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Background
Advancements in science and technology pave the way of application of modern sophis-
ticated devices which require more electricity. The fossil fuel based energy resources are 
diminishing at a rapid rate which makes it incumbent to search for sustainable energy 
sources. Two of the mostly used renewable energy sources namely, wind and solar have 
their major drawbacks in terms of constancy in supply throughout any specific period of 
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study. At the same time, installation of newer transmission lines to increase transfer of 
power to remote places is not encouraged due to lack of land access. With the introduc-
tion of the concept of distributed generation (DG), a new paradigm has been opened 
in the field of electric power system research. The DGs possess exciting features like: 
reduced transmission loss, less dependence on fossil fuel, steady in supply and clean in 
nature (Pepermans et  al. 2005). Among the available DG sources fuel cells (FCs) have 
observed one the highest level of application in electricity generation. Solid oxide fuel 
cell (SOFC), one member of the FC family, has attracted much attention recently as one 
of the most efficient electricity producing device (Choudhury et al. 2013). Application 
of SOFC in both stand alone and grid connected modes are reported in the literature. 
The stand-alone SOFCs are finding their applications in powering cars, small homes and 
isolated or distant areas.

Different dimensional modeling of SOFC has been reported in Nehter (2006), Reck-
nagle et al. (2003) and Bove et al. (2005). These models are mostly based on the inter-
nal mechanism of the SOFC which has little to do with the control design of external 
parameters. Artificial neural network (ANN) is used in Arriagada (2002) to predict 
the performance of SOFC stack. An adaptive network based fuzzy-inference system 
(ANFIS) is proposed in Wu et al. (2008) to replicate the SOFC performance. The T–S 
fuzzy model based SOFC system identification is presented in Wu et  al. (2008). In all 
these data driven based approaches independent control of SOFC variables are consid-
ered. To overcome this shortcoming a radial basis function (RBF) based hybrid model of 
SOFC is proposed in Wu et al. (2009) where a performance index is defined to evaluate 
the modeling accuracy.

Once a suitable dynamic model has been established, it becomes customary to con-
duct the control relevant studies of a physical system. A model predictive controller for 
a rigorous SOFC dynamic model has been proposed in Jacobsen et al. (2013). Although 
the proposed controller shows good control effort, the understanding is difficult to grasp 
and implementation in practice is complicated. A constant fuel utilization control is 
presented in Li et  al. (2005) where a feasible operating area (FOA) of SOFC operation 
is identified and a small signal model based controller is designed to keep the operation 
within FOA under different sorts of load disturbances. The dynamic model of SOFC con-
sidered does not include the temperature dynamics and thus may not give the most accu-
rate transient behavior. An observer based transient control of SOFC fuel utilization is 
depicted in Das and Slippey (2010). The efficacy of this approach is mostly based on the 
accuracy of the estimated data and a small error in measurement might yield unsatisfac-
tory behavior of the control effort. Data driven nonlinear controller for SOFC is proposed 
in Li et al. (2012) where combination of support vector machine (SVM) and virtual ref-
erence feedback tuning (VRFT) method is utilized to solve the SOFC control problem. 
However, as this combination failed to ensure safe operation of SOFC, a feed-forward 
loop had been incorporated. An FPGA based dc–dc converter controller is presented in 
Bhuyan et al. (2013) which control the output voltage of SOFC by injecting proper PWM 
signals. Simple PI regulator is used to track the error between the reference and actual 
values of SOFC voltage output. In this case the control is provided through the power 
electronic interface instead of the fuel flow control and as a result the fuel utilization may 
go beyond the limit. The Matlab/Simulink based dynamic model is used to simulate and 
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study the dynamic behavior of SOFC in Kamel et al. (2013). It is reported that the stand-
alone SOFC is suitable to be used in a grid system with DGs but shows relatively sluggish 
response to external disturbances. The focus of the work was not to design efficient con-
troller but to present comparative study among different types of DGs.

