
Parallel image computation in clusters
with task‑distributor
Christian Baun*

Background
This paper presents the software task-distributor,1 which implements the master–worker
scheme to simplify the parallel execution of computation of images by using the ray trac-
ing software POV-Ray (Plachetka 1998) in parallel on multiple nodes of a distributed
system like a cluster.

Ray tracing is a processor and main memory intensive task, which makes it also useful
as benchmark application for clusters. Therefore, task-distributor and POV-Ray can be
used to see and understand the impact of the problem size and available main memory
resources on the scaling of parallel applications.

This paper is organized as follows. Section “Related work” contains a discussion of
related work and explains the reason for the development of task-distributor.

In section “Design decisions”, the general functioning of task-distributor is explained
and possible ways to design the software are discussed. The workflow of the software is
explained step by step in “Workflow of task-distributor” section.

Section “Parallel image computation inside a cluster” presents a cluster of single board
computers. The performance and scalability of this cluster system is analyzed with

1  Further information about the task-distributor software, including the source code, can be found at the web page
http://github.com/christianbaun/task-distributor/.

Abstract 

Distributed systems, especially clusters, can be used to execute ray tracing tasks in par-
allel for speeding up the image computation. Because ray tracing is a computational
expensive and memory consuming task, ray tracing can also be used to benchmark
clusters. This paper introduces task-distributor, a free software solution for the paral-
lel execution of ray tracing tasks in distributed systems. The ray tracing solution used
for this work is the Persistence Of Vision Raytracer (POV-Ray). Task-distributor does not
require any modification of the POV-Ray source code or the installation of an additional
message passing library like the Message Passing Interface or Parallel Virtual Machine
to allow parallel image computation, in contrast to various other projects. By analyzing
the runtime of the sequential and parallel program parts of task-distributor, it becomes
clear how the problem size and available hardware resources influence the scaling of
the parallel application.

Keywords:  Cluster computing, Performance, Master–worker scheme, Speedup,
POV-Ray

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Baun ﻿SpringerPlus (2016) 5:632
DOI 10.1186/s40064-016-2254-x

*Correspondence:
christianbaun@fb2.fra‑uas.de
Frankfurt University
of Applied Sciences,
Nibelungenplatz 1,
60318 Frankfurt am Main,
Germany

http://github.com/christianbaun/task-distributor/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2254-x&domain=pdf

Page 2 of 13Baun ﻿SpringerPlus (2016) 5:632

task-distributor and POV-Ray in “Analysis of performance and scalability” section. Fur-
ther analysis of the runtime behaviour of task-distributor shows the impact of the prob-
lem size and available main memory resources.

Finally, section “Conclusions and future work” presents conclusions and directions for
future work.

Related work
In the past, numerous projects extended POV-Ray in a way that splitting the image
computation task into smaller subtasks and distributing them to the nodes of a cluster
became possible.

Freisleben et al. (1997) presented a case study of several parallel versions of POV-Ray
in a cluster of DEC Alpha workstations by customizing POV-Ray version 3.0 to make use
of the MPICH implementation of MPI.2 Freisleben et al. (1998) analyzed the runtime
behaviour when using up to 11 of the 12 available workstations as worker nodes. It
seems that the described solution is no longer available, or has never been released.

Fava et al. (1999) presented MPIPOV,3 which extends POV-Ray up to version 3.1 to
use the message passing standard MPI. The authors described the speedup by using a
cluster of four commodity hardware nodes with two processors per node and compared
it to a single SGI Onyx2 workstation, equipped with eight RISC processors.

PVMPOV4 is a patch, which extends POV-Ray up to version 3.5 to use PVM.5 The lat-
est release of the PVMPOV patch is from the year 2002.

Plachetka (2002) presented a parallel version of POV-Ray version 3.1, which uses
PVM. In his work he described the speedup by using up to 48 worker nodes from a clus-
ter with two processors per node.

Yang and Chang (2003) described a Linux cluster scenario, where PVMPOV is used to
investigate the speedup.

The described extensions of POV-Ray have not been updated since a decade or longer.
Furthermore, they do not support recent versions of POV-Ray. Especially the lack of
support for the latest POV-Ray version is a major drawback as POV-Ray supports multi-
threading since version 3.7. For this reason, the task-distributor software was developed
and implemented.

