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Background
For a system of differential-algebraic equations (DDAEs) (Brenan et al. 1996),

F and y are vector valued and ∂F/∂y′ may be singular. In some cases, time delays appear 
in variables of unknown functions so that the differential-algebraic equations (DAEs) are 
converted to delay differential-algebraic equations (DDAEs) (Ascher and Petzold 1995),

where F and y are vector valued, τ > 0 is a constant, ∂F/∂y′ may be singular. If y′(t − τ ) 
does not vanish, it is actually called neutral delay differential-algebraic equations 
(NDDAEs), otherwise it is called delay differential-algebraic equations (DDADs). In 
1995, authors in Ascher and Petzold (1995) discussed the convergence of BDF meth-
ods and Runge–Kutta methods solving initial-value differential-algebraic equations 
of retarded and neutral types, corresponding to the structure of Hessenberg forms; 
in 1997, authors Zhu and Petzold (1997) considered the asymptotic stability of linear 
constant coefficient differential-algebraic equations and obtained numerical results 
on θ-methods, Runge–Kutta methods and linear multistep methods to these systems. 
In 1998, Zhu and Petzold (1998) got further results on stability of Hessenberg DDAEs 
of retarded or neutral type. In 2005, stability of Rosenbrock methods for neutral delay 
differential-algebraic equatuons was discussed in Zhao and Xu (2005). Earlier, authors 

F(t, y(t), y′(t)) = 0,

F(t, y(t), y(t − τ ), y′(t), y′(t − τ)) = 0,
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of Torelli (1989), Mechee et al. (2013) were interested in the numerical treatments on 
delay differential equations which are delay differential-algebraic equations with ∂F/∂y′ 
nonsingular. Authors in Fan et  al. (2013), Liu et  al. (2014) gave criteria for stability of 
neutral delay differential-algebraic equations geometrically and obtained stable regions 
over which numerical methods could be used effectively. Among these results, there 
are few achievements on nonlinear systems. In fact, the solution of nonlinear system 
depends on a nonlinear manifold of a product space and on consistent initial valued-
vectors over a space of continuous functions so that research on nonlinear DDAEs is 
more complicated and still remains investigated.

Authors in Kuang and Cong (2005),  Ascher and Petzold (1998) denote that numeri-
cal approaches for the solution of differential-algebraic equations (DAEs) can be divided 
roughly into two classes. One is direct discretizations of the given system, the other is 
involving a reformulation, combined with a discretization. Practically all the winning 
methods have stiff decay. For initial value DAEs which are cumbersome and especially 
for DAEs whose underlying ODEs are stiff, the backward differentiation formulae (BDF) 
and Radau collocation methods are the overall methods of choice.

In this paper, we investigate a class of nonlinear DDAE system, and show the condi-
tions under which two-step BDF methods are stable and asymptotically stable.

Asymptotic behavior of 2‑delay differential‑algebraic equations
Now we consider the following nonlinear system of delay differential-algebraic 
equations,

According to Ascher and Petzold (1995) the assumption that ϕv is nonsingular allows 
one to solve the constraint equations (2) for v(t) using the implicit theorem, yielding

by substituting (3) into (1) we obtain the DODE

Thus, the DDAEs (1) and (2) are stable if the DODE (4) is stable. Note that if all the delay 
terms are present in this retarded DODE, then the initial conditions need to be defined 
for t on [−2τ , 0]. So in fact, we will investigate (1) and (2) by following nonlinear system 
of delay differential-algebraic equations,

(1)u′(t) = f (t,u(t),u(t − τ ), v(t), v(t − τ)), t > 0, (τ > 0)

(2)0 = ϕ(u(t),u(t − τ ), v(t)), t > 0,

(3)v(t) = g(u(t),u(t − τ)), t > 0,

(4)u′(t) = f (t,u(t),u(t − τ ), g(u(t),u(t − τ ),u(t − 2τ))),

(5)u′(t) = f (t,u(t),u(t − τ ), v(t), v(t − τ)), t > 0, (τ > 0)

(6)0 = ϕ(u(t),u(t − τ ), v(t)), t > 0,

(7)u(t) = ϕ1(t), v(t) = ψ1(t), −τ ≤ t ≤ 0,

(8)u(t) = ϕ2(t), v(t) = ψ2(t), −2τ ≤ t ≤ −τ ,
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and its perturbed equations

From results of Torelli (1989), we hope the estimations on u(t)− ũ(t) and v(t)− ṽ(t) 
satisfy

In practice, the following definition is to be considered.

