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Background
To reduce computational complexity and memory burdens, the block-based image/
video coding has been widely used in visual communication. The transmission of cod-
ing data may lead to block losses in packet-switching networks. As a result, the decoded 
image may be greatly degraded. As a post-processing technique, error concealment (EC) 
is used to recover the missing blocks of an image by exploiting the spatial or temporal 
correlations (Usman et al. 2015). Although the temporal correlation tends to be higher 
than the spatial one, there are some situations where it is difficult to access temporal 
information, such as images and intra-coded frames (intra-frame). Under such circum-
stances, spatial error concealment (SEC) tries to reconstruct the damaged blocks by uti-
lizing spatially neighboring pixels. Flexible macroblock ordering (FMO) can provide a 
common benchmark for comparing different SEC algorithms, where a frame is divided 
into several independently-decodable block groups, and each block group consists of 
a sequence of blocks (Panyavaraporn and Aramvith 2011). With FMO, different block 
groups are encapsulated into different packets, so that the missing blocks in the decoded 
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image can be concealed by neighboring pixels. In some applications, the loss of one 
packet implies the loss of a block group within a frame.

The typical SEC algorithms mainly depend on the efficient use of spatial correlation. 
The Markov random field (MRF) is used as a prior model of natural images, and its 
model parameters are locally adjusted according to the image characteristics around the 
damaged region (Shirani et al. 1999). The MRF algorithm can produce a visually com-
fortable but sometimes over-smoothed concealment without a substantial increase in 
computational complexity. Bilinear interpolation (BI) is a well-known SEC technique 
as a non-normative part in block coding standards (Varsa et al. 2001), which uses the 
weighted averaging interpolation of neighboring pixels at vertical or horizontal bounda-
ries of a damaged block. The BI algorithm can recover the smooth area but fail to restore 
the important edge information. To overcome this problem, it becomes necessary to rely 
on regularization techniques which go from simple low-pass filtering to more sophisti-
cated edge-enhancement solutions (Cafforio et al. 2001). Current research on the prob-
lem mainly concentrates its efforts on the trade-offs between efficiency and accuracy.

Since the edge structures are visually more important than uniform textures, some 
advanced interpolation methods can exploit the structural information in the neighbor-
hood of missing blocks. Li and Orchard (2002) proposed an orientation adaptive inter-
polation (OAI) algorithm based on a pixel-wise sequential prediction model, which 
estimates the missing block from eight directions in raster scan order and merges them 
with the weighted combination. The OAI algorithm alleviates error propagation at the 
expense of blurred details. In addition, the content-adaptive error concealment (CAEC) 
(Zhang et al. 2004) classifies each missing block into one of three categories: edge block, 
texture block and uniform block, and then conceals the missing blocks by different inter-
polation methods. By a minimum mean square error (MMSE) estimator, the probability 
function may be used to recovery the missing blocks. Koloda et al (2014a) suggested the 
MMSE-based error concealment with kernel density estimation (KMMSE), which need 
more computational complexity to improve reconstruction quality.

Adaptive predictors have been widely researched in lossless coding. If these predic-
tors are directly utilized for SEC, they may cause the severe error propagation. Liu et al 
(2014) proposed an order-adaptive linear predictor (OALP) to sequentially estimate the 
missing pixels, where Bayesian information criterion is adopted to explicitly determine 
the order of the predictor, and error propagation can be well alleviated by a carefully 
designed scan order. As a typical technique for object removal applications, inpainting 
is also applicable to the SEC problem. With the loss of Shannon entropy, the inpaint-
ing-based SEC has an implicit advantage in terms of subjective evaluation. Since the 
image inpainting would require larger amount of computations, it is often difficult to 
be applied for the SEC applications with run-time constraints. Chung and Yim (2014). 
proposed a hybrid exemplar-based inpainting and spatial interpolation (HEISI) method, 
whose unique feature is the threshold-selective reconstruction by inpainting or inter-
polation. When there is a similar patch, HEISI performs the exemplar-based inpainting; 
otherwise, it performs the spatial interpolation. The edge synthesis is also used in spatial 
error concealment, where multi-directional interpolations are combined according to 
the visual clearness (VC) of the edges (Koloda et al. 2013). However, the VC algorithm is 
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effective only when four neighboring blocks of a missing block are available, and it does 
not work for consecutive block loss.