Design decisions
Task-distributor splits the image calculation by row, which does not require a modifica-
tion of the POV-Ray source code and no additional library for message passing like MPI
or PVM is used. This way, task-distributor largely implements the approach, described
by W. R. Rooney6 in 2001. By using the POV-Ray options +sr and +er, each node ren-

2  The Message Passing Interface (MPI) it is the de facto standard for distributed scientific computing and defines the
syntax and semantics of the MPI functions. MPICH is one of several implementations of the standard.
3  Further information about the MPI patch for POV-Ray provides the web page http://www.ce.unipr.it/research/
parma2/povray/povray.html.
4  Further information about the PVM patch for POV-Ray provides the web page http://pvmpov.sourceforge.net.
5  The Parallel Virtual Machine (PVM) is a software, which allows to connect heterogeneous computer systems to a sin-
gle distributed parallel computer. Since the late 1990s, PVM is more and more superseded by MPI.
6  Further information about the approach for using POV-Ray inside a Cluster, described by W. R. Rooney in 2001, pro-
vides the web page http://homepages.ihug.co.nz/~wrooney/present/povclust.html.

http://www.ce.unipr.it/research/parma2/povray/povray.html
http://www.ce.unipr.it/research/parma2/povray/povray.html
http://pvmpov.sourceforge.net
http://homepages.ihug.co.nz/~wrooney/present/povclust.html

Page 3 of 13Baun ﻿SpringerPlus (2016) 5:632

ders just a part (a subset of rows) of the final image. As described in the POV-Ray 3.6
Documentation,7 if this is done with POV-Ray 3.6 and older, POV-Ray writes the full
height into the image file header, but only the rendered lines into the image.

The parallel approach, described by W. R. Rooney, uses Portable Pixmap (PPM) as out-
put file format and concatenates the resulting parts to the final image. A PPM file header
is build and the image parts are assembled via the command line tool cat to compose
the final image.

As described in the POV-Ray 3.7 Documentation,8 with POV-Ray version 3.7, the out-
put is always a full height image, where the unprocessed rows are filled with black pixels.

Two options for combining the image parts with each other, in order to create the final
image, were evaluated during the development of task-distributor:

1.	 The master node composes the image parts with the command line tool compos-
ite from the ImageMagick (Still 2005) project. The following command compares
the pixels of the input images and the lighter values are taken for the output image:

 The implementation of this approach is quite simple, but a drawback is, that it is com-
putationally expensive on the master node.

2.	 The workers remove the unrendered parts by using the command-line tool con-
vert. With this command, a region of <width> by <height> pixels of the image
<input>, considering the specified horizontal and vertical offsets <offset_x>
and <offset_y>, is stored in image <output>:

 The implementation of this approach is more complex, but advantages of this approach
are, that removing the black rows is carried out in parallel by the workers, and the
master needs to process lesser data, when it composes (also with convert) the final
image from the image parts. As result, the execution time gets reduced.

Because of the described advantages and disadvantages, task-distributor implements
the second approach.

Instead of the PPM file format, used by W. R. Rooney, the task-distributor solution
uses the raster graphics file format Portable Network Graphics (PNG), which reduces
the image size and hence also the load on the master node and the local Ethernet. While
PPM is a very simple file format, that does not implement any sort of compression func-
tionality, PNG implements the lossless compression method deflate.9 Therefore, storing
an image in the file format PNG, instead of PPM, significantly reduces the file size

7  See the corresponding section of the POV-Ray 3.6 documentation on web page http://www.povray.org/documenta-
tion/view/3.6.0/217/.
8  See the corresponding section of the POV-Ray 3.7 documentation on web page http://www.povray.org/documenta-
tion/3.7.0/r3_2.html.
9  Further information about the deflate algorithm provides the web page http://www.zlib.net/feldspar.html.

http://www.povray.org/documentation/view/3.6.0/217/
http://www.povray.org/documentation/view/3.6.0/217/
http://www.povray.org/documentation/3.7.0/r3_2.html
http://www.povray.org/documentation/3.7.0/r3_2.html
http://www.zlib.net/feldspar.html

Page 4 of 13Baun ﻿SpringerPlus (2016) 5:632

without losing quality. The exact file size and compression ratio depends of the number
of pixels, color depth and image content. As described by Roelofs (1999), the only con-
vincing way to demonstrate the compression benefits of one image format over another
is to do an comparison of the two on a set of real images. Table 1 shows a comparison of
the file size of the example scene blob.pov in file format PPM and file format PNG as
well as the compression ratio. This scene was also used for analyzing the performance
and scalability of a cluster system with task-distributor and POV-Ray (see “Analysis of
performance and scalability” section).