Definition 1 Liu et al. (2014) System (1)–(2) is said to be stable, if the follow inequali-
ties are satisfied,

where M > 0 is a constant,

To study the stability of DDAE (1)–(2), we can investigate equations (5)–(8) and the 
perturbations (9)–(12). Ascher and Petzold (1995) showed that under some conditions 
the analytical solutions of the system is stable and asymptotically stable. In the next sec-
tion, we will discuss the stability behavior of 2-step BDF methods for a class of the sys-
tem based on the assumption that the analytical solution exists uniquely and stable.

The stability and asymptotic stability of 2‑step BDF methods
Firstly, the 2-step BDF methods are introduced as follows.

Backward differentiation formula

For the differential equation

the Backward Differentiation Formula or BDF methods are derived by differentiating the 
polynomial which interpolates past values of y, each step is h, and setting the derivative 
at tn to f (tn, yn). This yields the k-step BDF, which has order p = k,

(9)ũ′(t) = f (t, ũ(t), ũ(t − τ ), ṽ(t), ṽ(t − τ)), t > 0, (τ > 0)

(10)0 = ϕ(ũ(t), ũ(t − τ ), ṽ(t)), t > 0,

(11)ũ(t) = ϕ̃1(t), ṽ(t) = ψ̃1(t), −τ ≤ t ≤ 0,

(12)ũ(t) = ϕ̃2(t), ṽ(t) = ψ̃2(t), −2τ ≤ t ≤ −τ ,

�u(t)− ũ(t)� ≤ max
−τ≤t≤0

��(t)− �̃(t)�, ∀t ≥ 0,

�v(t)− ṽ(t)� ≤ max
−τ≤t≤0

��(t)− �̃(t)�, ∀t ≥ 0,

(13)�u(t)− ũ(t)� ≤ max
−2τ≤t≤0

��(t)− �̃(t)�,

(14)�v(t)− ṽ(t)� ≤ M max
−2τ≤t≤0

��(t)− �̃(t)�,

(15)� =
{

ϕ1(t), −τ ≤ t ≤ 0,
ϕ2(t), −2τ ≤ t ≤ −τ ,

�̃ =
{

ϕ̃1(t), −τ ≤ t ≤ 0,
ϕ̃2(t), −2τ ≤ t ≤ −τ .

y′(t) = f (t, y),
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this can be written in scaled form where α0 = 1,

here we apply 2-step BDF, the formula can be written as

For the initial value problem of the ordinary differential equations

The 2-setp BDF methods can be written as:

where xn ∼ x(tn), h > 0 is the step size. To solve (5)–(8) and (9)–(12) by (18)–(19), we 
get

The perturbations of (20)–(21) are

k
∑

i=1

1

i
∇ iyn = hf (tn, yn),

k
∑

i=1

αiyn−i = hβ0f (tn, yn),

yn −
4

3
yn−1 +

1

3
yn−2 =

2

3
hf (tn, yn),

(16)x′(t) = f (t, x(t)), t > 0,

(17)x(0) = x0,

(18)xn+2 =
4

3
xn+1 −

1

3
xn +

2

3
hf (tn+2, xn+2), n = 0, 1, 2, . . . ,

(19)x0 = x(0),

(20)

un+2 =
4

3
un+1 −

1

3
un +

2

3
hf (tn+2,un+2,un+2−m, vn+2, vn+2−m), n = 0, 1, 2, . . . ,

(21)0 = ϕ(un+1,un+1−m, vn+1),

(22)un = ϕ1(tn), vn = ψ1(tn), −m ≤ n ≤ 0,

(23)un = ϕ2(tn), vn = ψ2(tn),−2m ≤ n ≤ −m, (mh = τ ,m ≥ 1).

(24)ũn+2 =
4

3
ũn+1 −

1

3
ũn +

2

3
hf (tn+2, ũn+2, ũn+2−m, ṽn+2, ṽn+2−m), n = 0, 1, 2, . . . ,

(25)0 = ϕ(ũn+1, ũn+1−m, ṽn+1),

(26)ũn = ϕ̃1(tn), ṽn = ψ̃1(tn), −m ≤ n ≤ 0,

(27)ũn = ϕ̃2(tn), ṽn = ψ̃2(tn),−2m ≤ n ≤ −m, (mh = τ ,m ≥ 1).
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If the step size is h > 0 and tn = nh and the numerical approximations are un ≈ u(tn), it 
should be note that ti − τ may not be a grid point tj for any j. Then a function interpola-
tion is needed so that

here 0 < δu, δv < 1, the convergence order of interpolation is 2 and the local truncation 
error of the method is 3, then the convergence order of the iteration by BDF method is 
two (Kuang and Cong 2005). For simplicity, we just consider un+i−m, vn+j−m are on grid 
points or obtained by interpolations.