The aforementioned SEC algorithms can effectively utilize the multi-directional cor-
relation to combat the scattered block loss. When the consecutive block loss occurs, 
these SEC algorithms will face lots of difficulties to obtain any horizontal correlation, so 
the high-quality concealment has to rely on much prior knowledge (Usman et al. 2015). 
In this paper, our work concentrates on the error concealment of consecutive block 
loss, which is a more challenging scenario where multiple interleaved rows of blocks 
are missing. An alternative SEC approach is the signal extrapolation (Kaup et al. 2005; 
Koloda et al. 2014b), which can estimate the unknown signal parts from known samples 
by assuming that image signals can be sparsely represented in the frequency domain. 
Based on the successive approximation of parametric model, Koloda et al (2014b) pro-
posed a modified frequency selective extrapolation (XFSE) algorithm that exploits the 
prior knowledge regarding the low-pass behavior of natural images, and yields a certain 
smoothing gains for consecutive block loss. However, due to high-frequency decaying of 
low-pass filter, XFSE cannot progressively improve its reconstruction quality even with 
more basis functions, whose performance saturates as the number of iterations is further 
increased. If high-frequency edge information is available, the low-pass filtering module 
in XFSE should be removed during the generation of parametric model, and thus the 
concealment performance is likely to be further improved.

The existing extrapolation algorithms don’t fully take into account the edge informa-
tion of natural images. To further improve the reconstruction performance in case of 
consecutive block loss, we propose an edge-aware spatial-frequency extrapolation 
(ESFE) algorithm with its edge-guided parametric model, which incorporates the edge 
synthesis into the frequency-based extrapolation, and then exploits high frequency 
terms in image description. The ESFE algorithm firstly performs the segmentation to 
identify a plausible area of dominant edges, and then conceals the edge pixels across the 
missing blocks. The ESFE algorithm develops the edge-guided parametric model from 
the set of Fourier basis functions which can be used to replace the unknown samples 
with a low computational burden. For consecutive block loss, the ESFE algorithm uti-
lizes the edge-guided parametric model to select optimal basis functions and expansion 
coefficients while preserving the edge information, and offers a much better solution in 
terms of reconstruction quality and complexity. To the best of our knowledge, this is the 
first study aiming to takes the edge information of consecutive block losses into account 
during the block-based concealment extrapolation.

The rest of this paper is organized as follows. “Problem formulation” section dis-
cusses the SEC problem with consecutive block loss, and provides a short review of sig-
nal extrapolation. Our proposed algorithm is described in “Proposed algorithm and its 
model” section. Extensive experimental results and performance comparisons are pre-
sented in “Experimental results” section. Finally, we conclude the paper in “Conclusions” 
section.
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Problem formulation
Consecutive block loss

Different SEC algorithms are designed to estimate the missing blocks from correctly 
received blocks. The locations of missing blocks can be obtained at the decoder. Figure 1 
illustrates two typical loss patterns, i.e., the scattered loss pattern and the consecutive 
loss pattern, where one image is encoded into two block groups and each square repre-
sents a block of pixels. When a block group is missing, the test images are subjected to 
approximately 50 % block loss. Figure 1a shows a common situation of scattered loss pat-
tern, where four-connected surrounding blocks of a missing block are correctly received. 
For the scattered block loss, many SEC algorithms can perform very well as the missing 
blocks can be reconstructed by their surrounding blocks. Another belongs to the con-
secutive loss pattern, which is a more challenging pattern since adjacent blocks in one 
row are lost. Figure 1b shows an example of consecutive loss pattern. Due to the lack of 
adjacent blocks in each row, many SEC algorithms cannot effectively combat the con-
secutive block loss. The consecutive block loss is still an open problem for spatial error 
concealment.

