RESEARCH

Open Access

Identification and in silico analysis of cattle DExH/D box RNA helicases

Manish Kumar Suthar, Mukul Purva, Sunil Maherchandani and Sudhir Kumar Kashyap^{*}

Abstract

The helicases are motor proteins participating in a range of nucleic acid metabolisms. RNA helicase families are characterized by the presence of conserved motifs. This article reports a comprehensive in silico analysis of *Bos taurus* DExH/D helicase members. Bovine helicases were identified using the helicase domain sequences including 38 DDX (DEAD box) and 16 DHX (DEAH box) members. Signature motifs were used for the validation of these proteins. Putative sub cellular localization and phylogenetic relationship for these RNA helicases were established. Comparative analysis of these proteins with human DDX and DHX members was carried out. These bovine helicase have been assigned putative physiological functions. Present study of cattle DExH/D helicase will provides an invaluable source for the detailed biochemical and physiological research on these members.

Keywords: RNA helicases, DEAD box, Bioinformatics, Bovine, Bos taurus

Background

A fundamental cellular action of RNA helicases is to unwind nucleic acid duplexes and thus, they are required for different cellular processes involving RNA. Among these helicases several members perform their functions in pre-mRNA processing and ribosome biogenesis (Linder 2006). The DEAD and DEAH are the subgroups of the DExH/D family (Staley and Guthrie 1998). The DDX code is used for DEAD box and DHX is used for DEAH box. The basis of nomenclature of these DExH/D helicases is the composition of conserved amino acids in their motif II. DEAD-box and DEAH-box, helicases have D-E-A-D (Asp, Glu, Ala and Asp) and D-E-A-H (Asp, Glu, Ala and His) amino acids respectively at this motif. These proteins have role in RNA metabolism viz. transcription, translation, RNA editing and folding, nuclear transport, RNA degradation and RNAribosomal complex formations (Linder and Daugeron 2000; Patel and Donmez 2006). These helicases belong to superfamily 2 (SF2) of the six super families in which all the helicases have been classified (Caruthers and

*Correspondence: skkashyap3@rediffmail.com

Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001, India McKay 2002; Tanner and Linder 2001). DExD/H-box proteins have been reported from all the living organisms (Umate et al. 2011; Tuteja and Tuteja 2004a, 2004b; Hartung et al. 2000). The core of these enzymes contains two RecA-like domains separated by a short linker. The N-terminal and C-terminal domains are designated as DEAD-domain and helicase domain respectively (Cordin et al. 2006; Pyle 2008). These domains participate in RNA (substrate) binding and ATP hydrolysis. Alignments of the protein sequences obtained from various organisms have revealed nine highly conserved motifs in DEAD-box proteins (Q, I, Ia, Ib, and II-VI) and eight in DEAH-box proteins I, Ia, Ib, II, III, IV, V and VI (Tuteja and Tuteja 2004a, 2004b; Tanner et al. 2003). Among these motifs, motif II (or Walker B motif) along with motif I (or Walker A motif) and Q-motif are necessary for ATP binding and hydrolysis (Tanner et al. 2003) whereas, motifs Ia, Ib, II, IV and V may be involved in RNA binding (Svitkin et al. 2001).

Genome sequencing of variety of organisms have revealed the presence of different numbers of DExH/D helicases. In a genome-wide comparative study 161, 149, 136 and 213 different RNA helicase genes have been identified in *Arabidopsis thaliana*, *Oryza sativa*, *Zea mays* and *Glycine max* respectively (Xu et al. 2013). Also,

© 2016 Suthar et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

31 DEAD and 14 DEAH putative RNA helicases have been reported from human beings (Umate et al. 2011).

Recently, Steimer and Klostermeier summarised involvement of RNA helicases in infection and diseases (Steimer and Klostermeier 2012). For example dysregulation of these helicases has been linked to a wide variety of cancers. In addition, these proteins have a role in the replication of viruses such as Foot and mouth disease virus infection in cattle and HIV virus in human beings. RNA helicases A (DHX9) has been associated with cattle FMD disease (Radi et al. 2012; Lawrence and Rieder 2009). We can reveal prognostic and diagnostic markers and identify potential drug targets by characterizing these helicases.

Cattle are economically important domesticated ungulates. Phylogenetic analysis has shown a distant clad for cattle as compared to humans and rodents (Murphy et al. 2004) and around 800 breeds have been established serving as resource for the genetics of complex traits studies. The genome sequence for domesticated cattle (Bos taurus) was assembled and published in 2009 (The Bovine Genome Sequencing and Analysis Consortium 2009). The sequence reveals presence of a minimum 22,000 genes in cattle. In the present study, sequenced cattle genome was used to evaluate the number of DEAD-box and related family proteins which might be present, along with their phylogeny. The composition of these bovine motor proteins have also been analysed. In silico analysis of bovine DExH/D helicases provided the putative role of these proteins in various RNA metabolism processes which might be operating in Bos taurus.

