R− values in all cases. Wilcoxon’s test at α = 0.05 shows significant differences among 
CCDE and the competitors. This result indicates that CCDE is significantly better than 
JADE, SaDE, EPSDE, and CoBiDE on the 30 test functions at α = 0.05. 

Friedman’s test based on the KEEL software is performed to further detect the sig-
nificant difference among CCDE and the four compared algorithms (Alcalá et al. 2009). 
Iman–Davenport’s procedure is used as the post hoc procedure. Table 4 summarizes the 
ranking results of the five algorithms obtained by Friedman’s test. CCDE ranks compa-
rable with JADE, SaDE, and CoBiDE on the unimodal functions and ranks best on the 
multimodal, hybrid, and composition functions. Thus, CCDE ranks the best on the 30 
benchmarks of 10 dimensions compared with JADE, SaDE, EPSDE, and CoBiDE.

Figures 2 and 3 illustrate the mean function error values for the 5 algorithms with 30 
independent runs for the 24 typical benchmark functions. Figure  2 shows that CCDE 
can provide better convergence trends for F1, F4–F9, and F11–F12 than the other algo-
rithms. JADE shows the best convergence trends for F2 and F3. CoBiDE presents the 
best convergence trends for F10. Figure  3 shows that CCDE performs better than the 
other algorithms on the convergence trends for F13–F15, F20–F22, F25, F27, and F30. 
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EPSDE shows the best convergence preference on F16, whereas CoBiDE performs better 
on F18. The five algorithms show comparable convergence trends on F23.

Comparision with CEC 2014 algorithms

CCDE is compared with five algorithms from CEC 2014 in terms of the single-objective 
real-parameter numerical optimization. These algorithms are all participant algorithms 
in such special session. They consist of modern real-coded optimizers, hybridizing with 
local search or using convergence matrix methods. Some of these algorithms follow 
evolutionary computation or swarm intelligence variants. The five algorithms are con-
vergence matrix learning and search preference algorithm (CMLSP) (Chen et al. 2014); 
non-uniform mapping in real-coded genetic algorithm (NRGA) (Yashesh et  al. 2014); 
simultaneous optimistic optimization (SOO) (Preux et  al. 2014); fireworks algorithm 
with DE (FWA-DE) (Yu et  al. 2014); and OptBees, which is inspired by the collective 
decision-making of bee colonies (Maia et al. 2014). The experimental results of the com-
pared algorithms are directly taken from (Chen et al. 2014; Yashesh et al. 2014; Preux 
et al. 2014; Yu et al. 2014; Maia et al. 2014) to ensure fair comparison.

In this experiment, D of the 30 test functions is set to 30. Each test function indepen-
dently runs 51 times with 300,000 FEs and error value Error = 10−8 as the termination 
criterion for fair comparison. The parameter N in CCDE is set to 100.

Table  5 summarizes the experimental results among CCDE and other algorithms in 
terms of mean errors and standard deviations of 51 independent runs. The portions in 
italic in Table 5 represent the best results among the algorithms in terms of the optimi-
zation of the test functions. CCDE performs better for the majority of the test functions 
than the five other algorithms.

Wilcoxon’s and Friedman’s tests are performed to further detect significant differences 
among CCDE and the five competitors (Alcalá et al. 2009). Tables 6 and 7 summarize the 

Table 3 Results of  the multiple-problem Wilcoxon’s test for  JADE, SaDE, EPSDE, CoBiDE 
and CCDE at a 0.05 significance level

Algorithm R+ R− p value α = 0.05

CCDE vs JADE 410.0 25.0 3.368E−06 Yes

CCDE vs SaDE 430.0 5.0 3.726E−08 Yes

CCDE vs EPSDE 448.5 16.5 3.502E−07 Yes

CCDE vs CoBiDE 382.5 82.5 1.399E−03 Yes

Table 4 Ranking of JADE, SaDE, EPSDE, CoBiDE and CCDE according to the statistical test 
of the Friedman test

Algorithms JADE SaDE EPSDE CoBiDE CCDE

Uni. Func. 2.625 2.625 4.5 2.625 2.625

Multim. Func. 3.3077 4.7692 3.3846 2.1154 1.4231

Hyb. Func. 3 4.6667 4.3333 1.8333 1.1667

Compos. Func. 2.625 4 4 2.875 1.5

Total 2.9833 4.3167 3.9 2.3 1.5
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results of these tests. The portions in italic in Tables 6 and 7 represent the best results 
among the algorithms in terms of the optimization of the test functions. 

The R+ values in Table  6 show that CCDE has better statistical performance than 
CMLSP, NRGA, SOO, FWA-DE, and OptBees. Wilcoxon’s test at α =  0.05 show sig-
nificant differences among CCDE and the competitors, except for CMLSP. Table 7 shows 
that CCDE and CMLSP rank the best for the unimodal functions with 30 dimension 
variables. CCDE ranks the best for the multimodal, hybrid, and composition functions. 
Thus, CCDE ranks first on the 30 test functions.

Figure  4 illustrates the trace progress for typical test functions with 30 dimension 
variables.