From the previous works presented above it may be summarized that (1) either the 
SOFC dynamic model used are too complex and includes such detail which might seem 
too involved for the users or the models are built ignoring important dynamics (i.e. tem-
perature dynamics) which forms one of the integral part of the SOFC physical system, 
(2) control design is either too complicated which makes it difficult to be implemented 
in practice or done at the power electronics interface without keeping the limit of fuel 
utilization in mind which might result reduced lifetime of the cell. Keeping these obser-
vations in mind this paper adopts such a dynamic model of the SOFC which is not too 
complex and at the same time incorporates all the basic dynamic such as, partial pres-
sure dynamics of participating gases (Padullés et  al. 2000), temperature dynamics and 
fuel cell electrical dynamics (Du et al. 2012). The inclusion of the temperature dynam-
ics modifies the species dynamics and the SOFC output voltage expressions a little. 
As the target in this work is to design controllers which should work well under small 
disturbance, the overall system model is linearized using Taylor series expansion tech-
nique (Ghilani 2010) and the disturbance is simulated as small variations in the load. 
The controllable parameters of the stand-alone SOFC under consideration are the par-
tial pressure of the hydrogen and the oxygen gases. These two are controlled using their 
respective inlet molar flow rates at the anode and cathode chambers of the SOFC. The 
linearized closed loop system matrix is formed whose eigenvalues are dependent on 
the PI controller parameters. An eigenvalue based objective function is considered and 
the controller gains are optimized with the help of differential evolution (DE) algorithm 
which has already been applied successfully in solving different engineering optimiza-
tion problem (Wang et  al. 2009; Abou El Ela et  al. 2009; Qin et  al. 2009; Vesterstrom 
and Thomsen 2004). Performance of DE is then compared to those of PSO and IWO to 
show the efficacy of DE in solving the problem under consideration. Eigen-value based 
study, time domain based simulation and non-parametric statistical analyses are utilized 
to compare the performances of the optimizers.

The mathematical model of the stand-alone SOFC is presented in second section. 
Third section discusses the linearization of the model based on the Taylor series expan-
sion and includes the open loop responses. A detail description of the DE algorithm, 
controller configuration, the closed loop system formation and formulation of the 
optimization problem is discussed in fourth section. The eigenvalue based study, time 
domain based simulation results and statistical analyses outcome showing the effective-
ness of the DE over PSO and IWO are presented in fifth section and lastly the paper is 
concluded in sixth section.

Mathematical model of stand‑alone SOFC
The basic operation of a single SOFC is demonstrated in Fig. 1 which follows the reduc-
tion–oxidation (Red–Ox) reaction of Eqs. (1–3).

(1)Cathode reaction
(

reduction of oxygen
)

:
1

2
O2 + 2e− → O2−
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The cell output voltage of a SOFC stack with N0 cells in series can be expressed by 
Nernst equation:

Here, PH2, PO2 and PH2O are the partial pressures of the hydrogen, oxygen and water 
vapor respectively. R and T are the universal gas constant and electrode temperature 
expressed in J/(mol-°C) and kelvin, respectively. The temperature dependence of E0 can 
be expressed as (Campanari and Iora 2004): E0 = Enoloss − 0.000252 * T, where Enoloss is 
the theoretical maximum voltage of the cell. The ohmic drop Eohmic, under loaded condi-
tion can be represented as a function of cell operating temperature as (Sedghisigarchi 
and Feliachi 2004):

Here, r0: resistance at standard temperature T0, α: constant coefficient, Ifc: cell current at 
the operating temperature T. Inclusion of this loss modifies the expression of cell voltage 
as:

(2)Anode reaction (oxidation of hydrogen): H2 + O2− → H2O + 2e−

(3)Overall reaction: H2 +
1

2
O2 → H2O

(4)V = N0E0 +
N0RT

2F
ln

(

PH2P
0.5
O2

PH2O

)

(5)Eohmic = r0 exp

[

α

(

1

T
−

1

T0

)]

Ifc

(6)Vs = N0E0 +
N0RT

2F
ln

(

PH2P
0.5
O2

PH2O

)

− r0 exp

[

α

(

1

T
−

1

T0

)]

Ifc

Fig. 1 Schematic of solid oxide fuel cell
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The SOFC power can simply be expressed as:

Equations (6–7) governs the steady state characteristics of a SOFC.

Dynamic modeling of stand‑alone SOFC

Two major balances are to be considered to represent the overall dynamics of an SOFC. 
These are—component material balance and energy balance. The component mate-
rial balance represents the change in balance which occurs in different species during 
the chemical reaction in an SOFC whereas the energy balance ensures the equilibrium 
between associated input and output energy levels.

Component material balance

The partial pressure of the i-th species of a SOFC can be written as:

Here, τ0: time constant at temperature T0, nini : inlet molar flow rates for i-th species, nm: 
number of moles present in the reaction, Kr = N0/(4F), Ki, Pi: valve molar constant and 
partial pressure of i-th specie. Defining τi =

τ 0i T
0

T , from the generalized relation of Eq. (8) 
the partial pressure dynamics for different species of SOFC can be expressed as:

The nm values for different species are obtained from the basic SOFC red–ox Eqs. (1–3).