The stability of 2‑step BDF methods

Let uτ = u(t − τ ), vτ = v(t − τ ). We require that f, ϕ in (5), (6), (9), and (10) satisfy the 
following Lipschitz conditions (1)–(4):

(1) 

(2) 

(3)    ϕv is nonsingular, so that for g(u, v) in (3), there exist L > 0, K > 0, such that 

    where σ1(t) is an increasing function described in the following Theorem 1.
     Note: σ(t) < 0 means the right side of function in condition (1) is negative, exam-

ples in the last section show the situation exists.
(4)    The Frechet derivatives of g(u,  v) with regard to u, v, ∂g

∂u, ∂g
∂v exist in the product  

space Rd × R
d, ∂g

∂v is continuous, ( ∂g
∂u )

−1 exists, and 

    where u = (u1,u2, . . . ,ud)
T , v = (v1, v2, . . . , vd)

T , �u, v� =
∑d

i=1 uivi, �u�2 = �u,u�, 

Here |σ(t)|, σ1(t), γi(t), i = 1, 2, 3, t > 0 are increasing functions defined on time. The 
Frechet derivatives are described as follows, If

fj(x) (j = 1, 2, . . . ,m) has first-order continuous partial derivative at x = x0, then the 
Frechet derivative F ′(x) can be expressed by the following matrix:

un+i−m = δuun+i+1−m + (1− δu)un+i−m, vn+j−m = δvvn+j+1−m + (1− δv)vn+j−m,

�f (t,u,uτ , v, vτ )− f (t, ũ,uτ , v, vτ ),u− ũ� ≤ σ(t)�u− ũ�2,

�f (t,u,uτ , v, vτ )− f (t,u, ũτ , v, vτ )� ≤ γ1(t)�uτ − ũτ�,
�f (t,u,uτ , v, vτ )− f (t,u,uτ , ṽ, vτ )� ≤ γ2(t)�v − ṽ�,
�f (t,u,uτ , v, vτ )− f (t,u,uτ , v, ṽτ )� ≤ γ3(t)�vτ − ṽτ�,

�g(u, v)− g(ũ, v)� ≤ L�u− ũ�, �g(u, v)− g(u, ṽ)� ≤ K�v − ṽ�,

σ(t) < 0,
1

2
σ1(t)+ γ1(t)+ (L+ K )γ2(t)+ (L+ K )γ3(t) ≤ −σ(t), t > 0,

sup
u,v∈Rd

∥

∥

∥

∥

∥

(

∂g

∂v

)−1(
∂g

∂u

)

∥

∥

∥

∥

∥

= L < ∞,

∥

∥

∥

∥

∂g

∂u

∥

∥

∥

∥

= sup
ω∈Rd ,�ω�=1

∥

∥

∥

∥

(

∂g

∂u

)

ω

∥

∥

∥

∥

.

x = (x1, x2, . . . , xn)
T ∈ R

n,

F(x) = (f1(x), f2(x), . . . , fm(x))
T ∈ R

m,

fj(x) = fj(x1, x2, . . . , xn) ∈ R, j = 1, . . . ,m,
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Definition 2 A numerical method for solving DDAEs is called stable, if for every con-
sistent initial value functions �, �̃, and each step h > 0, the solution sequences {un, vn}, 
{ũn, ṽn} for (5)–(8) and (9)–(12) in which f ,ϕ satisfy conditions (1)–(4), satisfy

for some M > 0. Now the sufficient condition with which the DDAEs are stable is as 
follows.

Theorem 1 The 2-step BDF methods are stable for DDAEs if f ,ϕ satisfy conditions (1)–
(4) and

Note: it seems more natural if �f (t,u,uτ , v, vτ )− f (t, ũ,uτ , v, vτ )� ≤ σ1(t)�u− ũ� is true, 
but we find proofs are analogous with this condition but only cumbersome and results are 
true without this assumption throughout the discussion in this paper.