Signal extrapolation

During signal extrapolation, the fitting of unknown samples is subject to a limited num-
ber of known samples, which may be used to estimate the missing blocks. In an extrap-
olation area, (x,  y) and (k,  l) indicates the (row, column) index in spatial domain and 
frequency domain, respectively. The samples of known blocks are successively approxi-
mated through a parametric model g(x,  y), and the missing blocks are extrapolated 
according to a minimum error criterion of weighted energy function. During extrapola-
tion process, the parametric model is a weighted superposition of two-dimensional basis 
functions φk,l(x, y) with expansion coefficients ck,l.

where Fb denotes the index set in frequency domain, and the number of available basis 
functions equals the number of samples in the extrapolation area. The extrapolation 
mechanism iteratively updates a parametric model based on a set of basis functions, 
in order to approximate the available parts of received image. As the same time, the 

(1)
g
(

x, y
)

=

∑

(k ,l)∈Fb

ck ,l · ϕk ,l
(

x, y
)

a b

Fig. 1 Two typical loss patterns. White squares are the correctly received blocks, while black squares are the 
missing blocks. a Scattered loss pattern, b consecutive loss pattern
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missing parts of received image can be estimated by the parametric model. Since there 
is only one basis function added to the model in every iteration step, certain iterations 
are needed for generating the model. Human visual system is very sensitive to the image 
structure (e.g., the edge or corner), so the proposed algorithm emphasizes on the con-
cealment of missing region with dominant edges.

Proposed algorithm and its model
Edge synthesis via Hough transformation

Since the consecutive block loss will result in lower reconstruction quality, it is a practi-
cal strategy to firstly recover the part information of dominant edges, and the strategy 
provides a relatively robust basis for the following model generation. In this paper, the 
edge synthesis via Hough transformation is operated before signal extrapolation, where 
the edge detection need be introduced firstly to provide a binary edge map. For this pur-
pose, the Canny’s edge detector is chosen due to a good compromise between efficiency 
and complexity (Canny 1986). Compared with other detectors such as Sobel or Prewitt, 
the Canny detector is less sensible to noise, and the detected edges are clear. Around 
the missing blocks, dominant edge points are obtained by the Canny detector. To con-
nect the broken edges, Hough transformation has been widely used as the edge-connec-
tion tool (Robie and Mersereau 2000; Gharavi and Gao 2008). The merging approach 
in Ref. 16 is rather tedious, especially for a large number of consecutive block losses. In 
this paper we have utilized a more straightforward approach to connect the dominant 
edges. Based on the binary edge map from the Canny detector, the Hough transforma-
tion can connect the separated segments by a collinear set of points, since each line can 
be expressed as

where θ (slope) and ρ (offset) denote the Hough coordinate, and the collinear points (xi, 
yi) with i = 1,…,K, are transformed into K sinusoidal curves which intersect at the same 
Hough coordinate (ρ, θ). Each point (xi, yi) is transformed into a discretized curve and 
the accumulator cells along this curve are incremented. Since the collinear edge points 
in the spatial domain would accumulate into the same cell in the Hough domain, a high 
peak in the accumulator array would indicate the existence of a straight line in a missing 
block row.

For each Canny region which includes a missing block row, its upper block row, and 
its lower block row, a series of Hough procedures are implemented to acquire the domi-
nant linear edges. The Hough transform is continuously applied to the binary regions 
provided by the Canny edge detector. Above and below a missing block row, two known 
segments with similar Hough coordinate are selected if their prolongation crosses the 
missing block row. There may be some near horizontal lines in the vicinity of the missing 
block row, which cannot be effectively used for edge synthesis. Some known segments 
with too large slope θ need be eliminated from the candidates. As shown in Fig. 2, if two 
known segments of a broken edge have similar (ρ, θ) parameters, point 1 in the upper 
segment and point 2 in the lower segment respectively are the pixels which are clos-
est to the missing block row. In the synthesized edge line, the gray level of a pixel is the 
bilinear interpolation between point 1 and point 2. After generating a binary edge, the 

(2)ρ = xi · cos θ + yi · sin θ
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broken edge is reconstructed by bilinear interpolation, whose missing pixel is replaced 
by a weighted mean of point 1 and point 2.