Workflow of task‑distributor
A shared folder, accessible by the master and the workers, must be created. It is used to
store the lockfile and the image parts and can be implemented by using a distributed file
system or a protocol like the Network File System (NFS).

First the master creates a lockfile on the shared folder. Then the master starts a POV-
Ray task on each worker node via secure shell (see Fig. 1). The task-distributor imple-
ments Round Robin load balancing, which does not take the load of the nodes into
account. This is not a problem, as long as the cluster is a homogeneous10 one and the
cluster nodes are all used for the same tasks.

At step three (see Fig. 2), the workers calculate the assigned image parts and remove
the black rows via the convert tool. This step is executed in parallel on all worker
nodes. After the POV-Ray jobs have been started, the master checks in an infinite loop
the lockfile to determine the execution status of the workers.

After a worker has finished calculating its assigned job, it copies the result into the
shared folder (step four) and writes its hostname into the lockfile (step five). Both steps
are executed in parallel on all worker nodes. The distributed file system or protocol used
prevents data corruption, caused by parallel write operations of the workers.

In step six, the master sequentially composes the image parts by using the convert
tool to create the final image (see Fig. 3). At the final step seven, the master erases the
lockfile and the image parts from the shared folder (see Fig. 4). As for step six, this task
cannot be parallelized.

Parallel image computation inside a cluster
In order to show how task-distributor and POV-Ray can be used to analyze the perfor-
mance of a distributed system, a cluster (see Figs. 5, 6) of the following components was
constructed:

• • 8× Raspberry Pi Model B single board computer
• • 8× SD flash memory card (16 GB each)
• • 10/100 network switch with 16 ports
• • 8× network cable CAT 5e U/UTP
• • 2× USB power supply 40 W (5 V, 8 A)
• • 8× USB 2.0 cable USB-A/Micro-USB

10  In a homogeneous cluster, all nodes consist of the same hardware components and run the same operating system.

Page 5 of 13Baun ﻿SpringerPlus (2016) 5:632

Table 1  File size of the example scene blob.pov, rendered in different resolutions
and stored in the file formats PPM and PNG, as well as the compression ratio

The compression ratio is the ratio between the uncompressed size (PPM) and compressed size (PNG)

Resolution PPM file size (Bytes) PNG file size (Bytes) Compression ratio

200 × 150 90,142 8974 ≈10

400 × 300 360,142 24,994 ≈14

800 × 600 1,440,142 67,159 ≈21

1600 × 1200 5,760,144 184,827 ≈31

3200 × 2400 23,040,144 519,951 ≈44

6400 × 4800 92,160,144 1,451,245 ≈63

Fig. 1  The master creates a lockfile and starts ray tracing jobs

Fig. 2  The workers calculate their image parts, copy them into the shared folder and insert their hostnames
into the lockfile

Fig. 3  The master creates the final image

Page 6 of 13Baun ﻿SpringerPlus (2016) 5:632

The nodes are single-processor systems with an ARM 11 CPU equipped with 512 MB
main memory. Increasing the clock rate of a Raspberry Pi from 700 to 800 MHz does not
require to overvolt the CPU and results in a noticeable increase of processing power and
was therefore used in all tests.

Fig. 4  The master cleans up the shared folder

Fig. 5  Eight Raspberry Pi Model B are the cluster nodes

Fig. 6  Power supply and network infrastructure of the cluster

Page 7 of 13Baun ﻿SpringerPlus (2016) 5:632

The purchase cost for all components were approximately 500 €. The throughput of
a 100 Mbit Ethernet switch is sufficient for Raspberry Pi computers in line with their
standard 100 Mbit Ethernet interface.