Fig. 2 Evolution of the mean function error values derived from JADE, SaDE, EPSDE, CoBiDE and CCDE versus 
the number of FEs from F1 to F12 with D = 10
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Real‑world application problems

In addition to the 30 benchmarks in the previous sections, 5 real-world engineering 
optimization problems from IEEE CEC2011 are selected to evaluate the performance 
of CCDE in this subsection. These five real-world engineering optimization problems 
(denoted as RP1–RP5) are the parameter estimation for frequency-modulated sound 
waves (T01 in CEC 2011), Tersoff Potential Function Minimization (T06), Spread Spec-
trum Radar Polly Phase Code Design (T07), Circular Antenna Array Design Problem 
(T10), Static Economic Load Dispatch Problem (T11.4), and Spacecraft Trajectory 
Optimization Problem (T13) (Das and Suganthan 2010). These problems have diverse 
complex characteristics and are very difficult to solve. Detailed descriptions of the five 

Fig. 3 Evolution of the mean function error values derived from JADE, SaDE, EPSDE, CoBiDE and CCDE versus 
the number of FEs on F13-F16, F18, F20-F23, F25, F27 and F30 with D = 10
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problems can be found in (Das and Suganthan 2010). The parameters of CCDE and other 
compared DEs are the same with those for the 30 benchmarks. A total of 30 independent 
runs are performed for each problem, with 150,000 FEs as the termination criterion.

Table 8 summarizes the means and standard deviations of the objective function val-
ues over 30 independent runs for each problem. Wilcoxon’s and Friedman’s tests at a 
0.05 significance level are implemented on the experimental results using KEEL software 
to draw statistically sound conclusions (Alcalá et al. 2009). Table 9 shows that CCDE has 
higher R+ values than the other algorithms in all problems. Moreover, p values are less 
than 0.5 in all cases, except for CCDE versus CoBiDE. In addition, CCDE has the best 
ranking according to Table 10. The portions in italic in Tables 8, 9 and 10 represent the 
best results among the algorithms in terms of the optimization of the test functions.   

Therefore, these experimental results verify the potential of CCDE in real-world 
applications.

Conclusions
The number of works in evolutionary computation involving the solution of difficult 
optimization problems has been increasing in recent years. DE is an efficient and robust 
EA and is a hotspot in this field. CCDE, a DE variant based on strategies guided by the 
crossover and covariance matrices, is proposed in this paper to improve the perfor-
mance of DE and simplify its structure.

In CCDE, the classical crossover operation and its associated CR in DE is simplified 
by the crossover matrix, which is a binary integer-valued (0, 1) matrix of size N × D 
computed by the random generation equation. Improvement is performed to enhance 
the exploration capability by increasing the diversity of the population. The covariance 
matrix generated by the λ best individuals is used to fully utilize the information for the 
best individuals and randomly search the region around the best individual by Gaussian 

Table 6 Results of  the multiple-problem Wilcoxon’s test for  CMLSP, NRGA, SOO, FWA-DE, 
OptBees and CCDE at a 0.05 significance level

Algorithm R+ R− p value α = 0.05

CCDE vs CMLSP 296.0 169.0 1.9808E−01 No

CCDE vs NRGA 432.0 3.0 1.8626E−08 Yes

CCDE vs SOO 383.0 52.0 1.3914E−04 Yes

CCDE vs FWA-DE 444.0 21.0 8.326E−07 Yes

CCDE vs OptBees 458.5 6.5 3.0739E−08 Yes

Table 7 Ranking of CMLSP, NRGA, SOO, FWA-DE, OptBees and CCDE according to the sta-
tistical test of the Friedman test at a 0.05 significance level

Algorithms CMLSP NRGA SOO FWA‑DE OptBees CCDE

Uni. Func. 2.375 4.625 5.375 3 3.25 2.375

Multim. Func. 2.8077 4.5 4.0769 3.6538 4.1923 1.7692

Hyb. Func. 2.1667 4.8333 6 3 3.6667 1.3333

Compos. Func. 2.3125 5.3125 2.4375 3.5625 5.0625 2.3125

Total 2.4667 4.8333 4.2167 3.4167 4.2167 1.85
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distribution. Accordingly, the exploitation capability is improved. In addition, M is intro-
duced to store the previous generation and control the search direction. As a result, the 
diversity of the population is enhanced. CCDE has been tested on 30 benchmark test 
functions developed for IEEE CEC 2014 and 5 complex real-world engineering optimi-
zation problems selected from IEEE CEC 2011. The experimental and statistical results 
suggest that the performance of CCDE is better than those of the four other DE variants 
and five algorithms from CEC 2014. CCDE shows high-quality solution and robustness 
for the tested benchmark functions and real-world engineering problems.

Future studies can extend CCDE by applying the algorithm to various classes of prob-
lems, such as multi-objective optimization and constrained optimization problems. The 

Fig. 4 Evolution of the mean function error values derived from CMLSP, NRGA, SOO, FWA-DE, OptBees and 
CCDE versus the number of FEs on 12 test functions with D = 30 selected from IEEE CEC2014
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method of CCDE and overall comparison with other evolution algorithms can also be 
comprehensively studied.
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