In order to further clarify the mechanism of edge synthesis via Hough transformation, 
Fig. 3 shows the experimental results for four typical images and intra-frames: 1st intra-
frame of Foreman (352 ×  288, QP =  22), Lena (512 ×  512), 1st intra-frame of Race-
Horses (832 × 480, QP = 37), Airport (1024 × 1024), where the yellow line represents 
the synthesized edge among missing blocks, and the experimental settings are given in 
“Experimental results” section. These images and intra-frames have different resolutions, 
ranging from 352 × 288 to 1024 × 1024. It can be seen that the proposed mechanism 
can obtain basic structural information, and many dominant edges have been detected 
and connected successfully. The synthesized edges are then used to segment the blocks 
into different regions for the spatial-frequency extrapolation.

Spatial‑frequency extrapolation

Based on the synthesized edge in “Edge synthesis via Hough transformation” section, 
the proposed algorithm will further improve the XFSE implementation. This approach is 
based on the XFSE method proposed by Koloda et al (2014b). After the dominant edges 
are found via the Hough transform, fine concealment can be achieved by spatial-fre-
quency extrapolation. As illustrated in Fig. 4, the size of an extrapolation area A is X × Y 
samples which are indexed by spatial variables x and y. All samples in the area A belong 
to one of four areas: the correctly received samples build up the received area R; the 
samples from the missing blocks which have been extrapolated build up the concealed 
area C; in the current missing blocks, the synthesized edge samples build up the edge-
synthesis area E, and other unknown samples such as texture belong to the non-edge 
missing area T . The following edge-guided parametric model is based on the extrapola-
tion area in Fig. 4.

In order to reconstruct the unknown samples, we need to minimize a weighted resid-
ual error between the original signal and its parametric model. To estimate the samples 
in the non-edge missing area T , the parametric model successively approximates the 

Synthesized edge

Point 1

Point 2

Segment 1

Segment 2

Missing block row
θ

Upper block row

Lower block row

Fig. 2 The synthesis illustration of a broken edge in a missing block row
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Fig. 3 Experimental results of edge synthesis via Hough transformation, where yellow lines denote the 
synthesized edges. a Foreman (352 × 288, QP = 22), b Lena (512 × 512), c RaceHorses (832 × 480, QP = 37), 
d Airport (1024 × 1024)

x

y

Edge-synthesis area E
Non-edge missing area T

Received area R
Concealed area C

A=R+C+E+T

Fig. 4 An extrapolation area A as union of received area R, concealed area C, edge-synthesis area E, and non-
edge missing area T
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available samples within the support area (the received area R, concealed area C, edge-
synthesis area E). At the nth iteration, the edge-guided parametric model g(n)(x, y) is:

where Fb denotes the set of basis functions ϕp,q
(

x, y
)

 weighted by the expansion coef-
ficients cp,q

(n) at the nth iteration; (p,  q) denotes the (row, column) index in frequency 
domain. The samples in the support area are approximated successively by comput-
ing the basis function and expansion coefficient per iteration, where the basis function 
φp,q(x, y) is selected which maximizes the decrease of residual error, and the expansion 
coefficient cp,q

(n) is computed by minimizing the residual error. The edge-guided paramet-
ric model is generated with the initialization g(0)(x, y) being 0, whose coefficients cu,v

(0) are 
also set to 0. At the nth iteration, we can express the residual error as follows:

where s(x, y) denotes a sample in the extrapolation area; the masking function m(x, y) 
is zero for (x, y)∈ T  and one otherwise, so as to ensure that the non-edge missing sam-
ples are not used. The residual error r(n)(x, y) between the available sample s(x, y) and 
the current model g(n)(x, y) is minimized. The edge synthesis can obtain some structural 
information in missing block rows, and thus reduce the residual error of edge-guided 
parametric model. The expansion coefficient is estimated by minimizing the weighted 
energy from the last residual error:

where ω(x, y) is a weighting function. It has been demonstrated that the influence of the 
weighting function decays symmetrically with distance from the center of the missing 
block (Koloda et  al. 2013). As a prior knowledge, the known sample in the vicinity of 
missing block has higher importance than the sample that is far from it, and the influ-
ence of the weighting function decreases with distance. Based on the synthesized edge 
in “Edge synthesis via Hough transformation” section, the proposed ESFE algorithm fur-
ther refines the weighting function of XFSE by adding the edge-aware spatial correlation 
constraints. The new weighting function ω(x, y) can be defined as