A cluster of single board computers has very limited resources and cannot compete
with the performance of higher-value systems. But despite these drawbacks, it is a prom-
ising and economic option for academic purposes like student projects or research pro-
jects with limited financial resources.

Another advantage of such a cluster system is the power consumption of the cluster,
which is just ≈24 W in idle operation mode and ≈26 W in stress mode.11

Analysis of performance and scalability
Like every parallel program, task-distributor consists of sequential and parallel parts.
To understand its scalability in the evaluated cluster of Raspberry Pi single board com-
puters, task-distributor was used to compute the example scene blob.pov, which is
included in POV-Ray version 3.7. The scene was computed with different numbers of
nodes in different resolutions. Each increase of the resolution results in four times as
many pixels as with the resolution before. It is of particular interest how the limited
hardware resources, especially the available main memory, influences the performance
of the cluster.

 The results presented in Figs. 7, 9 and 10 are average values of ten test cycles.

Analysis of the runtime

The diagrams in Fig. 7 show the total runtime of task-distributor. The runtimes of the
sequential and parallel parts are highlighted with different colors. The steps, which are
carried out during the first sequential part are explained in Fig. 1. The steps of the paral-
lel part are shown Fig. 2. Figures 3 and 4 present the steps of the second sequential part.

Table 2 contains the measurement values that were used to create the diagrams in
Fig. 7.

For almost all tested resolutions (except 200 × 150 and 400 × 300 pixels) applies the
rule that additional nodes reduce the total runtime. When the image is computed with
resolution 200 × 150, not only the runtime of the second sequential part increases when
the number of nodes grows, but also the runtime of the parallel part. This implies that
the problem size is too small to compute it in parallel efficiently.

During the execution of the parallel part, the nodes compute the image parts in paral-
lel by using POV-Ray. The size SB of the temporary buffer of POV-Ray is calculated by
Eq. (1) for a specific XY resolution.

Table 3 contains the size of the temporary buffer for the tested resolutions of Fig. 7.

11  The nodes were put into stress mode by using the command-line tool stress. Further information about stress
provides the web page http://people.seas.harvard.edu/~apw/stress/.

(1)SB = X × Y × sizeof(double)× 5 Bytes

http://people.seas.harvard.edu/~apw/stress/

Page 8 of 13Baun ﻿SpringerPlus (2016) 5:632

The size of the data type double is 8 Bytes. The reason for the multiplication by 5 Bytes
is because POV-Ray implements a 5-channel color model12 with a single byte for each
channel.

12  The channels are red, green, blue, filter and transmit. While filter specifies the amount of filtered transparency of a
substance, transmit specifies the amount of non-filtered light, which is transmitted through a surface.

Fig. 7  Total runtime of task-distributor while ray tracing an image (s)

Table 2  Runtime of the sequential and parallel parts of task-distributor in the cluster
of Raspberry Pi computers when a single one, two, four or eight nodes (processors) are
used

All values in the table are rounded to three decimal places behind the decimal point

Resolution 1st seq. part (s) 2nd seq. part (s) Parallel part (s)

1 node used 200 × 150 0.210 0.204 4.472

400 × 300 0.215 0.202 10.505

800 × 600 0.206 0.194 34.918

1600 × 1200 0.206 0.205 132.840

3200 × 2400 0.242 0.233 609.427

6400 × 4800 0.219 0.468 2434.630

2 nodes used 200 × 150 0.200 0.449 4.628

400 × 300 0.199 0.680 7.603

800 × 600 0.207 1.552 21.167

1600 × 1200 0.217 4.665 73.481

3200 × 2400 0.203 15.243 331.059

6400 × 4800 0.211 152.037 1321.640

4 nodes used 200 × 150 0.198 0.545 4.984

400 × 300 0.207 0.777 7.043

800 × 600 0.203 1.632 14.945

1600 × 1200 0.243 4.625 48.780

3200 × 2400 0.230 15.146 209.375

6400 × 4800 0.219 120.324 821.244

8 nodes used 200 × 150 0.216 0.741 6.115

400 × 300 0.201 1.002 7.422

800 × 600 0.242 1.839 12.727

1600 × 1200 0.204 4.802 32.458

3200 × 2400 0.218 15.543 131.780

6400 × 4800 0.209 120.471 509.707

Page 9 of 13Baun ﻿SpringerPlus (2016) 5:632

For resolution 400 × 300, the temporary buffer of POV-Ray is 4,800,000 Bytes in size.
Due to the small problem size, using eight nodes instead of four nodes does not reduce,
but increase the required runtime.

