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Background
The quality of an image presentation is improved by image enhancement techniques, 
which are used to present the best outlook of a captured scene (Zeki and Manaf 2009; 
Hua et al. 2016). However, this approach can be judged by the human visual system; in 
such cases, the results of a subjective study would be helpful when the majority of the 
participants indicate that there is a better quality presentation (Rahman et  al. 2011). 
This strategy will help to determine the quality of the image within some ranges pro-
vided by the participants’ feelings about it. Next, the method that was used in the image 
enhancement will now be known to be the best method for producing a high-quality 
image presentation. Image enhancement or processing techniques are performed either 
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in the spatial domain or in the transform domain (Yalman and Erturk 2013). The former 
involves the direct manipulation of the image pixels, whereas in the transform domain 
techniques, the image is transformed into its frequency domain first usually by a Fourier 
Transform or by other transformation methods. Then, all of the manipulations will be 
conducted on the transform image. The final result will be the Inverse transform of the 
image. The result of image enhancement always provides a better presentation. Consider 
a general image enhancement technique, where x represents an original image (let us 
assume a grey-scale image). The new image that will be produced after enhancement 
will not be the same as the original image x; assume that y is the new image that will be 
formed after the enhancement. Then, x will first be transformed into y by a transforma-
tion function z if p and q represent the pixel values of x and y respectively, which means 
that the pixel values of q result from the transformation of the pixel values of x by alter-
ing the original image with the transformation function, which can be represented as 
q = z(p). This approach involves the utilisation of all the pixels contained in x. Because 
x is a grey-scale image, the range will be [0, 255] depending on the filled and free space of 
this range, and the number of bits n that will be used is in the range [0, n− 1].

To further validate the quality of the image enhancement method without relying on 
only a subjective technique, quantitative values are required to show the extent to which 
certain methods of image enhancement perform the best (Bhatnagar et al. 2012). This 
knowledge will solve the problem of determining that one method of image enhance-
ment provides a better quality image than another. However, a quantitative approach 
used in determining the quality of an image focuses on the level of noise (an undesired 
part introduced randomly on the useful part of the image) in the image, which is the 
ratio of the noise and the useful information. This approach will measure and compare 
the effects of the image enhancement techniques on the image quality. Technically, this 
approach is described as PSNR (Ji et al. 2013; Hsu and Hu 2015; Ouyang et al. 2015).

Unfortunately, while attempting to perform image processing/enhancement as the 
key for quality measurement, in the field of image watermarking the effect of image 
enhancement/processing techniques results in what is known as an attack (Akar et al. 
2013). The reason is that in image watermarking, an additional bit is embedded in either 
the transformation or spatial domain of the image, to prevent the original image from 
being reproduced by unauthorised persons (Duda et al. 2001). Thus, applying an image 
enhancement or processing operation on a watermarked image could alter or damage 
the watermarked bits. Any watermarking technique that can withstand these image 
enhancement or processing techniques and maintain the quality of the image after 
embedding a watermark on it is described as a robust watermarking technique (Briffa 
and Das 2003; Syed et  al. 2006; Gilani and Skodras 2002). Over the years, research-
ers have been designing watermarking techniques with robustness in mind, in order 
for the watermark to be resistant against any image processing technique, although a 
necessary condition for the robust watermarking technique still remains with the qual-
ity of the technique itself (Matt and Jeffrey 1999). Furthermore, the requirement of a 
good watermarking technique includes a tradeoff between robustness, image quality 
(imperceptibility) and capacity. Moreover, it has been found that when the robustness 
of the watermarking method improves, the imperceptibility decreases, and the capacity 
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increases (Rahman et al. 2011; Yalman and Erturk 2013; Ji et al. 2013; Akar et al. 2013; 
Duda et al. 2001).

Different parameters are used to assess the robustness of watermarking, namely bit 
correct ratio (BCR) (Maity and Kundu 2002; Hua et al. 2016), or the bit error ratio (BER) 
(Parameswaran and Anbumani 2006; Zhang et al. 1998). In some cases, similarity was 
used to draw some conclusion (Bishop 2006), whereas the probability approach is also 
considered as a robustness measure in Lu (2005). Robustness measures through these 
methods give almost the same result. Consistent with this, normalised cross correla-
tion (NCC) has been used in the current study. This famous technique is mostly used as 
a parameter for testing the robustness of the watermarking (Kiani and Ebrahimi 2011; 
Braudaway et al. 1996). The issue raised by this researcher is the extent to which these 
quality measures relate to determining the quality of a watermarked file after embedding 
and after it has undergone an attack. This paper presents an investigation with a neural 
network (NN) model on the watermarked image quality metric (PSNR and NCC) val-
ues obtained from the watermarking of six grey-scale images using ISB. The watermark-
ing technique used involves the embedding of a watermark in intermediate significant 
bits (ISB) (Hal 1997). There are several types of NN, including the recurrent, generalised 
regression. Multi-layer perceptron NN (MLPNN) is the most widely used NN for pre-
diction (Yeung and Mintzer 1997), and it performs better than other NNs in terms of its 
accuracy in recognising patterns (Bender et al. 1996); therefore this study has chosen to 
use it. The neural network model used the image quality metric (PSNR and NCC) values 
obtained from the watermarking of six grey-scale images that used ISB as the desired 
output and trained the network to predict future values when some output of the same 
or different type of image quality metrics (PSNR and NCC) were obtained.