Proof Let V̄n = un − ũn. Substituted into (20) and (24),

An inner product of (28) with V̄n+1 = un+1 − ũn+1,

F ′(x0) =













∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn













x=x0

�un − ũn� ≤ max
−2τ≤t≤0

��(t)− �̃(t)�, n = 0, 1, 2, . . . ,

�vn − ṽn� ≤ M max
−2τ≤t≤0

��(t)− �̃(t)�, n = 0, 1, 2, . . . ,

�f (t,u,uτ , v, vτ )− f (t, ũ, ũτ , ṽ, ṽτ )� ≤ σ1(t)�u− ũ�,

(28)

V̄n+2 =
4

3
V̄n+1 −

1

3
V̄n +

2

3
h{f (tn+2,un+2,un+2−m, vn+2, vn+2−m)

− f (tn+1, ũn+2, ũn+2−m, ṽn+2, ṽn+2−m)}

= V̄n+1 +
1

3
(V̄n+1 − V̄n)+

2

3
h{f (tn+2,un+2,un+2−m, vn+2, vn+2−m)

− f (tn+2, ũn+2,un+2−m, vn+2, vn+2−m)+ f (tn+2, ũn+2,un+2−m, vn+2, vn+2−m)

− f (tn+2, ũn+2, ũn+2−m, vn+2, vn+2−m)+ f (tn+2, ũn+2, ũn+2−m, vn+2, vn+2−m)

− f (tn+2, ũn+2, ũn+2−m, ṽn+2, vn+2−m)+ f (tn+2, ũn+2, ũn+2−m, ṽn+2, vn+2−m)

− f (tn+2, ũn+2, ũn+2−m, ṽn+2, ṽn+2−m}.

〈

V̄n+2, V̄n+2

〉

=
〈

V̄n+2, V̄n+1

〉

+
1

3

〈

V̄n+1 − V̄n, V̄n+2

〉

+
2

3
h�f (tn+2,un+2,un+2−m, vn+2, vn+2−m)

− f (tn+1, ũn+2, ũn+2−m, ṽn+2, ṽn+2−m), V̄n+2�,



Page 7 of 15Sun  SpringerPlus  (2016) 5:1013 

apply Schwartz theorem and condition (1)–(2), we obtain

Assume that �V̄n+2� �= 0 (otherwise no perturbations), note (3) and condition (3), (4), 
we conclude

(29) divided by �V̄n+2�, and note the consistency of the initial value function, we get

where ω(tn+2) = γ1(tn+2)+ Kγ2(tn+2)+ Lγ3(tn+2), n = 0, 1, 2, . . . , V̄0, V̄1 are two ini-
tial values for 2-step BDF methods where �V0� ≤ max

−2τ≤t≤0
��(t)− �̃(t)�, V̄1 is evaluated 

by using Implicit Euler method

and conditions (1)–(3), by a simple induction, we get

and with the condition of this theorem, yields

hence, as n = 0,

with condition (3) and (33) and the incretion of |σ(t)|, σ1(t), γi(t), i = 1, 2, 3, we get

as n = 1, we evaluate �V̄3� in (31) in terms of �V̄2�, �V̄2 − V̄1� in the following.

(29)

�V̄n+2�2 ≤ �V̄n+1��V̄n+2� +
1

3
�V̄n+1 − V̄n��V̄n+2� +

2

3
h(σ (tn+2)�V̄n+2�2

+ γ1(tn+2)�V̄n+2−m� · �V̄n+2� + γ2(tn+2)�vn+2 − ṽn+2� · �V̄n+2�
+ γ3(tn+2)�vn+2−m − ṽn+2−m� · �V̄n+2�).

(30)

�vn+2 − ṽn+2� ≤ L�un+2 − ũn+2� + K�un+2−m − ũn+2−m�,
�vn+2−m − ṽn+2−m� ≤ L�un+2−m − ũn+2−m� + K�un+2−2m − ũn+2−2m�,
n = 0, 1, 2, . . . ,

(31)

�V̄n+2� ≤
�V̄n+1� + 1

3�V̄n+1 − V̄n� + 2
3hω(tn+2)�V̄n+2−m� + 2

3hKγ3(tn+2)�V̄n+2−2m�
1− 2

3h(σ (tn+2)+ Lγ2(tn+2))
,

(32)�V̄1 − V̄0� = h�f (t1,u1,u1−m, v1, v1−m)− f (t̃1, ũ1, ũ1−m, ṽ1, ṽ1−m)�

(33)�V̄1� ≤ max
−2τ≤t≤0

��(t)− �̃(t)�,

(34)�V̄1 − V̄0� ≤ hσ1(t1)�u1 − ũ1� = hσ1(t1)�V̄1�,

(35)�V̄2� ≤
�V̄1� + 1

3hσ1(t1)�V̄1� + 2
3hω(t2)�V̄2−m� + 2

3hKγ3(t2)�V̄2−2m�
1− 1

3h(σ (t2)+ Lγ2(t2))
,

(36)�V2� ≤ max
−2τ≤t≤0

��(t)− �̃(t)�,

V̄2 = V̄1 +
1

3
(V̄1 − V̄0)+

2

3
h(f (t2,u2,u2−m, v2, v2−m)− f (t2, ũ2, ũ2−m, ṽ2, ṽ2−m)),
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then, from condition (1) and (34)