Efforts have been made to investigate the runtime for resolution 12800 × 9600, but all
attempts resulted in an immediate program termination of POV-Ray. This is caused by
the 32-bit-architecture of the Raspberry Pi computer. The required temporary buffer for
resolution 12800 × 9600 is 4,915,200,000 Bytes (see Table 3) in size and this exceeds the
size of the user space13 of a 32-bit operating system (see Fig. 8).

A notable observation, which can be seen in the measurement values in Table 2 is the
significant increase of the runtime of the second sequential part for resolution 6400 ×
4800 compared with resolution 3200 × 2400 (see the italicized values in Table 2). While
the number of pixels gets just quadrupled, the runtime increases by factor 8–10. The
cause of this phenomenon is explained in “Analysis of the percentages of the sequential
andparallel parts of the runtime” section.

Analysis of the speedup

The diagrams in Fig. 9 show the speedup of task-distributor. The speedup SP, that can be
achieved when running a program on P processors is defined as:

where T1is the runtime on a single-processor system and TP is the runtime on a multi-
processor system.

The theoretical maximum speedup14 ST is equal to the number of single-processor
nodes.

The results show again that with resolution 200 × 150 the problem size is too small
to be efficiently computed in parallel—increasing the number of nodes (processors)
decreases the speedup. Calculating the image with a resolution of 400 × 300 increases
the problem size. Thus, the program can be parallelized more efficiently, yet the speedup
is significantly worse compared to the theoretical maximum speedup.

13  The virtual memory address space of a 32-bit operating system is 4× 2
30 Bytes in size. A single process cannot

occupy more than the 3× 2
30 Bytes of the so called user space of its virtual memory. The upper part of the address space

is called kernel space and is used only by the operating system.

(2)SP =

T1

TP

14  The theoretical maximum speedup ST is value 2 for two nodes, value 4 for four nodes, value 8 for eight nodes, etc.

Table 3  Size of the temporary buffer of POV-Ray

Resolution Buffer size (Bytes)

200 × 150 1,200,000

400 × 300 4,800,000

800 × 600 19,200,000

1600 × 1200 76,800,000

3200 × 2400 307,200,000

6400 × 4800 1,228,800,000

12800 × 9600 4,915,200,000

Page 10 of 13Baun ﻿SpringerPlus (2016) 5:632

The diagrams for a resolution of 800 × 600, 1600 × 1200 and 3200 × 2400 show that
the more the problem size increases, the better are the results are when the program is
executed in parallel. Consequently, with each enlargement of the problem size (resolu-
tion), the speedup gets closer to the theoretical maximum speedup.

The measurement results of resolution 6400 × 4800 are worse compared to the results
of resolution 3200 × 2400. Even though the resolution 6400 × 4800 increases the prob-
lem size further, the speedup trend with an increasing number of nodes is not as good as
compared with the resolution 3200 × 2400. To analyze this phenomenon, the percent-
ages of the sequential and parallel parts of the runtime are examined.

Analysis of the percentages of the sequential and parallel parts of the runtime

The diagrams in Fig. 10 show the percentages of the sequential and parallel parts of the
runtime of task-distributor. Table 4 contains the measurement values that were used to
create the diagrams in Fig. 10.

The values show that regardless of the number of nodes used, increasing the problem
size by increasing the resolution results in a reduction of the percentage of the sequen-
tial parts runtime, except for resolution 6400 × 4800. With this resolution, the percent-
age of the second sequential part significantly raises and consequently the percentage of
the parallel part declines.

This phenomenon is caused by the amount of free main memory on the single nodes
in the cluster. The most resource consuming task of the second sequential part of task-
distributor execution is the composing of the image parts via convert to create the
final image. This task (see Fig. 3) is carried out by the master and it cannot be executed
in parallel.