Energy balance

The energy balance deals with various heat transfers occurring at different layers of an 
SOFC. If lumped model of SOFC is considered, application of first law of thermodynam-
ics around the entire SOFC yields the following dynamics of electrode temperature, T

where me and C̄p are the mass and average specific heat of the cell excluding gases; Cp,i 
is the specific heat of the i-th fuel or gas entering or leaving the cell; �Ĥo

r  is the spe-
cific heat of reaction and Vs is the cell stack voltage. The expressions of specific heats 

(7)Psofc = VsIfc

(8)Ṗi =
T

τ 0i T
0Ki

(

nini − nmKrIfc − KiPi

)

(9)ṖH2 =
T

τ 0H2
T 0KH2

(

ninH2
− 2KrIfc − KH2PH2

)

(10)ṖO2 =
T

τ 0O2
T 0KO2

(

ninO2
− KrIfc − KO2PO2

)

(11)ṖH2O =
T

τ 0H2O
T 0KH2O

(

ninH2O
+ 2KrIfc − KH2OPH2O

)

(12)meC̄p
dT

dt
=

∑

nini

Tin
∫

Tref

Cp,i(T )dT −
∑

nouti

T
∫

Tref

Cp,i(T )dT − nrH2
�Ĥo

r − VsI
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are usually adopted from standard thermodynamics table (Coker 1995) and in general 
expressed as, Cp,i(T ) = ai + biT + ciT

2 + diT
3.

SOFC electrical dynamics

The electrical dynamics represent the chemical reaction inside the SOFC to restore the 
charge which has been used up by the load. A first-order transfer function is used to 
model the dynamic with the time constant Tel. The differential form of this dynamics can 
be expressed as:

Here, Ifcref is the reference current of the SOFC. The ODEs of Eqs. (9–13) and the alge-
braic Eqs.  (6–7) form the complete differential–algebraic model of the stand-alone 
SOFC.

System description

The system under consideration is presented in Fig. 2. Rload is a variable resistive load 
connected at the terminals of SOFC which dictates the changes in SOFC reference cur-
rent. Any change in the reference current is followed by variations in the actual cell cur-
rent. Variations in the actual cell current affect the reaction rates of the SOFC which in 
turn changes the partial pressures of the cell species. The cell performance will deterio-
rate if proper control measures are not taken for partial pressures. The partial pressures 
can be controlled by manipulating the input flow rates as seen from Eqs. (9–11). In prac-
tice, only the hydrogen and oxygen flow rates can be utilized for regulating the respective 
partial pressures. So, the SOFC plant can be considered as a two-input, two-output sys-
tem with partial pressures of hydrogen and oxygen are the outputs to be controlled and 
the respective flow rates are the manipulated inputs. If only small variations in the load 
are considered, linearized model of the stand-alone SOFC system can be derived and 
employed for the control design purpose. As study of eigenvalues of a linearized system 
gives an indication of the amount of control achieved, the controller design problem is 
formulated as optimization of an eigenvalue based objective function which depends on 
the numerical values of the controller gains. PI controllers are used in this work because 
of the versatility and easiness in real life implementation and the gains of the controllers 
are optimized with the help of DE algorithm.

(13)İfc =
1

Tel

(

Ifcref − Ifc
)

Fig. 2 System configurations in open loop



Page 7 of 27Ahmed and Ullah  SpringerPlus  (2016) 5:383 

Linearization of SOFC dynamic model and open loop response
The SOFC dynamic model developed in section “Mathematical model of stand-alone 
SOFC” can be represented in state space form as ˙̄x = f (x̄)+ g(x̄) · u, where f (x̄) and 
g(x̄) are nonlinear functions of the state vector, x̄ = [Ph2 Po2 Ph2o T Ifc] and u is the con-
trol vector, u =

[

ninh2 n
in
o2

]

. Using Taylor series expansion and truncating the terms with 
order 2 and above, the linearized state equations can be obtained as:

Detail expressions of Tph, Tpo, Tpw, Tpt, Tpi, Tpnh and Tpno are given in the “Appendix”. If 
it is desired to represent the Eqs. (14–18) in the form � ˙̄x = A�x̄ + B�u, the matrices A 
and B are found as:

(14)

�Ṗh2 =
−T 0

T0τ
0
H2

�Ph2 −

(

Kh2P
0
h2

− nin0h2
+ 2I0fcKr

)

Kh2T0τ
0
H2

�T

−
2KrT

0

Kh2T0τ
0
H2

�Ifc +
T 0

T0Kh2τ
0
H2

�ninh2

(15)

�ṖO2 =
−T 0

T0τ
0
O2

�PO2 −

(

KO2P
0
O2

− nin0O2
+ I0fcKr

)