Methods

Database search and enlistment of RNA helicases

The sequences for DExH/D family members encoded by Bos taurus were downloaded from NCBI/BLAST (http:// www.ncbi.nlm.nih.gov.nih.gov). Amino acid sequence of eIF4A1 (Swiss-Prot Id-Q3SZ54) was obtained first from Swiss-Prot using the key words eIF4A1 Bos taurus. The input sequence so obtained was used in the Cow RefSeq protein database available at NCBI/BLAST home. The cow genome sequences were searched using program BLASTP-Compare protein sequence against 'BLAST Cow sequences' resource. Finally tentative lists of DExH/D family members were compiled and all proteins (DExH/D family members) were assigned unique Swiss-Prot IDs, protein names and gene names. After identification of bovine RNA helicases their phylogenetic analysis was carried out along with helicases of other animals of veterinary importance like horse, pig and sheep. For this key words DEAD and DEAH helicase along with animal name were used to download homologs from pig,

horse and sheep from Swiss-Prot database for phylogenetic analysis of these DExH/D helicases vis a vis bovine helicases. The amino acid sequences of both families of RNA helicases were aligned and the neighbour-joining method in MEGA 5.0 was applied to examine their evolutionary relationship (Tamura et al. 2011).

Specific sequences of *Bos taurus* were used for BLASTP search against human homologs as described above to compare their homology. Protein sequences were validated by the presence of signature motifs. Predictive molecular weight and isoelectric point for the RNA helicases were calculated from Sequence Manipulating Suite (http://www.bioinformatics.org/sms2/). Protein localization was studied using WoLF PSORT (http://www.genscript.com/psort/wolf_psort.html) program.

Motif identification and phylogenetic analysis

The signature motifs for the protein family were identified. Protein sequences of DEAD and DEAH members were first aligned using ClustalW2 program available at http:// www.ebi.ac.uk/Tools/msa/clustalw2/ and alignment files were downloaded. Conserved motifs in bovine DExH/D were also identified using the MEME suite (version 4.9.1) at meme.nbcr.net/meme/cgi-bin/meme.cgi. Finally list of signature motifs was generated. Phylogenetic analysis was performed using MEGA5 program (http://www.megasoftware.net/) by the Neighbour-Joining method (NJ) with parameters; complete deletion option, p-distance and bootstrapping method with 1000 replicates (Tamura et al. 2011). Final image was obtained using the MEGA5 program. Domain analysis was performed using the program Scan Prosite (http://expasy.org) and these domain structures were used in the figures.

Results and discussion

Identification and validation of *Bos taurus* DExH/D family members

Genomes of all organisms have genes encoding RNA helicases. Although various comprehensive analyses of these helicases are available in various organisms, limited studies have been conducted on the role of RNA helicases in cattle. The studies of biological function of cattle RNA helicases can unravel their roles and can help in understanding different diseases in cattle and also help in improving economically important traits. Fifty four DExH/D family members of RNA helicases were identified in Bos taurus in the present study, amongst which 38 members belonged to DDX family (DEAD) (Table 1) and 16 members to DHX family (DEAH) of RNA helicases (Table 2). Further analysis of cattle helicase sequences with MEME suite suggested the pattern of amino acids occurrence in signature motifs validating the protein family members. Besides characteristic residues of