substitute (37) into (31), take n = 2, also note the incretion of |σ(t)|, σ1(t), γi(t), i = 1, 2, 3 , 
we get the estimation of �V̄3� in the following,

note condition (3), (33) and (36), V̄3−m, V̄3−2m are initial valued functions with (33) or 
(36) satisfied too, so we get

similarly, when n = 2, 3, 4,…, by iteration,

applying mathematical induction, we conclude it is true for all n ≥ 0. As for �vn − ṽn�, 
just see (28)

 �

The asymptotic stability of 2‑step BDF methods

Now we give the following definition.

Definition 3 The delay differential-algebraic equations (5)–(8) are asymptotically 
stable if and only if for every consistent initial value functions �(t), �̃(t), solutions 
{u(t), v(t)}, {ũ(t), ṽ(t)} satisfy

Theorem 2 If f ,ϕ satisfy conditions (1)–(4) and the following (3′)

(37)

�V̄2 − V̄1� ≤
1

3
�V̄1 − V̄0� +

2

3
h�(f (t2,u2,u2−m, v2, v2−m)

− f (t2, ũ2, ũ2−m, ṽ2, ṽ2−m)�

≤ 1

3
hσ1(t1)�V̄1� +

2

3
hσ1(t2)�V̄2�

≤ hσ1(t2)(
1

3
�V̄1� +

2

3
�V̄2�),

(38)

�V̄3� ≤
�V̄2� + 1

3hσ1(t3)
(

1
3�V̄1� + 2

3�V̄2�
)

+ 2
3hω(t3)�V̄3−m� + 2

3hKγ3(t3)�V̄3−2m�

1− 2
3h(σ (t3)+ Lγ2(t3))

,

�V3� ≤ max
−2τ≤t≤0

��(t)− �̃(t)�,

�Vn� ≤ max
−2τ≤t≤0

��(t)− �̃(t)�,

�vn − ṽn� ≤ M max
−2τ≤t≤0

��(t)− �̃(t)�.

lim
t→∞

�u(t)− ũ(t)� = 0,

lim
t→∞

�v(t)− ṽ(t)� = 0,

σ(t)+ Lγ2(t) ≤ −β < 0, sup
t≥0

1
3
σ1(t)+ 2

3
(γ1(t)+ Kγ2(t)+ (L+ K )γ3(t))

− 2
3
(σ (t)+ Lγ2(t))

= q, 0 ≤ q < 1.
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Then the 2-step BDF methods are asymptotically stable for DDAEs Here 
|σ(t)|, σ1(t), γi(t), i = 1, 2, 3, t ≥ 0 are increasing functions. Note: The system is stable if 
q = 1 while q strictly less than 1 is required for asymptotic stability.

Proof Let Vn = �un − ũn�, from (31) (35) (38), we have

Let 0 ≤ n ≤ 2m− 1 in the above inequality, we get

Note condition (3′), there is 0 < p < 1 such that

Therefore, when 0 ≤ n ≤ 2m− 1

For the case n = 2m

As indicated above,

For the case 2rm ≤ n ≤ 2(r + 1)m− 1, it can be shown by induction that

When r → ∞, n → ∞

Thus,

 �

(39)

�V̄n+2�

≤
�V̄n+1� + 1

3
hσ1(tn+1)

(

1

3
�V̄n� + 2

3
�V̄n+1�

)

+ 2

3
hω(tn+2)�V̄n+2−m� + 2

3
hKγ3(tn+2)�V̄n+2−2m�

1− 2

3
h(σ (tn+2)+ Lγ2(tn+2))

.

�V̄n+2� ≤ max
t≥0

1+ 1
3hσ1(tn+2)+ 2

3h(ω(tn+2)+ Kγ3(tn+2))

1− 2
3h(σ (tn+2)+ Lγ2(tn+2))

· max
−2τ≤t≤0

��(t)− �̃(t)�.