KO2T0τ
0
O2

�T

−
KrT

0

KO2T0τ
0
O2

�Ifc +
T 0

T0KO2τ
0
O2

�ninO2

(16)�Ṗh2O =
−T 0

T0τ
0
h2O

�Ph2O −

(

Kh2OP
0
h2O

− 2I0fcKr

)

Kh2OT0τ
0
h2O

�T +
2KrT

0

Kh2OT0τ
0
h2O

�Ifc

(17)
�Ṫ = Tph�Ph2 + Tpo�PO2 + Tpw�Ph2O + Tpt�T

+ Tpi�Ifc + Tpnh�ninh2 + Tpno�ninO2

(18)�İfc =
1

Tel

(

�Ifcref −�Ifc
)

A =



























−T 0

T0τ
0
H2

0 0 −

�

Kh2
P0
h2
−nin0h2

+2I0fcKr

�

Kh2
T0τ

0
H2

− 2KrT
0

Kh2
T0τ

0
H2

0 −T 0

T0τ
0
O2

0 −

�

Kh2O
P0
h2O

−2I0fcKr

�

Kh2O
T0τ

0
h2O

− KrT
0

KO2
T0τ

0
O2

0 0 −T 0

T0τ
0
h2O

−

�

Kh2O
P0
h2O

−2I0fcKr

�

Kh2O
T0τ

0
h2O

2KrT
0

Kh2O
T0τ

0
h2O

Tph Tpo Tpw Tpt Tpi

0 0 0 0
−�Ifc
Tel



























B =







T 0

T0Kh2
τ 0H2

0 0 Tpnh 0

0 T 0

T0KO2
τ 0O2

0 Tpno 0







T
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Open loop response

Eigenvalue based study and the time domain based simulation results for the open 
loop response of the SOFC linearized dynamic model is reported here. Numerical data 
used for these studies are listed in the “Appendix”. Open loop eigenvalues are listed in 
Table 1 and the corresponding time domain simulations are shown in Figs. 3 and 4 for 
step change �Ifcref  = 30 A applied at 5 s. Observation of Table 1 reveals that all eigen-
values of the studied SOFC stand-alone system are real in nature and do not possess 
any oscillating frequency. Thus, once disturbed, the controllable system states, i.e. the 
partial pressures of oxygen and hydrogen show sluggish responses. This fact is presented 
in Fig.  3 where it is found that the system dynamics for these states are stable under 
this disturbance but the variables settle to new steady state values after long duration 
owing to large time constants. Specifically, the settling times for the hydrogen and oxy-
gen partial pressures are more than 70 and 20  s, respectively. The participation factor 
(Sanchez-Gasca et al. 2007) column of Table 1 reveals the fact that all the states are com-
pletely decoupled and introduction of control in one of the states will have minimal or 
no impact on the others. So, if it is desired that the changes in the partial pressures of 
oxygen and hydrogen are to be tracked by the controllers, status of the other states are 
going to be mostly unchanged. Figure 4 shows the responses of the remaining three state 
variables where it is observed that all of them are stable in nature. The water vapor par-
tial pressure and SOFC temperature increases and settles to a new value after a long 

Table 1 Open loop eigenvalues

Eigenvalues Associated  
states

Participation 
factor (%)

−0.0171 ∆Te 100

−0.0383 �Ph2 100

−0.3436 �Po2 100

−0.0128 �Ph2o 100

−0.2 ∆Ifc 100

0 20 40 60 80 100 120 140 160 180 200
-0.08

-0.06

-0.04

-0.02

0

time(sec)

∆
P
h2

0 20 40 60 80 100 120 140 160 180 200
-0.015

-0.01

-0.005

0

time(sec)

∆
P
O
2

Fig. 3 Open loop responses of hydrogen and oxygen partial pressures for a step change in SOFC reference 
current
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duration whereas the SOFC current reaches the new equilibrium after 29.76 s. The water 
vapor partial pressure is measured at the outlet of the SOFC in practice and explicit reg-
ulators are not present there. Independent temperature controller is required for proper 
control of the temperature dynamics but is out of the scope of this work and hence not 
included.