During the spatial-frequency extrapolation, ω(x, y) is used for quantizing the influence 
of the distance to the extrapolated sample. As the unknown samples cannot contribute 
to the model generation, they have to be excluded from the weighting function, and the 

(3)
g (n)
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weight in the area T  is set to 0. The predetermined constant β ∈ [0, 1) controls the speed 
of the decaying. In the edge-synthesis area E, the influence for the sample is further 
weighted by a factor ε ∈ (0, 1]. In the concealed area C, the influence for the sample is 
further weighted by another factor δ ∈ (0, 1]. At each iteration n, the projection variable 
of expansi coefficient can be expressed as

which is interpreted as a weighted projection variable of r(n)(x, y) on φp,q(x, y). The best 
basis function and its expansion coefficient need to be searched as the one which maxi-
mizes the reduction of error energy, that is,

The process of spatial-frequency extrapolation can be further described as follows:

1. Initializing the weighted residual error

After the edge-guided parametric model is generated, all the unknown samples are 
taken from the model, and inserted at the corresponding positions of missing samples. 
Let us consider the spatially-weighted version of the residual error. The parametric 
model is initialized by g(0)(x, y) = 0. The initialization {n = 0} of the weighted residual 
error is done by the following:

2. Determining the best fitting basis function

The Fourier basis can be selected arbitrarily so as to reflect the stochastic properties 
of an image. By using the two-dimensional discrete Fourier transform (DFT), the reduc-
tion of the weighted error energy can be expressed in the frequency domain:

where Rω
(n)(p, q) and W(p, q) are the DFT  of rω(n)(x, y) and ω(x, y), respectively. As the 

denominator in the equation above is constant, the division can be calculated in advance 
and be replaced by a multiplication with 1/W(0, 0) within the iteration loop.

3. Determining the expansion coefficients

Due to the inclusion of high-frequency edge information, the proposed ESFE algo-
rithm further removes the low-pass filtering module of XFSE. Based on Eq. (7), the pro-
jection variable of expansion coefficient can be expressed in the frequency domain:
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where Rω
(n)(u, v) and W(u, v) are another DFT  of rω(n)(x, y) and ω(x, y), respectively. The 

best basis function will be the one which can better approximate this residual error by 
the derivation of nearest neighbors. At the (n+ 1)th iteration, the expansion coefficient 
cu,v

(n+1) is updated by

where the compensation factor γ is introduced to compensate the orthogonality defi-
ciency of signal extrapolation. Smaller compensation factor yields a better convergence 
and slower quality decrease after a certain number of iterations.

4. Updating the edge-guided parametric model

The parametric model is updated at each iteration, which obtains optimal basis func-
tions and expansion coefficients to successively approximate the available samples. The 
evolution of iterative procedure relies on the computation of weighted residual error 
Rω

(n)(p, q). At the next iteration, the weighted residual error is updated as:

where Rω
(n+1)(p, q) are the DFT  of rω(n+1)(x, y), which provides the weighted residual error 

for the next iteration directly in the frequency domain.