1+ 1
3hσ1(t)+

2
3h(ω(t)+ Kγ3(t))

1+ 2
3h|σ(t)+ Lγ2(t)|

≤
1+ 2

3hq|σ(t)+ Lγ2(t)|
1+ 2

3h|σ(t)+ Lγ2(t)|
≤

1+ 2
3hβq

1+ 2
3hβ

= p < 1.

�V̄n+2� ≤ p max
−2τ≤t≤0

��(t)− �̃(t)�.

�V̄2m+2�

≤
�V̄2m+1� + 1

3
hσ1(t2m+1)

(

1

3
�V̄2m� + 2

3
�V̄2m+1�

)

+ 2

3
hω(t2m+2)�V̄m+2� + 2

3
hKγ3(t2m+2)�V̄2�

1− 2

3
h(σ (t2m+2)+ Lγ2(t2m+2))

.

�V̄2m+2� ≤ p2 max
−2τ≤t≤0

��(t)− �̃(t)�.

�V̄n+2� ≤ pr+1 max
−2τ≤t≤0

��(t)− �̃(t)�.

�V̄n+2� → 0, (n → ∞)

�un − ũn� → 0, �vn − ṽn� → 0, (n → ∞).
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Numerical examples
First, we give an example for Theorem 1.

Example 1 Let u(t), v(t) ∈ R,    f : R× R× R× R× R → R,   g : R× R → R.

where σ(t), σ1(t), P1(t), P2(t), P3(t) are polynomials of t, u(t − τ ) = 0. Condition (1)–(4) 
say if,

then (40)–(41) is stable. In fact,

(1) 

(2) 

Let ũ = u+ h, ṽ = v + k, using Taylor’s formula,

where g̃(u, v) = g(u+ θh, v + θk), 0 < θ < 1.
If g(u, v) = g(ũ, ṽ) = 0, (46) results in

If (42) is true, then

together with (43), (44), (45), (47), we know that all the conditions of Theorem (16) are 
satisfied. For example,

(40)u′(t) = σ(t)u(t)+ P1(t)f1(u(t − τ))+ P2(t)f2(v(t))+ P3(t)f3(v(t − τ))

(41)0 = g(u, v)

(42)sup
u,v∈R

∣

∣

∣

∣

∣

(

∂g

∂v

)−1(
∂g

∂u

)

∣

∣

∣

∣

∣

≤ L < ∞.

(43)γi(t) = |Pi(t)|, i = 1, 2, 3

(44)|fi(u)− fi(ũ)| ≤ Li|u− ũ|, i = 1, 2, 3

(45)σ(t) < 0,
1

2
σ1(t)+ L1γ1(t)+ L(L2γ2(t)+ L3γ3(t)) ≤ −σ(t),

�f (t,u,uτ , v, vτ )− f (t, ũ,uτ , v, vτ ),u− ũ� = σ(t)|u− ũ|2,
|f (t,u,uτ , v, vτ )− f (t, ũ, ũτ , ṽ, ṽτ )| ≤ σ1(t)|u− ũ|

|f (t,u,uτ , v, vτ )− f (t,u, ũτ , v, vτ )| = |P1(t)| · |f1(uτ )− f1(ũτ )| ≤ L1γ1(t)|uτ − ũτ |,
|f (t,u,uτ , v, vτ )− f (t,u,uτ , ṽ, vτ )| = |P2(t)| · |f2(v)− f2(ṽ)| ≤ L2γ2(t)|v − ṽ|,
|f (t,u,uτ , v, vτ )− f (t,u,uτ , v, ṽτ )| = |P3(t)| · |f3(vτ )− f3(ṽτ )| ≤ L3γ3(t)|vτ − ṽτ |.

(46)g(ũ, ṽ) = g(u, v)+
∂ g̃

∂u
h+

∂ g̃

∂v
k ,

ṽ − v =
(

∂ g̃

∂v

)−1(
∂ g̃

∂u

)

(ũ− u).

(47)|ṽ − v| ≤ L|ũ− u|,

P1(t) = t,P2(t) = 2t2,P3(t) = 1+ t, σ(t) = −(1+ 2t)2,
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and checking the note from Theorem 1, we just take

It can be easily verified by Lagrange mean value theorem that the Lipschitz constant,

Let

then

we get L = 1 and

Conditions (1)–(4) are satisfied in the above example. Example 2 and Example 3 show 
the stable results, while Example 4 shows unstable results.

Example 2 Let x(t), y(t) ∈ R, f : R×R×R×R×R → R,   ϕ : R×R×R → R.