To improve the small signal dynamics of hydrogen and oxygen partial pressures, two 
PI controllers are incorporated in the corresponding feedback loops as depicted in 
Fig. 5. The inputs to the PI controllers are the error between the actual and reference 
partial pressures whereas the outputs are the controlled flow rates of hydrogen and oxy-
gen, respectively. The controllers should work in such a way that the system not only 
remains stable but also shows better transient responses compared to the open loop 
responses. Gains Kph2

, Kih2, Kpo2 and Kio2 are the parameters to be optimized using DE 
algorithm which is discussed next. For comparison purpose the PSO and IWO are also 
applied for obtaining the optimal controller gains. Detail discussion on PSO and IWO 
is not provided here which can be found in Abido (2002) and Chowdhury et al. (2011), 
respectively.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

time(sec)

∆P
h2

o

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

time(sec)

∆
T e

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

time(sec)

∆ I
fc

Fig. 4 Open loop responses of water vapor partial pressure, temperature and current for a step change in 
SOFC reference current

Fig. 5 Closed loop stand-alone SOFC system with two PI controllers
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Differential evolution and objective function
DE is one of the members of evolutionary algorithm family having attractive feature of 
solving optimization problem. The main steps in DE algorithm are- initialization of a set 
of solution, mutation, recombination and selection.

Initialization

In the initialization phase a random set of probable solution for each parameter is gen-
erated within the search space. If an objection function with D real parameters is to be 
optimized for an initial population of size NP, the parameters vector takes the form 
X i,G = [x1,i,G , x2,i,G , . . . , xD,i,G] with i = 1, 2, . . . ,NP and G is the generation number. 
With the upper and lower bounds for each parameter defined as xLj ≤ xj,i,1 ≤ xUj , the 

random parameters in each generation should lie within the interval 
[

xLj , x
U
j

]

. As each 

initialization phase generates different random set of solutions, several runs are to be 
conducted to obtain the optimal solution for a given problem.

Mutation

Three target vectors xr1,G , xr2,G , and xr3,G are randomly selected from a given param-
eter vector X i,G for the mutation phase keeping in mind that the indices r1, r2, r3 and i 
are distinct. These three vectors along with mutation factor MF are used to generate the 
donor vector following the strategy DE/rand/1 as:

Another way of generating the donor vector vi,G+1 is to follow the DE/Best/2/bin which 
incorporates four different random vectors plus the best solution of the current genera-
tion as:

In this work, Eq. (20) is employed for the mutation phase.

Recombination

In the recombination phase trial vector uj,i,G+1 is generated which gets updated by the 
donor vector having probability CR.

Here, randi,j is a random number within the range [0, 1] and Irand is a random integer 
chosen from [1, 2, . . . ,D].

Selection

In the selection phase a comparison is made between the target vector and trial vector 
and the ones with the best value is selected and forwarded to the next generation.

(19)vi,G+1 = xr1,G +MF

(

xr2,G − xr3,G
)

.

(20)vi,G+1 = xbest,G +MF

(

xr1,G + xr2,G − xr3,G − xr4,G
)

(21)uj,i,G+1 =

{

vj,i,G+1 if randj,i ≤ CR or j = Irand
xj,i,G if randj,i > CR and j �= Irand

(22)xi,G+1 =

{

ui,G+1 if J (ui,G+1) ≤ J (xi,G)
xi,G otherwise
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The mutation, recombination and selection phases continue until a pre-specified stop-
ping criterion is fulfilled. The overall working procedure of the DE algorithm is pre-
sented in the flowchart of Fig. 6.

Objective function

The small signal control of SOFC is initially formulated as a dual-objective optimization 
problem which is then converted into a single objective function with the help of weighting 
factor, w. DE is employed to minimize the single-objective fitness function which is made 
up of the eigenvalues of the closed loop system matrix. The closed loop system matrix is 
again dependent on the PI controller gains as discussed later. The objectives are defined as:

Here, σi is the real part of the ith eigenvalues, σ0 is the desired value of the real part of the 
eigenvalues, ζi and ζ0 are the actual and desired values of the damping ratios respectively 
and w is the weighting factor which is taken as 0.1 in this work. Optimization of J1 will 
ensure that the real parts of the eigenvalues are lying near the desired location and that 
of J2 will make sure that sufficient damping has been injected to the system dynamics. So, 
minimization of J will ensure that both J1 and J2 objectives are fulfilled simultaneously and 
an optimized set of controller gains is obtained.

Reference generation

The change in the reference value of the SOFC current should yield a change in the ref-
erence values of the controllable variables, i.e., partial pressures of hydrogen and oxygen. 
If the left hand sides of Eqs. (9–10) are equated to zero, the resulting steady state rela-
tionships in linearized form are obtained as:

Thus a direct link has been established between the reference values of the cell current 
and partial pressures.