Robustness of the watermarking techniques

Many image watermarking algorithms have been presented by various researchers with 
the aim of preventing the ownership of the image and for copyright protection. Digi-
tal watermarking in general is a special case of the general information-hiding prob-
lem (Wójtowicz and Ogiela 2016). A digital watermark is a signal that is temporarily or 
permanently embedded into digital data (audio, images, videos and text), which can be 
detected or extracted later by means of a computing operation, to make an assertion 
about the ownership of the data. The watermark is hidden in the host data, in such a way 
that it is inseparable from the data and resistant to image processing operations, and it 
does not degrade the host file. Thus, by means of watermarking, the real image is still 
accessible but is permanently marked (Caronni 1995; Liu et al. 2016). Image watermark-
ing can be classified as visible or invisible. A visible watermark typically contains a vis-
ual message or a company’s logo, which indicates the ownership of a specific image. An 
invisible watermarked image is visually very similar but not necessarily identical to the 
original unmarked image. A substantial amount of work has been conducted on visible 
image watermarking (Jin and Chang 2004; Lin et al. 2010), as well as on invisible water-
marking (Bas et  al. 2002). The existence of an invisible watermark can be determined 
only through a watermark extraction or detection algorithm. Invisible watermarking, 
however, is a far more complex concept. It is most often used to identify copyrighted 
data, such as by the author, distributor or others.
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The robustness of watermarking techniques has received a large amount of attention 
among researchers because it reflects good performance of certain techniques and shows 
how resistant to attack a technique can be. A robust watermarking technique prevents a 
watermark attack against geometric distortions, ensures the synchronisation of the water-
mark before and after embedding, and ensures watermark resilience to common image 
processing attacks as well as desynchronisation attacks (Huo-Chong et al. 2011; Mardan-
pour and Chahooki 2016). Robust watermarking ensures self-synchronising schemes, 
which will certainly permit the recovery of the watermark after geometrical attacks (Li 
et al. 2006). A robust watermarking technique can ensure the mapping of original water-
mark image features with the watermarked image features to be resilient against the 
image processing, such as affine transformations (Hong-ying et al. 2013; Liu et al. 2006). 
Although there are other watermarking techniques that are not robust, which are affected 
by many attacks, the intention might clearly be that any attempt to make an alteration 
should damage the image. In that case, the technique serves its purpose. Any watermark-
ing technique with robustness in mind should tend to be resistant against image pro-
cessing operations, utilising any concept that is necessary. For example, a mathematical 
remainder operation might be used to build a robust watermarking technique that will 
modify the low-frequency coefficients in the DCT frequency domain (Rafi et al. 2013). 
However, it has been observed that, in some cases, an image file that has not undergone 
any watermarking process shows to an attacker that the image file contains a watermark 
(Javier and Angel 2007); this scenario could mean that the attacking techniques are sensi-
tive. In other approaches, watermarking techniques over a network should be based on 
partial encryption, which will decrease computation and bandwidth consumption in an 
effort to increase the robustness (Fan et al. 2013). However, some techniques are used to 
overcome sophisticated attacking techniques, to improve the robustness by using a fuzzy 
support vector machine (FSVM) correction to learn the geometric distortion parameters 
and apply low-order Zernike moments (Voloshynovskiy et al. 2001). Here, a self-reference 
image will be used and then transformed into the original image in the wavelet domain, 
and the watermark is embedded by taking advantage of the different values of the two 
images (Hanjalic et al. 2000). The robustness of watermarking techniques is essential in 
hardware-based watermarking techniques. The correlation of the original watermark 
image and the watermarked image makes it capable of detecting the inserted bits (Har-
tung and Kutter 1999; Jiao et al. 2015). For this reason, it can be implemented in a hard-
ware-oriented image coding processing scheme (Kougianos et al. 2009), while using any 
transformation technique. At the same time, the relationship between the capacity and 
the bit error rate will maintain at a lower level (Juergen 2005; Abbasi et al. 2015).

Intermediate significant bit (ISB) watermarking technique

An intermediate significant bit (ISB) embedding technique was proposed with robust-
ness in mind (Onur and Elbasi 2014; Yahya et al. 2015). The technique replaces the origi-
nal image pixels within an empty/filled region with watermark pixels “at the same time, 
keeping the watermark pixels very close to the filled region of the original image pixels” 
(Onur and Elbasi 2014). “The technique was based on testing the value of the watermark 
pixel according to the range of each bit-plane and positioning the original image file 
pixel away from any of the edges of the range”. A bit-plane of digital images is a set of bits 
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that have the same position in the respective pixels of the digital image. In the represen-
tation of grey-scale images, there are eight bit-planes: the first bit-plane contains the set 
of the most significant bits, while the 8th contains the least significant bits, and the set in 
between, from the 2nd to the 7th bit-planes, are intermediate significant bits (ISB). The 
best pixel value between the middle and the edge of the range (threshold value) has been 
found to protect the watermarked object from the different types of attack and keep the 
minimum distortion of the watermarked image. Embedding the information based on 
the blocks of a few pixels will improve the robustness of the model, especially against the 
geometrical transform attacks. The security of the system will be improved by encrypt-
ing the watermark object using the random pixel manipulation technique, before being 
embedded within other host images. In addition, the capacity will be improved using the 
pixel value difference method to embed more data into edge areas, as the human visual 
system is less sensitive to distortions around the edge areas than in the smooth areas. 
The technique follows the stages presented in the flow chart in Fig. 1.