Fig. 8  Virtual memory address-space layout of 32-bit Linux operating systems with kernel space and user
space

Fig. 9  Speedup when task-distributor is used to ray trace an image

Page 11 of 13Baun ﻿SpringerPlus (2016) 5:632

Each one of the Raspberry Pi cluster nodes is equipped with 512 MB main memory. A
part of the main memory is assigned as video memory to the GPU, which lacks own ded-
icated memory. Because in the cluster, the GPUs are not used at all, the minimal GPU
memory was set, which is 16 MB. This results in 496 MB main memory left for the oper-
ating system and the applications on each node. After the operating system Raspbian

Fig. 10  Percentages of task-distributors’ sequential and parallel parts of the runtime while ray tracing an
image (%)

Table 4  Proportions of sequential and parallel parts of task-distributors’ runtime in the
cluster of Raspberry Pi computers when a single one, two, four or eight nodes (processors)
are used

a  The value is too small for representing it in this table

Resolution 1st seq. part (%) 2nd seq. part (%) Parallel part (%)

1 node used 200 × 150 4.29 4.16 91.55

400 × 300 1.96 1.84 96.20

800 × 600 0.58 0.54 98.88

1600 × 1200 0.15 0.15 99.70

3200 × 2400 0.03 0.03 99.94

6400 × 4800 a 0.01 99.99

2 nodes used 200 × 150 3.78 8.49 87.73

400 × 300 2.34 8.00 89.66

800 × 600 0.90 6.76 92.34

1600 × 1200 0.27 5.95 93.78

3200 × 2400 0.05 4.39 95.56

6400 × 4800 0.01 10.31 89.68

4 nodes used 200 × 150 3.44 9.51 87.05

400 × 300 2.57 9.67 87.76

800 × 600 1.20 9.72 89.08

1600 × 1200 0.45 8.62 90.93

3200 × 2400 0.10 6.73 93.17

6400 × 4800 0.02 12.77 87.21

8 nodes used 200 × 150 3.04 10.47 86.49

400 × 300 2.32 11.61 86.07

800 × 600 1.63 12.41 85.96

1600 × 1200 0.54 12.81 86.65

3200 × 2400 0.14 10.53 89.33

6400 × 4800 0.03 19.11 80.86

Page 12 of 13Baun ﻿SpringerPlus (2016) 5:632

and the daemon and client for the distributed file system is started, approx. 400–450 MB
main memory remains available on each node.

The image parts created by POV-Ray (see Fig. 2) are stored in the file format PNG
and the convert tool (see Fig. 3) uses the same file format to store the final image. The
amount of main memory M, which needs to be allocated by convert for creating the
final image depends on the number of channels per pixel C, the number of bits per pixel
channel B and the resolution XY of the input and output images and is calculated with
Eq. 3.

ImageMagic version 6.7.7 was used for this project. This software allocates 16 bits per
pixel channel and four channels per pixel. Therefore, the required memory per pixel is
16 ∗ 4 = 64 bits. As convert needs to allocate memory for the output as well as for the
input images, it allocates at least double the amount of M. Table 5 shows the calculated
minimal memory consumption for different resolutions. In practice, convert allocates
approx. 3–5 MB (depending on the number of input files) additional main memory for
the application itself.

When convert concats the image parts to create the final image, the memory of one
Rasperry Pi node is sufficient. But in case of a resolution of 6400 × 4800, the required
minimum main memory exceeds the available free main memory and a temporary file is
created by convert on the file system.

Because the temporary file resides outside the main memory, e.g. on the (micro-)SD
storage, the runtime of convert increases due to a lower IO performance compared
to the main memory (see the italicized values for the second sequential part in Table 4).

Conclusions and future work
The parallel image computation by using POV-Ray in clusters can be simplified with
the task-distributor software solution. In contrast to the existing solutions, described in
“Related work” section, the task-distributor solution does not require a message passing
system like MPI or PVM and no modification of the POV-Ray source code is necessary.
In addition, it utilizes more efficiently the existing network resources and as much com-
putational effort as possible is carried out in parallel by the workers.