5. Final parametric model

After all iterations are done, the final parametric model is obtained by two-dimen-
sional inverse discrete Fourier transform (IDFT). The unknown pixels are properly con-
cealed from the edge-guided parametric model. This parametric model is the closest 
approximation to the known samples in the available support area:

Experimental results
The proposed ESFE algorithm will be compared with other state-of-the-art SEC meth-
ods, such as MRF (Shirani et al. 1999), BI (Varsa et al. 2001), OAI (Li and Orchard 2002), 
CAEC (Zhang et al. 2004), KMMSE (Koloda et al. 2014a), OALP (Liu et al. 2014), HEISI 
(Chung and Yim 2014), and XFSE (Koloda et al. 2014b). Standard test images and video 
frames are examined on the consecutive loss pattern in Fig.  1b, which are subjected 
to about 50 % block loss. In order to facilitate the file operation, the last block row is 
retained. Peak signal-to-noise ratio (PSNR) is chosen as one of the objective quality met-
rics in the experiments, and the multi-scale structural similarity (MS-SSIM) metric is 
also reported (Wang et al. 2003). Most of previous SEC algorithms focus on the block 
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losses with block size of 16 × 16 pixels. So each block has dimensions of 16 × 16 pixels 
and the size of the area A is 48 × 48. Based on MATLAB 2012a, the Canny edge detector 
with adaptive threshold is utilized, and a series of Hough transform-based functions are 
applied to systematically connect the dominant edges. Typically, the weighting function 
declines with β = 0.8, and the orthogonality deficiency compensation is set to γ = 0.2, 
and the parameters ɛ and δ are set to 1.0 and 0.9, respectively.

Test on still images

To evaluate the performance of the proposed ESFE algorithm during image transmis-
sion, extensive experiments are conducted on several still images. The test images 
are selected from the USC-SIPI database (http://sipi.usc.edu/database), and they 
are uniformed into grayscale images of 8-bit depths. These test images include Aer-
ial (256 ×  256), Peppers (512 ×  512), Lena (512 ×  512), Baboon (512 ×  512), Boat 
(512 × 512), House (512 × 512), Airport (1024 × 1024), and Man (1024 × 1024). When 
the consecutive block loss is applied in test images, the objective quality of different SEC 
algorithms is given in Table 1. As can be observed from the table, the proposed ESFE 
algorithm achieves the best average quality for all test images. The average gains over the 

Table 1 Objective quality comparisons of different SEC algorithms for still images