Let us assume that the original pixel value P is defined by Eq. 1, below:

where yi is the value of each bit-plane in the binary form (0 or 1), and i ranges between 1 
and 8; i = 1 for the LSB and i = 8 for MSB. Assume that the selected bit for embedding 
is k, and the embedded bit is b, which is 0 or 1. The new watermarked pixels P′ can be 
defined as follows: if the embedded bit is equal to the original bit 

(

yk = b
)

, the water-
marked pixel is then equal to the original pixel, as given in Eq. 2 below:

In a situation in which the embedded bit is not equal to the original bit 
(

yk �= b
)

, and 
the original pixel is located in the first range 

(

P < 2k−1
)

, then the watermarked pixels 
can be obtained from Eq. 3.

If the original pixel is located in the last range 
(

P > 28 − 2k−1
)

, then the watermarked 
pixels can be obtained by using Eq. 4.

When the original pixel is neither in the first range nor in the last range, the water-
marked pixels can be obtained from Eq. 5.

To improve the quality of the watermarked image of the bit-plane model, the water-
mark bits were inserted into the selected bit, and the other seven bits were changed to 

(1)P =

8
∑

i=1

yi2
i−1

(2)P′ = P if yk = b

(3)P′ = 2k−1 if yk �= b and P < 2k−1

(4)P′ =

8
∑

i=1

yi2
i−1 − 1 if yk �= b and P > 28 − 2k−1

(5)P′ =







�

8

i=k+1
yi2

i−1
k
+ b× 2

k−1 − 1 if yk �= b and yk−1 = 0

�

8

i=k+1
yi2

i−1 + 2
k−1 + b× 2

k−1 if yk �= b and yk−1 = 1
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closely assimilate the original pixel. This action was performed by moving the pixel to 
the location at the edge of the ranges toward the original pixel. The quality of the water-
marked images, using the proposed method, was found to an improvement over the LSB 
method, except for the quality of the 8th bit-plane (the least significant bits). The merit of 
the proposed method over the LSB method is that it was found to gradually increase by 
moving it from the 8th bit-plane to the 1st bit-plane. Assume that P is the original pixel 
value, P′ is the new watermarked pixel, k is the selected bit for embedding, u is the value 

Fig. 1 Step-by-step procedure of the ISB technique
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of all bit-planes to the right of the selected bit-plane k, i is the bits [starting from the bit 
next to the concerned bit (k) until the last bit i, which ranges from 1 to 8, i = 1 for LSB 
and i = 8 for MSB], b is the embedded bit (which is 0 or 1), and finally, X is the shift value 
(which is known as the bias value) to protect against attacks. Using Eq. 1, we obtain

In this case, the algorithm will respond to any changes within the ranges; for example 
if the embedded bit is equal to the original bit yk = b and the original pixel is less than 
2k−1, which is located in the first range, the watermarked pixel can be obtained from 
Eq. 7, as follows:

If the embedded bit is not equal to the original bit yk �= b, then the watermarked pixel 
can be obtained by using Eq. 8:

In the situation in which the original pixel is greater than 28 − 2k−1, which is located in 
the last range, and if the embedded bit is equal to the original bit yk = b, then the water-
marked pixel can be obtained by using Eq. 9:

If the embedded bit is not equal to the original bit yk �= b, then the watermarked pixel 
can be obtained by using Eq. 10:

In a situation in which the value of the original pixel is not very high or very low (in 
other words, the pixel value is in neither the lowest range nor the highest range), and if 
the embedded bit is equal to the original bit yk = b, then the watermarked pixel can be 
obtained as given in Eq. 11:

(6)u =

k−1
∑

i=1

yi2
i−1

(7)P′ =

{

2
k−1 − X − 1 if u > 2

k−1 − X − 1

u if u ≤ 2
k−1 − X − 1

(8)P′ = 2k−1 + X

(9)p′ =











u+
�8

i=k
yi2

i−1 if u > X

X +
�8

i=k
yi2

i−1 if u ≤ X

(10)P′ =

8
∑

i=k

yi2
i−1 − X − 1

(11)P′ =















�

8

i=k yi2
i−1 + 2

k−1 − X − 1 if u > 2
k−1 − X − 1

�

8

i=k yi2
i−1 + X if u < X

�

8

i=k yi2
i−1 + u if u ≥ X and u ≤ 2

k−1 − X − 1
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If the embedded bit is not equal to the original bit yk �= b, then the original bit is equal 
to one and the embedded bit is zero (yk = 1 and b = 0); then, the watermarked pixel 
can be obtained from Eq. 12:

If the embedded bit is not equal to the original bit yk �= b, then the original bit is equal 
to zero and the embedded bit is one (yk = 1 and b = 1); the watermarked pixel can be 
obtained as in Eq. 13:

Equations 12 and 13 can be rewritten to form Eq. 14, by inserting b as the embedded 
value (which is either 0 or 1) into the k-bit plane:

The neural network (NN) model is introduced to yield a collective phenomenon 
for watermarked image quality metrics in which the image undergoes seven so-called 
watermarking attacks (image processing operations). The fact remains that image qual-
ity assessment is important, especially in regard to finding the perfect image. It is well 
known that the application of a neural network comes from the desire to develop an 
artificial system that could perform ‘intelligent’ tasks similar to those performed by the 
human brain. In other words, a network model could gain knowledge through learning 
and store it in such a way that the knowledge could be applied when the need arises. 
Conventional linear models obviously are not suitable for modelling data with non-lin-
ear attributes. Neural network models are capable of treating both linear and non-linear 
relationships by learning those relationships directly from the data that is being mod-
elled. Many neural network models are available, among them the multi-layer percep-
tron NN (MLPNN) model, which is very good at prediction (Shamseldin et al. 2007) and 
has a high degree of accuracy in recognising patterns (Darus and Al-Khafaji 2012), Pre-
vious research has shown that some other NN model are used in watermarking (Wang 
et al. 2015; Agarwal et al. 2013; Maity et al. 2014; Singh et al. 2016). A graphical repre-
sentation of a typical MLPNN with three hidden layers is shown Fig. 2, which presents 
a three hidden layers. The inputs are fed into the input layer and are multiplied by inter-
connection weights as they are passed from the input layer neurons to the first hidden 
layer. Within the first hidden layer, the signals are summed, and a nonlinear activation 
function is computed. As the processed data leaves the first hidden layer, it again gets 
multiplied by interconnection weights and is then summed and computed by the second 
hidden layer. As the processed data leaves the second hidden layer, again it gets multi-
plied by interconnection weights and is then summed and processed by the third hidden 
layer. Finally, the data are multiplied by interconnection weights and then is processed 

(12)P′ =

{
∑

8

i=k+1
yi2

i−1 + 2
k−1 − X − 1 if yk−1 = 0

∑

8

i=k+1
yi2

i−1 + 2
k + X if yk−1 = 1

(13)P′ =

{
∑

8

i=k+1
yi2

i−1 − X − 1 if yk−1 = 0

∑

8

i=k+1
yi2

i−1 + 2
k−1 + X if yk−1 = 1

(14)P′ =

{
∑

8

i=k+1
yi2

i−1 + b2k−1 − X − 1 if yk−1 = 0

∑

8

i=k+1
yi2

i−1 + 2
k−1 + b2k−1 + X if yk−1 = 1
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one last time within the output layer to produce the MLPNN output (Agilandeeswari 
and Ganesan 2015).

ISB embedding and extracting of the watermarks

Employing the effects of the bit-plane technique, four watermarked grey-scale images of 
size 90 × 90 pixels and six host images containing 256 × 256 pixels each (see Fig. 2) were 
used for the intermediate significant bit embedding technique.

Before the embedding process, the first step is to encrypt the watermark images using 
the Random Pixel Manipulation Technique, a chosen key string that is effectively manip-
ulated to obtain a random number sequence. The key provides a seed value, which is an 
integer that helps to generate a repeated sequence of unique pseudo-random numbers 
that range from 0 to N, where N is the number of available pixels. This sequence is then 
used to ‘scramble’ the hidden data. At the receiving end, the key is used to uncover the 
data (it plays the role of a password). It provides the same seed value and consequently 
the same sequence of unique random numbers as generated at the sender’s side. There-
fore, the four watermark images were embedded into the six host images one-by-one 
using the ISB embedding technique, and the embedded data were distributed randomly 
throughout the image and could be recovered bit-by-bit, packed and re-grouped to fully 
regenerate the hidden original data.

The watermark images were embedded into the host images by using the proposed 
ISB algorithm (at X =  0) for all of the bit-planes, starting from the 1st bit-plane (the 
most significant bits—MSB) through the 8th bit-plane (the least significant bits—LSB). 
The peak signal-to-noise ratio PSNR was then calculated. Visual inspection of the water-
marked image compared to the PSNR value, for both the LSB and ISB techniques, 
increased gradually from the 1st bit-plane to the 8th bit-plane. On the other hand, the 
quality of the watermarked images for the ISB techniques was improved.

The watermarking experiment involves embedding and extracting watermarks on 
grey-scale images. The experiment is aimed at testing the strengths of embedding in 
intermediate significant bits (ISB) to evaluate the distortion metrics on the watermark in 
the watermarked file and the degradation of the watermarked rates. This approach could 
lead to establishing limiting values for the relationships between them. To demonstrate 
the effect of each level in the grey-scale images, the host image eight bit-planes are used, 

Fig. 2 The Block diagram of a three hidden layer multilayer perceptron (MLP)
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starting from the 1st bit-plane in the top left image to the 8th bit-plane in the bottom 
right image. Observing these bit-planes after removing k bit-planes, it can be observed 
that some areas in the 6th, 7th and 8th LSB planes are covered with noise. Theoreti-
cally, the worst case in the simple LSB substitution method occurs when the watermark 
bit and original bit are different all the time. In other words, the difference between the 
original pixel and the watermarked pixel is (2k − 1), where k is the level of the different 
bit-planes.

PSNR for the worst case of embedding one bit within k bit-planes and embedding 
the watermark within k-rightmost of the host image are presented in Fig. 3, in addition 
to the most common distribution embedding for the k bit-plane. Notice that the worst 
case of the k-rightmost bit-plane can be obtained only when they are all zeros and the 
embedded bits are ones or the original bits are ones and the embedded bits are zeros.