Clusters of single board computers like the Raspberry Pi are useful for academic pur-
poses and research projects because of the lesser purchase- and operation costs com-
pared to commodity hardware server resources.

(3)M = X × Y × B× C

Table 5  Minimal memory consumption of convert

Resolution Minimal memory consumption (Bytes)

200 × 150 480,000

400 × 300 1,920,000

800 × 600 7,680,000

1600 × 1200 30,720,000

3200 × 2400 122,880,000

6400 × 4800 491,520,000

Page 13 of 13Baun ﻿SpringerPlus (2016) 5:632

Analyzing the runtime and speedup of task-distributor could show that a cluster of
single board computers is an appropriate platform to see and understand the scaling of
parallel applications, the influence of the problem size and the impact of the available
main memory resources.

Task-distributor can be adapted with little effort in a way that it executes not only
POV-Ray jobs, but also any other application in parallel in distributed systems.

A useful enhancement of task-distributor, especially for heterogeneous clusters, would
be the implementation of a load balancing functionality, that takes the state and load of
the single nodes into account. The load could be measured with solutions like Ganglia
(Massie et al. 2004) or Nagios (Barth 2008). The acquired load information could be used
as basis for the scheduling of the single subtasks.

Further next steps are the implementation of clusters of different single board comput-
ers like the BananaPi or ODROID-U3 and comparing their performance.

Since February 2015, the Raspberry Pi 2 is available and provides more computational
power and main memory compared to the cluster nodes in this study. Building a cluster
of this computers is one of the next steps. It is interesting to discover how increasing the
processor cores by factor four and doubling the main memory per node affects the runt-
ime and speedup of task-distributor because the available main memory per processor
core is halved.

Acknowlegdements
This work was funded by the Hessian Ministry for Science and the Arts (’Hessisches Ministerium für Wissenschaft und
Kunst’) in the framework of research for practice (’Forschung für die Praxis’). Many thanks to Katrin Baun, Bernd Böhm and
Maximilian Hoecker for their assistance in improving the quality of this paper.

Competing interests
The author declares that he has no competing interests.

Received: 19 September 2015 Accepted: 29 April 2016

References
Barth W (2008) Nagios: system and network monitoring. No Starch Press, San Francisco
Fava A, Fava E, Bertozzi M (1999) MPIPOV: a parallel implementation of POV-Ray based on MPI. In: Recent advances in

parallel virtual machine and message passing interface—Processings of the 6th European PVM/MPI users group
meeting. Lecture notes in computer science, vol 1697, pp 426–433. Springer, New York

Freisleben B, Hartmann D, Kielmann T (1997) Parallel raytracing: a case study on partitioning and scheduling on worksta-
tion clusters. In: HICSS-30: 30th annual Hawaii international conference on system sciences, vol 1, pp 596–605

Freisleben B, Hartmann D, Kielmann T (1998) Parallel incremental raytracing of animations on a network of workstations.
PDPTA 98:1305–1312

Massie ML, Chun BN, Culler DE (2004) The ganglia distributed monitoring system: design, implementation, and experi-
ence. Parallel Comput 30(7):817–840

Plachetka T (1998) POV Ray: persistence of vision parallel raytracer. In: Proceedings of spring conference on computer
graphics, Budmerice, Slovakia, pp 123–129

Plachetka T (2002) Perfect load balancing for demand-driven parallel ray tracing. In: Euro-Par 2002 parallel processing.
Lecture notes in computer science, vol 2400, pp 410–419. Springer, Heidelberg

Roelofs G (1999) PNG: the definitive guide. O’Reilly, Sebastopol
Still M (2005) The definitive guide to ImageMagick. Apress, New York
Yang C-T, Chang Y-C (2003) A linux PC cluster with diskless slave nodes for parallel computing. In: The 9th workshop on

compiler techniques for high-performance computing at academia sinica

	Parallel image computation in clusters with task-distributor
	Abstract
	Background
	Related work
	Design decisions
	Workflow of task-distributor
	Parallel image computation inside a cluster
	Analysis of performance and scalability
	Analysis of the runtime
	Analysis of the speedup
	Analysis of the percentages of the sequential and parallel parts of the runtime

	Conclusions and future work
	Acknowlegdements
	References