Take τ = 1, then σ(t) = (−2+ 1
2e

−2t) < 0, L = 1
2 , K = 1

2,   σ1(t) = 2

Therefore,

The above results show that all the stability conditions are satisfied, so 2-step BDF meth-
ods for the system are stable and asymptotically stable. This can be seen in the following 
graph (Fig. 1). Table 1 lists errors between numerical solutions and the exact solutions 

σ1(t) = (1+ 2t)2, f1(uτ ) = sin uτ , f2(v) = log(1+ v2), f3(vτ ) = cos vτ .

L1 = 1, L2 =
1

2
, L3 = 1, L = sup

u,v∈R

∣

∣

∣

∣

∣

(

∂g

∂v

)−1(
∂g

∂u

)

∣

∣

∣

∣

∣

.

g(u, v) = v − arctan(1+ u),

∂g

∂u
= −

1

1+ u2
, |

∂g

∂u
| ≤ 1,

1

2
σ1(t)+ L1γ1(t)+ L(L2γ2(t)+ L3γ3(t))− σ(t), t ≥ 0,

(

∀t >
1√
2
actually

)

.

x′(t) = −2x(t)+
1

e2(1+ e2)
x(t)y(t − τ )−

1

e2(1+ e2)
x(t − τ )y(t)

0 = 1

2
x(t)+ 1

2
x(t − τ )− y(t)

x(t) = e−2t , −2τ ≤ t ≤ 0

y(t) =
1

2
(e−2t + e−2t+2), −2τ ≤ t ≤ 0,

γ1(t) =
e−2t

2e2
, γ2(t) =

e−2t

1+ e2
, γ3(t) =

e−2t

e2(1+ e2)

1

2
σ1 + γ1 + (L+ K )γ2 + (L+ K )γ3 = 1+

3e−2t

2e2
< −

(

−2+
1

2
e−2t

)

= σ(t).
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with different step sizes. Table 2 shows numerical results made by implicit Euler method 
and 2-step BDF method at some time. It can be seen by comparison that BDF method 
converges much faster than implicit Euler method.   

Example 3 Let x(t), y(t) ∈ R f : R×R×R×R×R → R, g : R×R → R

Here we take τ = 2, its initial functions are

Obviously,

Then it can be found by a simple computation and without losing generality, by taking 
supremum values

x′(t) = −3x(t)+ e−6x(t)y(t − τ )− e−6x(t − τ )y(t)

0 = x(t)− 2y(t)

x(t) = e−3t , y(t) =
1

2
e−3t

sup
x,y∈R

∣

∣

∣

∣

∣

(

∂g

∂y

)−1(
∂g

∂x

)

∣

∣

∣

∣

∣

=
1

2
< ∞

Fig. 1 Approximate solutions using 2-step BDF methods with h=0.01

Table 1 Errors compared with the exact solution for Example 2

m h (mh = 1) max |xn − x(tn)| max |yn − y(tn)|

10 0.1 4.2 × 10−3 1.75 × 10−2

100 0.01 4.83 × 10−5 2.03 × 10−4

1000 0. 001 4.90 × 10−7 2.05 × 10−6

2000 0.0005 1.23 × 10−7 5.14 × 10−7

4000 0.00025 3.06 × 10−8 1.29 × 10−7

8000 0.000125 7.67 × 10−9 3.21 × 10−8

16000 0.0000625 1.92 × 10−9 8.04 × 10−9

106 10−6 9.21 × 10−12 3.86 × 10−11
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they satisfy

The above results show that all the stability conditions are satisfied, so 2-step BDF 
methods for the system are stable and asymptotically stable. The simple illustrations are 
shown in the following graph (Fig. 2) and we can check it by errors of the solutions listed 
in the following Table 3.

Example 4 

Here u(t) = (x1(t), x2(t), x3(t))
T , v(t) = y(t). By simple calculation, we get,

σ = sup
t≥0

(

−3+
1

2
e−3t

)

= −
5

2
, σ1 = sup

t≥0

(

3−
1

2
e−3t

)

= 3,

γ1 = sup
t≥0

(

1

2
e−3t−3

)

= 1

2
e−6, γ2 = sup

t≥0

(e−3t) = 1, γ3 = sup
t≥0

(e−3t−6) = e−6,

1

2
σ1 + σ + γ1 + L(γ2 + γ3) < 0.

x′1(t) = (1+ x2(t)− sin t)y(t)+ cos t + sin t − (x2(t − 1)− sin(t − 1))2,

x′2(t) = cos t + x2((t − 1)− sin(t − 1),

x′3(t) = y(t)+ (x2(t − 1)− sin(t − 1))2,

0 = (x1(t)− sin(t))(y(t)− exp(t)).