The above figure shows three PSNR values for different k bit-planes. The first is the 
worst case, from embedding in the k bit-plane only. The second is for embedding the 
watermark into the k bit-plane only for the most common case, and the third case is for 
embedding the worst case into the k-rightmost bit-planes. It can be observed that the 
image quality of the watermarked image had been drastically degraded when k > 4, in 
the case of using one bit-plane only for hosting the watermark. In the case of k right-
most bit-planes, the image quality of the watermarked image was drastically degraded 
when k > 3.

The demonstration of the proposed MLPNN model application is shown in Fig. 4. The 
watermarked file is subjected to seven different attacks and then it was converted from 
an image format into a binary format (0 and 1). The binary data are then fed into the 
MLPNN model, which has been trained to make the association between the character 

Fig. 3 The grey-scale watermark images (90 × 90 pixels each) and host images (256 × 256 pixels each)
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image data and a numeric value that corresponds to the character of the image process-
ing and enhancement metric (PSNR and NCC). The output is to determine the limiting 
values that coexist between the image quality metrics. The network detects patterns in 
the experimental data in such a way that it can make predictions with reasonable accu-
racy on the test datasets, similar to the study performed in Agarwal et al. (2015).

The image quality metrics (PSNR and NCC)

In many successful watermarking algorithms, there is always an absence of any perpetual 
degradation, and a Peak Signal-to-Noise Ratio (PSNR) is always obtained in excess of 
40 dB. This arrangement indicates that little or no noise is being detected after embed-
ding a watermark in the original image file. Furthermore, following an application of 
some attacks (image enhancement/processing operation), a normalised cross-correla-
tion examination indicates no significant difference between the original image before 
embedding and after embedding. In contrast to this finding, it has been stated that the 
PSNR measurement is not valid or it does not truly indicate the signal to noise ratio 
accurately when the content of the original file changes after embedding (Lazzerini et al. 
2010; Roy and Laha 2015). Some studies have also shown that PSNR poorly correlates 
with the subjective quality (Huynh-Thu and Ghanbari 2012; Tanchenko 2014); however, 
PSNR is still extensively used in evaluating the noise/denoising performance (Ong et al. 
2006; Yoo and Ahn 2013), although PSNR as a quality metric that is constantly debated, 
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in that it either is/is not relevant or is wrongly used as a quality metric. It is given by the 
following equation:

where �2j  is defined as �2j =
(

1
Z

)

∑Z
i=1

(

y(i)− y′(i)
)2 where Z is the length of the host 

audio, and y(i) is the magnitude of the audio X at time i. Similarly, y′(i) denotes the mag-
nitude of the watermarked audio X ′ at time i. X2

peak denotes the squared peak value of 
the host audio. The higher PSNR means that the watermarked image is similar to the 
original image file (Chen et al. 2011).

Normalised cross-correlation (NCC) is the next metric that is used to evaluate the 
correlation between the extracted and the original watermark (Debella-Gilo and Kääb 
(2011); it is given by

In the above equation, W and W′ constitute the original and the extracted watermarks, 
whereas i, j represent the indices in the binary watermark image. If NCC (W, W′) is close 
to 1, then the correlation between W and W′ is very high. On the other hand, if it is 
close to zero, then there is very low correlation. Utilising the above equations, selected 
image processing/enhancement operations are performed to assess the robustness of the 
technique.

Result and discussion
Figure 5 shows an image (host 5) with the images after applying seven selected attacks 
without embedding any watermark. The comparison between all of these images is dis-
played in Table 1; these results were accomplished by calculating the average of the pixel 
changes as a percentage (P) according to Eq. 17.

where P is the original pixel, P′ is the pixel after applying the attack, and N is the total 
number of pixels.

From the above results, it is clear that the effect of the Gaussian filter on the image (the 
average pixel change) was the least, and the effect of blurring was the highest.

The PSNR and NCC using the proposed method for the 1st to 8th bit-planes, and all of 
the possible bias values (X), were calculated after applying the chosen attacks. Although 
some attacks were found to improve the quality of the image (such as filtering and com-
pression), others were found to destroy the image (such as blurring and noise). The 
results prove that the best watermarked image quality (the highest PSNR) was found 
when the bias value was the minimum (X = 0, the nearest pixel to the original), while the 
worst quality occurred when the bias value was the maximum. On the other hand, the 
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best robustness (the largest NCC) could be obtained with the maximum bias value (in 
the middle of the ranges), but the worst was when the bias value was at a minimum. We 
noticed that the high quality of the digital watermarking images yielded the same result 
with the minimum bias value, while the robust digital watermarking method gave the 
same result as with the maximum bias value. The rotation and scaling were also tested 
for each embedding for the different bit-planes and different bias values. The NCC value 
for rotation was approximately 0.7995 for all of the embedding, and the NCC value for 
scaling was approximately 0.8092 for all of the embedding. These results are similar 
to those obtained from the LSB method. In other words, if the pixel was at the edge 
or middle of the range in any of the bit-planes, these two attacks would not affect the 
robustness.

The NCC values, after applying the chosen attacks for the ISB and LSB method for dif-
ferent bit-planes, are presented in Figs. 6 and 7 respectively.