Controller configuration and the closed loop system

Once the controllers are incorporated into the system it turns out into a closed loop sys-
tem which are depicted in Fig. 5. With the introduction of these PI controllers two new 
state variables are generated as follows:

(23)

J1 =

n
∑

i=1

(σi − σ0)
2

J2 =

n
∑

i=1

(ζ0 − ζi)
2

J = (J1 + w ∗ J2)

(24)�Ph2r = −
2Kr

Kh2

�Ifcref

(25)�PO2r = −
Kr

KO2

�Ifcref

(26)�ṅinh2 = Hy1�Ph2 +Hy2�T +Hy3�Ifc +Hy4�ninh2
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Fig. 6 Flowchart of DE algorithm
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Detail expressions of the linearizing constants Hy1, Hy2, Hy3, Hy4, Ox1, Ox2, Ox3 and Ox4 
are listed in the “Appendix” which show that these constants are function of controller 
gains. The closed loop system in linearized form can be represented as:

The matrices Asys and Bsys are given as:

As the system eigenvalues now become dependent on the PI controller gains, any change 
in the numerical values of these gains will modify the closed loop eigenvalues. So, there 
is every possibility that for a certain set of controller gains the closed loop eigenvalues as 
well as the system small signal dynamic response will give optimal response.

Simulation results
To show the effectiveness of the proposed method of designing controllers for the SOFC 
system, the performance of the DE algorithm is compared with two other optimization 
techniques namely, PSO and IWO. Detail of the SOFC parameters used in the simulation 
is presented in the “Appendix”. Eigenvalue analysis and time domain based simulations 
along with two statistical tests are conducted to verify the effectiveness of DE. The details 
of the different cases considered for the time domain based simulation are listed in Table 2.

Controller tuning results

The result of the proposed tuning method is compared with those obtained by PSO and 
IWO. The above mentioned PI controller tuning procedure was carried out by a com-
puter program coded in MATLAB. The programs were executed on a 2.50  GHz Intel 
Core i5 processor with 4 GB of random access memory (RAM). The parameters used for 
different algorithms are listed in Table 3. From practical point of view the controller gains 
should not be too high or too low and due to this fact the optimizer search space has been 
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kept within some upper and lower limits which are presented in Table  4. This limited 
search space should certainly reduce the computational time taken by the optimizers.

Eigenvalue analysis

For the statistical comparison, the developed code was run for 30 times for all the algorithms 
and the eigenvalues obtained for the best outcome are listed in Table 5. The eigenvalues related 
to the target variables are represented in italic format. Comparison of Table 5 with Table 1 
reveals that under closed loop system two sets of complex eigenvalues are obtained and their 
real parts are more negative than the corresponding open loop eigenvalues which ensures 
improvement of system dynamic response. Specifically, the real parts of the open loop eigenval-
ues associated with hydrogen and oxygen partial pressures are −0.0343 and −0.3436; whereas 
the real part of corresponding closed loop eigenvalues with DE are −0.1782 and −0.8537, 
with PSO are −0.1782 and −0.8536, and with IWO are −0.1765 and −0.8501, respectively. 

Table 2 Detail of different disturbances

Type of disturbance Duration/Instants of  
applications

Magnitude of  
disturbance

Step 5.0 s onwards 30 A

Pulse 5–15 s 30 A

Staircase 5–15 s 30 A

15–25 s 40 A

25–35 s 50 A

>35 s 0 A

Table 3 Parameters used for PSO, DE and IWO algorithm

Parameter PSO DE IWO

Maximum population size 100 100 100

Maximum number of generations 2000 2000 2000

Stopping criteria (number of consecutive iterations with  
same value of objective function)

50 50 50

c1, cognitive acceleration coefficient 2 – –

c2, social acceleration coefficient 0.01 – –

MF, mutation factor – 0.9 –

CR, crossover probability – 0.2 –

Initial size of population – – 25

Maximum deviation, sdmax – – 5

Minimum deviation, sdmin – – 0

Nonlinear modulation index, n – – 2

Sigma_initial – – 1

Sigma_final – – 0.001

Table 4 Upper and lower bounds of the controller gains

Parameter Lower bound Upper bound

Kphy −7 −4

Kihy −7 −4

Kpox −10 −7

Kiox −10 −7
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However, as stated earlier, the other three eigenvalues associated with the temperature, water 
vapor partial pressure and SOFC current are unchanged even with the inclusion of the con-
trollers. The optimized parameters for the best run of all the optimizers are listed in Table 6. 
Observation of Table 6 shows that both IWO and DE can obtain the optimized parameters 
within the search space but PSO reaches either the upper or the lower limit for all parameters.