Bos Taurus	Human	lsoelectric point	Molecular weight (kDa)	Localization	% Coverage with human	% Identity with human
DDX1	DDX1	7.23	82.43	C,N	100	97
DDX3X	DDX3X	7.2	73.15	Ν	100	99
DDX3Y	DDX3Y Isoform2	7.39	73.17	Ν	100	91
DDX4	DDX4 Isoform1	5.96	79.46	N,C	100	91
DDX5	Dead box polypeptide 5	9.21	69.16	Ν	100	100
DDX6	DDX6	8.93	54.39	Ν	99	99
DDX10	DDX10	9.17	101.18	Ν	100	89
DDX17	DDX17 lsoform1	8.75	72.33	N,C	100	99
DDX18X1	DDX18	10.04	75.13	N,M	100	90
DDX19A	DDX19A	6.72	54.00	C,N,	100	97
DDX19B	DDX19B lsoform1	8.54	54.46	M,N,C	95	98
DDX20	Dead box polypeptide 20	6.77	92.71	N,C	100	88
DDX23	DDX23	10.22	95.67	Ν	100	99
DDX24	DDX24	10.01	94.53	Ν	100	81
DDX25	DDX25	6.33	54.63	C,N	100	93
DDX27	DDX27	9.89	87.10	Ν	100	95
DDX28	DDX28	10.75	60.02	M,C,N	99	85
DDX31	DDX31	10.43	80.87	Ν	99	79
DDX39A	DDX39A	5.39	49.15	C,N	100	96
DDX39B	DDX39B	5.38	48.97	C,N	100	99
DDX41	DDX41	6.94	69.83	C,N,M	100	99
DDX42	DDX42	7.28	107.56	N,C	96	95
DDX43	Dead box polypeptide 43	8.77	72.04	Ν	99	76
DDX46	DDX46 IsoformX1	9.87	117.46	N,C	100	99
DDX47	DDX47 IsoformX1	9.64	50.92	Ν	100	96
DDX49	DDX49	9.82	44.39	C,N,M	99	91
DDX50	Dead box polypeptide 50	9.64	82.60	N,C	100	97
DDX51	DDX51	7.56	60.69	N,C	98	82
DDX52	DDX52	10.32	67.52	N,C	100	91
DDX53	DDX53	9.88	68.47	Ν	99	68
DDX54	DDX54	10.68	102.72	Ν	94	90
DDX55	DDX55	9.83	68.61	N,C	100	94
DDX56	DDX56 lsoform1	9.02	61.27	N,C,M	100	93
DDX59	DDX59	8.03	67.45	N,C	100	77
EIF4AI	EIF4AI Isoform1	5.12	46.15	Ν	100	100
EIF4AII	EIF4AII	5.13	46.41	Ν	100	100
EIF4A-III	EIF4A-III	6.69	46.85	N,M	100	99
Nucleolar RNA Hel2	lsoform1(DDX21)	9.87	87.25	N,C	100	89

Table 1 Summary of the features of the Bovine DDX member proteins

N, M and C represent Nuclear, Mitochondrial and Cytoplasmic localization, respectively

motifs, some residues were found to be conserved around each motif of various DExH/D family members. The 38 bovine DDX members identified were DDX1, DDX3X, DDX3Y, DDX4, DDX5, DDX6, DDX10, DDX17, DDX18, DDX19A, DDX19B, DDX20, DDX21, DDX23, DDX24, DDX25, DDX27, DDX28, DDX31, DDX39A, DDX39B, DDX41, DDX42, DDX43, DDX46, DDX47, DDX49, DDX50, DDX51, DDX52, DDX53, DDX54, DDX55,

Bos Taurus	Human	Isoelectric Point	Molecular weight (kDa)	Localization	% Coverage with human	% Identity with human
DHX8	DHX8	8.33	140.28	N	99	98
DHX9	Helicase A	6.88	141.97	Ν	90	95
DHX15	DHX15	7.48	90.95	Ν	100	99
DHX16	DHX16 Iso1	6.39	119.88	N,C	100	98
DHX29	DHX29	8.67	155.28	Ν	99	93
DHX30	DHX30 Iso1	8.61	135.97	M,C,N	100	97
DHX32	DHX32	4.79	83.88	C,N	100	89
DHX33	DHX32 Iso1	9.23	79.75	N,C	98	92
DHX34	DHX34	7.96	128.80	N,C	100	88
DHX35	DHX35 Iso1	8.66	78.89	Ν	99	96
DHX36	DHX36 Iso1	7.87	114.85	N,M	100	92
DHX37	DHX37	8.93	129.02	N,C,M	100	85
DHX38	PRP16	6.55	140.19	Ν	100	95
DHX40	DHX40 Iso1	8.83	88.52	N,C	100	99
DHX57	DHX57	7.69	155.76	N,C	96	91
DHX58	DHX58	8.63	77.19	C,N	100	83

Table 2 Summary of the features of the Bovine DHX member proteins

N, M and C represent Nuclear, Mitochondrial and Cytoplasmic localization, respectively