From the above figures, it can be noted that the robustness in both methods has been 
improved by moving from the 8th bit-plane to the 1st, which occurs because the attack 
can change a small value (the last bit-planes) much more easily than a large value, such as 
in the first bit-planes. Although the watermarked image quality of the proposed method 
has been improved over the LSB method, the robustness was also found to have been 
reduced, as can be seen from the decrease in the NCC values. The difference between 
the NCC in the proposed method and the LSB method increases when moved from 

Fig. 5 The proposed framework of the watermarked MLPNN modelling processes

Table 1 The effectiveness of the attacks on the image

Attacks Average of pixels change 
% according to Eq. 17

Lossy compression 2.8896

Blurring 7.3548

Wiener filter 2.7365

Gaussian filter 1.5735

Speckle noise 5.9014

Scaling 5.6076

Rotation 5.7719
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the 8th bit-plane to the 1st. Figure 8 can be considered as an introduction to reaching 
a compromise between the image quality and robustness. Similarly, Figs. 7 and 8 show 
that the results for rotation and scaling stay the same for different bit-planes, and they 
give the same NCC values as for the LSB in the proposed method. The reason is that 
both attacks are geometric transformation attacks, in which the intensities of the pixels 
are not affected by these attacks, while the locations of the pixels are changed.

Further analysis was conducted by using every pixel and shifting them to the middle of 
the range in such a way that any modification on the pixel by attacks will minimally affect 
the selected bit. By choosing the watermarked pixel to be in the middle of the range, the 

Fig. 6 Images before and after applying different attacks

1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Bit Plane

N
C

C
 u

nd
er

 d
iff

er
en

t t
yp

es
 o

f a
tta

ck
s

JPEG Blurring Gaussian Wiener Speckle Rotation Scaling

Fig. 7 NCC value for the ISB method under different types of attack



Page 15 of 25Zeki et al. SpringerPlus  (2016) 5:868 

same range is selected if the embedded bit is 1 and the selected bit of the original pixel 
value is also 1 or by embedding 0 if the selected bit of the original pixel is 0. In contrast, 
if the selected bit of the original binary pixel is not equal to the embedded pixel, then the 
middle of the previous or next range is selected. The new range is determined according 
to its distance from the original pixel value. In other words, if the nearest range to the 
original pixel is chosen, the quality of the watermark will be the best possible because 
the difference from the original pixel is the minimum. At the same time, if the middle 
of the range is chosen, the robustness will be the best possible that can be achieved. The 
reason is that the point is the farthest from the edge; thus, any attack will have a mini-
mum effect on it. Note that there are two middle values because the number of pixels in 
the range is even; thus, the nearest value to the original pixel is selected to be the water-
marked pixel. Figure 9 shows the extracted image (watermark 1) from host 1 using the 
proposed technique after applying the chosen attacks. All of the bit-planes were tested, 
starting from the 1st bit-plane (MSB) through the 8th bit-plane (LSB). The NCC was 
also calculated for each embedding. Note the similarity of the test for the LSB method 
presented in Fig. 8.

The NCC values of the extracted watermarks for the ISB method in all of the bit-
planes, after applying the chosen attacks, are better than for the LSB method, evidently 
from the above result. The ISB method (which chooses the middle of the range to be the 
location of the watermarked pixel), especially in the first bit-planes that have large values 
in the range, prove to be an improvement on the LSB technique. This improvement is 
gradually decreased from the 1st to the 8th bit-planes. Moreover, it can be observed that 
for the 7th and 8th bit-planes (the least significant bits), the quality of the extracted logo 
is neither improved nor affected when using this method because of the small length 
of the range (the lengths of the 7th and 8th bit-plane are 2 and 1 respectively); there-
fore, there is no middle value, and the watermarked pixel is on the edge of the range. 
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It can also be observed that the robustness does not improve for the rotation and scal-
ing attacks because they are both considered to be geometric transformation attacks, 
which do not affect the intensity of the pixels. In contrast, they change the locations of 
the pixels. In other words, this method is more robust against image processing opera-
tions (compression, filtering, blurring and noise) that modify the intensity of the pixels.

As described in the previous sections, the location of the watermarked pixel was 
tested according to the range of each bit-plane. Thus, if the pixel value was located at 
the edge of the ranges, any small change by the attacks was found to move the pixel from 
one range to another, and the watermark could not be extracted. On the other hand, if 
the watermarked pixel was in the middle of the range, any effect on the pixel by attacks 
would then make it difficult to move the selected bit to another range, and the bit could 
be extracted correctly. The balance between robustness and the quality of the water-
marked image was accomplished by positioning the watermarked pixel away from the 
edge of the range. The best bias value (the threshold value) between the middle and the 
edge of the range was found to survive against different types of attack and, at the same 
time, to retain the best image quality. Assume that the bias value (X) is the minimum 
distance from the position of the watermarked pixel P′ to the edge of the range, which 
is closer to the original pixel. This arrangement means that if the distance from the pixel 
to the edge of the range is greater than the bias value, the position of the pixel will not 
change. In contrast, if the distance from the pixel to the edge of the range is smaller 
than the bias value, the position of the pixel will change to be as far as the bias value. 
The PSNR and the NCC for the proposed method of all of the possible bias values (X) 
were calculated after applying the chosen attacks, for all of the eight bit-planes. These 
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calculated values were used to build the first MLPNN model for predicting the limiting 
values for PSNR and NCC.