Time domain based simulation

The performance of DE and IWO for different types of load variations are compared 
and the corresponding time domain simulations are presented in Figs.  7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17 and 18. As the optimized parameters obtained by PSO are almost 

Table 5 Eigenvalues obtained by PSO, DE and IWO (best from 30 runs)

Method PSO DE IWO

Eigenvalues −0.0171 −0.0171 −0.0171

−0.8537 + 0.4752i −0.8536 + 0.4755i −0.8501 + 0.5938i

−0.8537 − 0.4752i −0.8536 − 0.4755i −0.8501 − 0.5938i

−0.1782 + 0.3873i −0.1782 + 0.3874i −0.1765 + 0.4151i

−0.1782 − 0.3873i −0.1782 − 0.3874i −0.1765 − 0.4151i

−0.0128 −0.0128 −0.0128

−0.2000 −0.2000 −0.2000

Table 6 Optimized parameters by PSO, DE and IWO algorithms (best from 30 runs)

Parameter PSO DE IWO

Kphy −7 −6.9994 −6.9247

Kihy −4 −4.0002 −4.4760

Kpox −10 −9.9993 −9.9482

Kiox −7 −7.0012 −7.8852
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identical to DE and the best fitness value reached by these two are same, the time 
domain responses are completely matched. So, the time domain responses of PSO are 
not included in this part. Figure 7 present the hydrogen partial pressure responses for 
step load change. The first undershoot and overshoot obtained by DE are found to be 
better than those obtained by IWO. Figure 8a presents the response of oxygen partial 
pressure for the step change in load. As the difference is not too vivid from this figure, 
a zoomed view of undershoot is given in Fig. 8b where the superiority of DE over IWO 
is clearly visible. The control inputs required for the step load change are presented 
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in Figs. 9 and 10. The control efforts required by DE are found to have less overshoot/
undershoot while the corresponding settling times are found almost identical.           

The dynamic responses of the hydrogen and oxygen partial pressures for the pulse load 
variation are presented in Figs. 11 and 12 and the corresponding variations in the control 
inputs are shown in Figs. 13 and 14. The DE performance is found to be superior in this 
case, too. Finally, the responses of the hydrogen and oxygen partial pressures and the 
corresponding control inputs for staircase type load variations are presented in Figs. 15, 
16, 17 and 18 which show the efficacy of DE over IWO once more.
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Comparative study and non parametric statistical analysis

A comparative study of DE, PSO and IWO is presented in Table 7 in terms of elapsed 
time and best fitness value achieved in minimizing the eigenvalue based objective func-
tion. To make a fair comparison among the algorithms used, same number of generations 
(iterations) and same boundary limits are considered. Moreover, the stopping criterion 
for all algorithms is also set at a maximum number of generations. The optimizer will 
stop if it reaches the same fitness value for the maximum number of generation consecu-
tively. Each algorithm is run for 30 times and the average running time is also reported. 
It is found from Table 7 that the best fitness value achieved by DE and PSO are exactly 
same (−2790.1) whereas the one obtained by IWO (−2787.7) is little worse. However, the 
average fitness value obtained by DE algorithm (−2790.0) is better than PSO (−2789.5) 
and IWO (−2781.1) for the 30 runs. With respect to the computational time, the average 
achieved by the DE algorithm is little inferior to IWO but far better than PSO. Hence, 
from overall observations of this Table it can be concluded that on an average the perfor-
mance attained by DE is better than those obtained by PSO and IWO.

To further investigate the conclusions obtained thus far, non-parametric statistical 
analysis of the data obtained from 30 independent test runs is performed using SPSS 
software. At first, the one sample Kolmogorov–Smirnov (KS) test is conducted where 
the null hypothesis, H0, assumes that the data sample fits normal distribution while the 
alternative hypothesis, H1, assumes that the data sample does not fit the normal distri-
bution with a significance level of 0.05. From the analyses presented in Table 8 it is seen 
that none of the data sample is missed by the test as in all cases N = 30 samples are con-
sidered. The mean of the data sample shows that the DE algorithm outperforms the PSO 
and IWO in this regard. The value of standard deviation illustrates that the data samples 
for DE algorithm are much more adjacent to the best solution as compared to PSO and 
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IWO which reflects higher stability. The p value (Asymp. Sig. 2-tailed) for DE algorithm 
is found as 0.015 which is lower than 0.05 and thus it can be said that the data sample for 
DE is significant enough to reject H0 and accept H1. On the other hand, the p values for 
PSO and IWO are greater than 0.05 which do not show enough significance to reject H0 
and accept H1. Therefore, this test has 95 % confidence that the data set for DE is differ-
ent than PSO and IWO.