CAEC BI KMMSE MRF OAI HEISI OALP XFSE ESFE

Aerial

PSNR (dB) 14.64 18.41 19.37 20.25 19.73 20.54 20.17 20.01 20.83

MS-SSIM 0.4542 0.7145 0.7481 0.7312 0.7626 0.7875 0.7643 0.7779 0.7862

Peppers

PSNR (dB) 14.13 21.99 24.86 24.56 25.15 25.64 25.19 25.90 26.37

MS-SSIM 0.5212 0.8360 0.9358 0.9230 0.9101 0.9312 0.9260 0.9410 0.9478

Lena

PSNR (dB) 15.37 22.87 27.63 27.05 26.51 27.95 27.21 27.62 28.68

MS-SSIM 0.5776 0.8293 0.9472 0.9326 0.9007 0.9474 0.9307 0.9383 0.9459

Baboon

PSNR (dB) 14.69 20.63 21.99 22.17 20.44 22.96 22.68 22.20 23.29

MS-SSIM 0.3950 0.7547 0.8409 0.8110 0.6910 0.8395 0.8431 0.8408 0.8489

Boat

PSNR (dB) 15.09 22.19 22.71 22.93 23.29 24.04 23.66 23.82 24.59

MS-SSIM 0.5864 0.8446 0.8590 0.8455 0.8152 0.8705 0.8533 0.8694 0.8813

House

PSNR (dB) 12.81 21.53 22.23 23.14 22.56 23.53 23.21 22.76 23.61

MS-SSIM 0.4188 0.8278 0.8327 0.8435 0.8083 0.8417 0.8357 0.8477 0.8512

Airport

PSNR (dB) 19.49 23.61 24.24 24.19 22.48 24.96 24.58 24.55 25.49

MS-SSIM 0.6381 0.8266 0.8682 0.8561 0.7596 0.8695 0.8530 0.8683 0.8767

Man

PSNR (dB) 14.79 23.17 24.93 24.57 23.65 25.52 25.15 25.28 26.13

MS-SSIM 0.5352 0.8319 0.9069 0.8881 0.8393 0.8964 0.8896 0.9028 0.9103

Average

PSNR (dB) 15.13 21.80 23.50 23.61 22.98 24.39 23.98 24.02 24.87

MS-SSIM 0.5158 0.8082 0.8674 0.8539 0.8109 0.8730 0.8620 0.8733 0.8810

http://sipi.usc.edu/database
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second best algorithm are 0.48 dB in terms of PSNR and 0.0077 in terms of MS-SSIM. 
Moreover, our algorithm achieves up to 1.89  dB higher PSNR and 0.0701 higher MS-
SSIM than the edge-directed OAI method. Compared with the recent HEISI, OALP, and 
XFSE methods, our algorithm averagely obtains gains of 0.48 dB, 0.89 dB, and 0.85 dB in 
terms of PSNR, and gains of 0.008, 0.019, and 0.0077 in terms of MS-SSIM. We attrib-
ute this remarkable improvement to the robust edge synthesis and well-designed signal 
extrapolation.

For the corrupted images Lena and Airport, Figs.  5 and 6 show the subjective qual-
ity comparisons of reconstructed images by different SEC algorithms. From these fig-
ures in Fig. 5c, d, we can observe that the CAEC and BI algorithms face the difficulties 
to recover the edge information in the missing blocks, which result in severe blocking 
artifacts. In Fig. 5e–j, there are still many edges unrecovered, and they produce lumpy 
transition. In Fig. 5k, the proposed ESFE algorithm has recovered some dominant edges 
successfully, and noticeable improvements can be found around some regions (e.g., 
around the rim of hat and chin of Lena).

Figure 6 gives the similar conclusion. It can be observed that CAEC and BI methods 
completely blur the inner pixels of missing blocks, which heavily degrade visual qual-
ity. The OAI algorithm also produces some annoying artifacts. OALP and KMMSE pro-
duce some ghosting parts (e.g., around the head and wings of some airplanes). HEISI 
over-emphasizes the object contour and produces a few pseudo-edges. It is noticed that 
the proposed ESFE algorithm can more accurately recover global object contours with 
severe losses, such as the edges along the airport runway in the upper part of Airport.

Fig. 5 Subjective quality comparisons of different SEC algorithms for Lena. a The original image, b the cor-
rupted image, c CAEC, d BI, e KMMSE, f MRF, g OAT, h HEISI, i OALP, j XFSE, k ESFE
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Test on intra‑frames

The proposed ESFE algorithm is also utilized to recover the intra-frames to demonstrate 
its effectiveness when blocking artifacts and blurring caused by compression are pre-
sent. Four standard sequences with different resolutions and different levels of activi-
ties are chosen: Akiyo (176 × 144), Foreman (352 × 288), BlowingBubbles (416 × 240), 
and RaceHorses (832 ×  480). By H.264 reference software JM19.0 (Extended profile), 
1st intra-frame of each sequence is encoded in grayscale. The entropy coding method is 
UVLC with only 4 × 4 transform. Without the rate control, the quantization parameter 
(QP) is set to 22, 27, 32, and 37, respectively. In the simulation, each frame is encoded 

Fig. 6 Subjective quality comparisons of different SEC algorithms for Airport. a The original image, b the cor-
rupted image, c CAEC, d BI, e KMMSE, f MRF, g OAT, h HEISI, i OALP, j XFSE, k ESFE
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into two block groups by using the consecutive loss pattern in Fig. 1b. Most parameters 
are default settings in the JM19.0 config file (Grayscale =  1, IDRPeriod =  1). Table  2 
gives the objective quality comparisons of different SEC algorithms for intra-frame con-
cealment with different QP values. It can be seen that the proposed ESFE algorithm can 
consistently improve the reconstruction quality over other SEC algorithms, and aver-
agely outperforms them in terms of both PSNR and MS-SSIM. Compared to the second 
best algorithm, the average gains of ESFE are 0.77 dB in terms of PSNR and 0.0009 in 
terms of MS-SSIM.