The two important metrics are the PSNR and NCC, which are taken as input vectors in 
Fig. 10. Hybridisation of unsupervised and supervised learning techniques was proposed 
and implemented using NeuroSolution 6.0 and Matlab 13b. The ISB technique that this 
research used takes the threshold value for an acceptable image quality in the 4th bit-plane 
(when the bias value is 6). It was observed that the difference between the watermarked 
pixel and the original pixel changed from 0 to 14 in all of the ranges of the bit-planes, 
except for the first and last, where the differences changed from 0 to 22. This finding 
means that if the original pixel value is 0 and the embedded bit is 1, the watermarked 
pixel will be 22 (the minimum of the next range + 6 = 16 + 6 = 22). The same result will 
be obtained if the original pixel value is 255 and the embedded bit is 0: the watermarked 
pixel will be 233 (the maximum of the previous range − 6 = 239 − 6 = 233); thus, the dif-
ference between the two pixels is 22. The result of a neural network model of the water-
marked pixel value (P′) when embedding 0 into all of the option cases of the original 
pixel values (P) from 0 to 255 is shown in Fig. 10. The desired output obtained during 
the embedding also shows a good result in the NN model by giving MSE empty = 0.009, 
MSE filled = 0.009, NMSE empty = 0.07, NMSE filled = 0.07, MAE empty = 0.07, MAE 
filled = 0.07, Min Abs Error empty = 0.02, Min Abs Error filled = 0.02, Max Abs Error 
empty = 0.03, Max Abs Error filled = 0.03, r empty = 0.9, and r filled = 0.9. The overall 
performance of the output/desired value is 100 %.

The result of the NN model of the watermarked pixel value (P′) when embedding 1 
into all of the cases of the original pixel value (P), from 0 to 255, is shown in Fig. 11. The 
desired output obtained from the embedding also shows a good result in the NN model 
by giving MSE empty = 1.9, MSE filled = 1.9, NMSE empty = 1.6, NMSE filled = 1.6, 
MAE empty  =  3.9, MAE filled  =  3.9, Min Abs Error empty  =  1.5, Min Abs Error 
filled = 1.6, Max Abs, Error empty = 6.1, Max Abs Error filled = 6.1, r empty = 1, and r 
filled = 1. The overall performance of the output/desired value is 100 %.

The difference between the original pixels (P) and the watermarked pixels (P′) presents 
the error of the watermarked pixels, which is the quality of the distortion value of the 
watermarked image. Figure 12 presents the watermarked pixel of all cases of the original 
pixel values from 0 to 255, when 0 or 1 is embedded.

Fig. 10 Result on zero bit results of embedding for all of the pixel value cases from 0 to 255
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Figure 12 shows that the watermarked pixel value is moved around the original pixel 
value, and in some cases, they are identical [where the distance between the original 
pixel value and the edge of the range (the bias value) is 6 or above]. This arrangement 
means that if the embedded bit is equal to the original, and the pixel located at the edge 
of the range or having a distance of less than 6 (from the edge of the range), the water-
marked pixel will move to be at a distance of 6 from the edge, and the difference between 
the watermarked pixel and the original pixel will range from 1 to 6. In contrast, if the 
original pixel is located as far as 6 or is greater than 6, the watermarked pixel will remain 
the same as the original. If the embedded bit is not equal to the original bit, the water-
marked pixel will be located in the next range, and the difference between the water-
marked pixel and the original should change between 14 and 7, while the difference is 
supposed to be between 7 and 22 if the original pixel is located at the first or the last of 
the range. These remarks are further illustrated in Fig. 13.

The difference between the value of the original pixel and the watermarked pixel (the 
error) is illustrated in Fig. 14 when 0 and 1 are embedded in all cases, from 0 to 255.

The NCC and PSNR values for different attacks after embedding the watermarks 
within hosts using the proposed method were also modelled by the NN. The results of 

Fig. 11 Result on one bit results of embedding to all pixel value cases from 0 to 255

Fig. 12 The watermarked pixel when embedding 0 and 1 to all possible pixel values from 0 to 255
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the neural network model of a situation in which the desired output is PSNR and the 
output is NCC and vice versa for embedding within the 1st to 8th bit-planes are pre-
sented in Figs. 15, 16 and 17. The aim is to validate the results obtained after applying the 
attacks, which shows that the NCC for all attacks was found to be very close to 1, and 
the PSNR all greater than 30 dB. This arrangement reflects a robust watermarking tech-
nique with high quality. The NN models for the embedding in the entire bit-plane show 
that those entire embedding models are fit with r values that are greater than 0.93 for all 
cases, after considering that MSE is the average squared difference between the outputs 
and targets. Lower values are better, and zero means no error.
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Fig. 15 Result of the attacks on the first bit-planes

Fig. 16 Result of the attacks on the second bit-planes
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Discussion
This study has revealed the best pixel value (the threshold value) between the middle 
and the edge of the ranges, which survives against different types of attack, and at the 
same time maintains minimum image distortion. By testing all of the possible positions 
of the pixel between the edge and the middle of the range, and by considering an accept-
able image quality of greater than 30 dB with the PSNR, the best normalised cross-cor-
relation was found to be in the 4th bit-plane, when the bias value was 6. The bias value 
is the distance from the position of the watermarked pixel to the edge of the range. To 
validate the metrics for robustness, an MLP neural network model was built and trained 
for the entire embedding of the watermark and the attacks on watermarked images, with 
the desired output. The model fitness to this parameter indicates a very good result, by 
which we confirmed that every PSNR and NCC obtained during this experiment is fit. 
Although it was shown that the PSNR and NCC values fluctuate at certain times, and 
that the picture sometimes shows fluctuations at the same time, this arrangement means 
that there is no guarantee that when NCC indicates high values toward 1, the PNSR val-
ues will give a poor result. The fact remains that one goes up on one occasion higher 
and the other follows, and vice versa. Therefore, the ISB technique can be regarded as 
successful.