Next, the paired t test is run with the 30 samples to validate each algorithm distinctly 
and to discover further differences among them. The results for this test are shown in 
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Table 9. The H0 in this case assumes that the means of the data sets are equal and H1 
assumes the alternative statement that the means are unequal with a significance level 
of 0.05. As observed from Table  9, all the paired p values (Sig. 2-tailed) are less than 
0.05 and thus show a significant level to reject H0. So, this study shows 95 % confidence 
level that the three pairs are significantly different from each other. Moreover, the nega-
tive correlation for each pair also suggests that the pairs are not related to one another. 
Thus, it can be concluded that the DE algorithm behaves differently in a statistical man-
ner compared to other two and gives better performance.

Conclusion
A simple PI controller based approach is proposed for improving the small signal 
dynamic response of a stand-alone SOFC plant where the controller parameters are 
tuned by the DE algorithm. Performance of DE is compared with those of PSO and IWO 
from different aspects. Eigenvalue based optimization is performed for the optimal tun-
ing of the PI controller parameters. The superiority of eigenvalue based objective func-
tion over time domain based objective function lies in the fact that the computation time 
can be saved in the first instance. The results obtained by eigenvalue analysis show that 
the performance of DE and PSO are better than the IWO. This fact has been later justi-
fied by the minimum value of fitness function obtained by these algorithms. The low-
est mean of the fitness function is obtained by the DE samples. Although the run time 
result shows that the IWO can reach to a minimum little faster than DE and much faster 
than PSO on an average, due to the inferiority of the minimum value of the fitness func-
tion obtained it fails to be regarded as the best optimizer. However, all the parameters 
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obtained by PSO hit either the upper or the lower limit of the boundary. Three different 
types of load variations are considered for the time domain based results. It is found 
that the optimal parameters obtained by the proposed eigenvalue based objective func-
tion can successfully track all of these variations. As the minimum value of fitness func-
tion found by DE and PSO are exactly same, the time domain results for PSO are not 
reported. The non-parametric statistical test results show that the data sample obtained 
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by these algorithms for 30 independent runs are not correlated and the smallest stand-
ard deviation is recorded for DE. In conclusion, considering all the aforementioned dis-
cussions, it can be said that the overall performance of DE is better than those of PSO 
and IWO for the study under consideration.
Authors’ contributions
Author AA conducted the simulation and drafted the paper. SU conceived of the study, and helped to draft the manu-
script. Both authors read and approved the final manuscript.

Acknowledgements
The authors would like to acknowledge the support of Electrical and Electronic Engineering Department, Islamic Univer-
sity of Technology, Bangladesh in completing this work.

Competing interests
The authors declare that they have no competing interests.

Table 7 Fitness value and time required by PSO, DE and IWO algorithms (30 runs)

Parameter Best result Average result Worst result

PSO DE IWO PSO DE IWO PSO DE IWO

Elapsed time 2.0515 4.2550 5.8150 34.3702 8.1811 6.4268 79.3476 16.8045 7.3681

Best fitness value −2790.1 −2790.1 −2787.7 −2789.5 −2790.0 −2781.1 −2788.4 −2789.8 −2771.3

Table 8 One sample Kolmogorov–Smirnov test results

DE_fitness PSO_fitness IWO_fitness

N 30 30 30

Normal parameters

 Mean −2790.02189 −2789.54599 −2781.05280

 SD .078069 .484365 3.460139

Most extreme differences

 Absolute .285 .140 .094

 Positive .285 .140 .094

 Negative −.198 −.125 −.070

Kolmogorov–Smirnov Z 1.559 .769 .517

Asymp. Sig. (2-tailed) .015 .595 .952

Table 9 Paired sample t test results

Method Paired differences

Mean Correlation T df Sig. (2‑tailed)

DE-PSO −.475895 −.196 −5.157 29 0.000

DE-IWO −8.969086 −.047 −14.179 29 0.000

PSO-IWO −8.493191 −.102 −13.133 29 0.000



Page 25 of 27Ahmed and Ullah  SpringerPlus  (2016) 5:383 

Appendix
SOFC data

E0 = 1.28 V R = 8.3146 J/mol-°C F = 96,487 C/mol N0 = 384

T0 = 923 °C Tref = 25 °C T2 = 25 °C �Ĥ0
r  = −2.4183 kJ/mol

Kh2 = 8.43e−4 kmol/
(atm-s)

KO2 = 2.52e−3 kmol/
(atm-s)

Kh2O = 2.81e−4 kmol/
(atm-s)

τ 0h2
 = 26.1 s

τ 0O2
 = 2.91 s τ 0h2O

 = 78.3 s me = 1.1 kg C̄p = 1e4

r0 = 0.126 ohms α = −2870 Tin = 900 °C
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