�f (t, x, xτ , y, yτ )− f (t, x̃, xτ , y, yτ ), x − x̃� = exp(t)(x1 − x̃1)(x1 − x̃1),

Table 2 xn and yn are numerical solutions by implicit Euler method, x̃n and ỹn are numerical 
solutions by BDF method, x(tn and y(tn) are exact solutions

All solutions are on [0, 2] with h = 0.1 and nh = 2

n tn = nh xn xn x̃n ỹn x(tn) y(tn)

0 0 1.0000 0.0500 1.0000 0.5000 1.0000 0.5000

1 0.1 0.8725 0.4363 0.8607 0.4304 0.8607 0.4304

2 0.2 0.7613 0.3806 0.7403 0.3701 0.7408 0.3704

3 0.3 0.6642 0.3321 0.6371 0.3186 0.6376 0.3188

4 0.4 0.5795 0.2898 0.5484 0.2742 0.5488 0.2744

5 0.5 0.5056 0.2528 0.4720 0.2360 0.4724 0.2362

6 0.6 0.4412 0.2206 0.4063 0.2031 0.4066 0.2033

7 0.7 0.3849 0.1925 0.3497 0.1748 0.3499 0.1750

8 0.8 0.3358 0.1679 0.3010 0.1505 0.3012 0.1506

9 0.9 0.2930 0.1465 0.2590 0.1295 0.2592 0.1296

10 1.0 0.2557 0.1278 0.2230 0.1115 0.2231 0.1116

11 1.1 0.2231 0.1115 0.119 0.0960 0.1920 0.0960

12 1.2 0.1946 0.0973 0.1652 0.0826 0.1653 0.0826

13 1.3 0.1698 0.0849 0.1422 0.0711 0.1423 0.0711

14 1.4 0.1482 0.0741 0.1224 0.0612 0.1225 0.0612

15 1.5 0.1293 0.0646 0.1053 0.0527 0.1054 0.0527

16 1.6 0.1128 0.0564 0.0906 0.0453 0.0907 0.0454

17 1.7 0.0984 0.0492 0.0780 0.0390 0.0781 0.0390

18 1.8 0.0859 0.0429 0.0672 0.0336 0.0672 0.0336

19 1.9 0.0749 0.0375 0.0578 0.0289 0.0578 0.0289

20 2.0 0.0654 0.0327 0.0497 0.0249 0.0498 0.0249
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For the initial data

The solution is

Obviously, this solution is not stable. In fact, we could not find any σ(t) satisfies

Thus conditions of Theorem 1 are not valid.

Conclusions and notes
While investigating nonlinear 2-delayed differential-algebraic equations, we get two suf-
ficient conditions for the stability and asymptotic stability of 2-step BDF methods and 
think about how to check the conditions with some example. Although it is quite an 
early stage, the discussion is a useful enlightenment for differential-algebraic equations 
with multi-delays in the future. Note the Lipschitz conditions play a key role in this 
research. Apparently the second inequality in condition (1) seems more nature with the 
form �f (t,u,uτ , v, vτ )− f (t, ũ,uτ , v, vτ )� ≤ σ1(t)�u− ũ�, but we find results can also be 
true and the proofs are analogous.

x1(0) = 0, x2(0) = 0, x3(0) = 1, x2(t) = sin(t), (t ≤ 0).

x1(t) = sin(t)− cos(t)+ exp(t), x2(t) = sin(t), x3(t) = exp(t), y(t) = exp(t).

�f (t, x, xτ , y, yτ )− f (t, x̃, xτ , y, yτ ), x − x̃� ≤ σ(t)�x(t)− x̃t�2,

Table 3 Errors compared with the exact solution for Example 3

m h (mh = 2) max |xn − x(tn)| max |yn − y(tn)|

10 0.2 2.49 × 10−2 1.25 × 10−2

100 0.02 4.22 × 10−4 2.11 × 10−4

1000 0.002 4.39 × 10−6 2.20 × 10−6

2000 0.001 1.10 × 10−6 5.50 × 10−7

4000 0.0005 2.76 × 10−7 1.38 × 10−7

8000 0.00025 6.89 × 10−8 3.45 × 10−8

16000 0.000125 1.72 × 10−9 8.60 × 10−10

106 2 × 10−6 5.42 × 10−12 2.71 × 10−12

Fig. 2 Approximate solutions using 2-step BDF methods
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