This study has shown that from the values of both PSNR and NCC, improving the 
robustness by partitioning the host image into blocks in the different sizes of 3, 5, 7 or 
9 pixels is a breakthrough. For this purpose, the proposed method was applied (4th bit-
plane at the bias value = 6), and the embedding was repeated for each bit of the water-
mark within all of the pixels in the block. The idea for repeating the embedding was 
to increase the robustness of the watermark system against all types of attack, specifi-
cally against the geometric transformation attacks. It was obvious that the capacity of 
embedding decreased by increasing the number of repetitions of the embedded bits. 
The results showed that the value of NCC increased with the increase in the embedding 
number for all of the attacks. The results yielded for the NCC became very close to 1 
after nine repetitions, especially for rotation and scaling.

Similar to the above experiment, the image was partitioned into blocks of different 
sizes of 3, 5, 7 and 9 pixels. For every block, the average of the pixels was found, and the 

Fig. 17 Result of the attacks on the third to the eighth bit-planes
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proposed method was applied to this average. The results showed that the NCC value 
improved with the increase in the size of the block for all of the attacks, including the 
geometric transformation attacks (rotation and scaling), which did not improve when 
the method was applied based on one pixel only. The idea behind the application of the 
proposed method, using blocks, was based on the assumption that the blocks were more 
resistant to attack than the single pixel, which was shown to be true. The result sug-
gested that the block of three pixels was almost sufficient for all of the attacks, except for 
rotation and scaling, where a larger size of block might be needed.

Comparing the two methods, it was found that the one that made use of the average 
of the pixel values was better than that based on repetition, for all of the attacks, except 
for the rotation and scaling, which was indicated to improve extensively by means of the 
repetition method. For both methods, the results of the PSNR showed that the quality 
of the images was suitable for applying the proposed method based on any size of block. 
This arrangement occurs because the embedding within the 4th bit-plane, at the bias 
value of 6, is the threshold value that maintains the quality of the image. In other words, 
applying the proposed method based on individual pixels or blocks of pixels changes the 
pixels but has some restrictions and adjustments, which are important for the quality.

Furthermore, good outcomes were found to be maintained for robustness and capacity 
by embedding the most important information within large blocks and the other infor-
mation within small-sized blocks because the most significant bits are more important 
for the quality of the image than are the least significant bits. A few examples were given 
using both methods, namely, repeating embedding in a block and embedding based on 
the average of the pixel values. The results showed that with this method the NCC was 
generally better than embedding within one size of the blocks with the same capacity.

For more data embedding, a new method based on PVD was applied. The image was 
partitioned into blocks, each containing 3 ×  3 pixels. Three critical pixels were found 
(the maximum pixel value, the minimum pixel value and the third value chosen from 
the remaining seven pixels) in such a way that it was the farthest point from these two 
pixels. For the three points, only one bit was embedded within each 4th bit-plane at the 
bias value of 6. A high embedding capacity was embedded within the other six points. 
For this purpose, a range table was designed, and the embedding process was applied to 
all of the blocks, from right to left and from top to bottom. An imaginary plane was also 
passed through the above three critical pixels. The idea of using this plane was to embed 
more data within the edge areas because the HVS is less sensitive to distortions around 
these areas compared to the smooth areas, as well as acting as a smoothing element. 
Using the imaginary plane, the watermarked image would be very close to the original 
image. The characteristics of this plan should not be changed after embedding the mes-
sage, and the same characteristics could be used to evaluate the embedded capacity in 
the extracted module. The total capacity obtained was in the range 22–26 %. This is con-
sidered to be a very high embedding capacity.

Conclusions
The ISB techniques proposed have been proven to be robust based on two facts: (1) the 
experimental results of embedding and application of seven different attacks; (2) the 
model fitness of the MLP neural network that was trained for the robustness metric and 
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that tested the results of the first experiment, yielding a notably good outcome. These 
findings show that PSNR and NCC used for measuring the robustness of these tech-
niques perform well, and their behaviours were revealed to correspond to one another. 
The evaluation of the attacks that this paper presents is concerned with the spatial 
digital watermarking method based on the bit-plane model. This technique shows an 
improvement in the robustness of the digital watermarking system. Every pixel used for 
embedding is moved to be in the middle of the range (i.e. far away from the edge of the 
bit-plane), in such a way that any change in the pixel by the attacks will minimally affect 
the selected bit. Using the proposed method, which selects the middle of the range as 
the location of the watermarked pixel, the NCC of the extracted logo is better than the 
LSB method, especially in the first bit-planes, which comprise a large range of the table. 
This improvement was found to decrease gradually from the 1st to the 8th bit-planes. 
It was also found that robustness does not improve for the rotation and scaling attacks 
because both are considered to be geometric transformation attacks, and these attacks 
do not affect the intensity of the pixels because they change the locations of the pixels. In 
other words, the proposed method is more robust against image processing operations 
such as compression, filtering, blurring and noise, which modify the intensity of the pix-
els rather than their locations.
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