Figures  7 and 8 further show the subjective quality comparisons of reconstructed 
images by different SEC algorithms, where 1st intra-frame of Foreman is encoded with 
QP = 22, and 1st intra-frame of RaceHorses is encoded with QP = 37. As illustrated in 
these figures, our ESFE algorithm produces the most visually pleasant results among all 
comparative methods. Although the OALP sometimes gives relatively sharp boundary, 
it also produces some misleading artificial transition when incorrectly estimating the 
direction of contours. From these figures in Fig. 7, we can observe that the continuity of 
hat boundary of Foreman is broken when using HEISI, OALP, and KMMSE, while some 
dominant edges have been reconstructed gracefully by the proposed ESFE algorithm. It 
is evident that in all SEC algorithms, the proposed ESFE algorithm is the only one that 
completely recovers the nose of the Foreman. From these figures in Fig. 8, it is easy to 
find that the edges across the regions of consecutive block loss cannot be well recovered 
with the other SEC methods, and the reconstructed image of the proposed ESFE algo-
rithm is visually more plausible and coherent, such as the edge along saddle and the hat 
of the rider.

Run‑time comparison

The proposed ESFE algorithm achieves the best average PSNR and MS-SSIM for all 
test images. To investigate the relative complexity of different SEC algorithms, six 
images with different sizes (1st intra-frame of Akiyo (176 ×  144), Aerial (256 ×  256), 
1st intra-frame of BlowingBubbles (416 × 240), 1st intra-frame of Foreman (352 × 288), 
Lena (512 × 512), 1st intra-frame of RaceHorses (832 × 480), Man (1024 × 1024)) are 
tested. By repeating each method 10 times, the average run-time is presented in Table 3, 
where the run-time is obtained by MATLAB 2012a implementations on Intel Q8200 @ 
2.33 GHz CPU and 4 GB memory.

Since these SEC algorithms don’t use any special function, their MATLAB implemen-
tations may provide a certain reference for the complexity comparison. From Table  3, 
it can be seen that the proposed ESFE algorithm is much faster than the recent HEISI 
and KMMSE algorithms, and it also outperforms OALP when dealing with consecutive 
block loss. Due to the lack of horizontal correlation, KMMSE has to run a large amount 
of invalid iterative processes to achieve a convergence result. Although our algorithm 
requires longer run-time than some methods (e.g., MRF and BI), its advantage is obvious 
in terms of objective and subjective quality evaluations. Compared with XFSE, simula-
tion results reveal that the proposed ESFE algorithm significantly improves the recovery 
quality, and increases only a small complexity overhead. Our ESFE algorithm strikes a 
good balance between the computational complexity and recovery quality.
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Fig. 7 Subjective quality comparisons of different SEC algorithms for Foreman, 1st intra-frame in QP = 22. a 
The intra-coded frame, b the corrupted frame, c CAEC, d BI, e KMMSE, f MRF, g OAT, h HEISI, i OALP, j XFSE, k 
ESFE

Fig. 8 Subjective quality comparisons of different SEC algorithms for RaceHorses, 1st intra-frame in QP = 37. 
a The intra-coded frame, b the corrupted frame, c CAEC, d BI, e KMMSE, f MRF, g OAT, h HEISI, i OALP, j XFSE, 
k ESFE
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Conclusions
To combat the consecutive block loss in transmitted images, this paper presented an 
effective SEC algorithm by selectively incorporating the edge synthesis into the signal 
extrapolation architecture. During the iterative approximation, the concealment perfor-
mance can be improved by using structural information. The edge synthesis via Hough 
transformation can systematically connect the discontinuous edges before signal extrap-
olation. With the use of Canny detection and Hough transformation, a contour recon-
struction is carried out on degraded bocks and utilized to split the missing blocks into 
separate regions for signal extrapolation. For consecutive block loss, the proposed ESFE 
algorithm can reconstruct the dominant structures without high-level semantic knowl-
edge, and thus obtain better subjective and objective quality with a marginal additional 
computational cost. If object-based edge synthesis or parallel acceleration are available 
in the future, the performance of the ESFE algorithm will be further improved.
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