DDX56, DDX59, eIF4AI, eIF4AII and eIF4AIII (Table 1). In all, 9 motifs (Q, I, Ia, Ib, II, III, IV, V and VI) were identified in these proteins which are shown in Fig. 1. The signature motifs in DDX protein showed consensus sequences as GFxxPxxIQ (Q), AxxGxGKT (I), PTRELA (Ia), TPGR (Ib), DExD (II), SAT (III), FVxT (IV), RGxD (V) and HRxGRxxR (VI). In the case of DDX49 three motifs namely; TPGR, DExD and SAT were found missing (Fig. 1). The 16 DHX members that could be identified were DHX8, DHX9, DHX15, DHX16, DHX29, DHX30, DHX32, DHX33, DHX34, DHX35, DHX36, DHX37, DHX38, DHX40, DHX57 and DHX58 (Fig. 2). Consensus sequences GxxGxGKT (I), TQPRRV (Ia), TDGML (Ib), DExH (II), SAT (III), FLTG (IV), TNIAET (V) and QRxGRAGR (VI) were found in the members of DHX proteins. Some motifs in two DHX members i.e. DHX32 and DHX58 were not found (Fig. 2). In protein DHX32, SAT, TNIAET and ORxGRAGR motifs were absent, and instead of motif DExH; DDIH motif was observed. In DHX58 conserved motif DECH was observed and remaining motifs were missing. QRxGRAGR motif was not observed in the DHX38 protein (Fig. 2). Four members i.e. DHX32, DHX58, DHX38, and DDX49 showed variable conserved motifs and need biochemical evidence for confirmation. Figure 3 describes patterns in different motifs of DDX and DHX helicases using Hidden Markov Model (HMM). In Fig 3a, b position specific probability is represented by the size of particular amino acid residue in different motifs, larger the size more will be probability of occurrence.

Phylogenetic analysis

Phylogenetic analysis of DExH/D helicases was performed to elucidate evolutionary relationship. On analysing bovine helicase with that of horse, pig and sheep (Fig. 4a, b) it was observed that some DEAD box helicase family members could be subdivided into nine subgroups in all the species taken into consideration. However, DDX 6, DDX 10, DDX 11, DDX 24, DDX 26, DDX 27, DDX28, DDX 31, DDX 41, DDX 47, DDX49, DDX 51, DDX52, DDX 54, DDX 55, DDX 56, DDX58 and DDX 59 members of DEAD box of all these species could not be included in above nine subgroups (Fig. 4a). Similarly, DHX family members could also be subdivided into four subgroups for all the species (Fig. 4b). However, DHX15, DHX32 and DHX40 could not be included in the any of these four subgroups (Fig. 4b). The extent of similarity indicates toward conserved structure of DExH/D helicases in all the species studied during evolution but their functions remained to be defined by biochemical analysis. In second analysis, relationship amongst bovine helicases was carried out (Fig. 5a, b for DDX and DHX respectively). Phylogenetic analysis established close relationship between different members. The closely related members within DDX subfamily are DDX17-DDX5, DDX43-DDX53, DDX42-DDX46, DDX4-DDX3X-DDX3Y, DDX41-DDX59, DDX39A-DDX39B, DDX19A-DDX19B, EIF4A members, DDX10-DDX18, DDX56-DDX51, DDX47-DDX49, DDX27-DDX54 and DDX50-DDX21. Similarly, within DHX members DHX8-DHX16, DHX33-DHX35, DHX15-DHX32 and

DEAD-be	Protein ID	0	1	la	lb	ш	ш	IV	v	VI	Protein Name
DDX1	Q0IIK5	DWLLPTDIQ	SKAPESFV	PSRELAEQ	TPGR	DEAD	SAT	UF	ARGID	YVHRIGRVGRAE	RNA helicase DDX1
DDX3	G5E631	RYTRPTPVO	AOTGSGKT	PTRELAVO	TPGR	DEAD	SAT	LVF	ARGLD	YVHRIGRTGRVG	Uncharacterized protein
DDX3Y	D3IVZ3	RYTRPTPVO	AOTGSGKT	PTRELAVO	TPGR	DEAD	SAT	LVF	ARGLD	YVHRIGRTGRVG	DEAD box polypeptide 3 Y-linked short isoform
DDX4	Q5W5U4	GYTKLTPVQ	AQTGSGKT	PTRELINQ	TPGR	DEAD	SAT	MVF	ARGLD	YVHRIGRTGRCG	RNA helicase DDX4
DDX5	O3SYZ5	NFTEPTAIO	AOTGSGKT	PTRELAQO	TPGR	DEAD	SAT	IVF	SRGLD	YIHRIGRTARST	DDX5 protein
DDX6	E1BDM8	GWEKPSPIQ	AKNGTGKS	PTRELALQ	TPGR	DEAD	SAT	UF	TRGID	YLHRIGRSGRFG	Uncharacterized protein
DDX10	Q08DT0	QYRLVTEIQ	AKTGSGKT	PTRELAYO	TPGR	DEAD	SAT	IVF	ARGLD	YIHRAGRTARYK	DEAD (Asp-Glu-Ala-Asp) box polypeptide 10
DDX17	A7E307	HFTEPTPIQ	AQTGSGKT	PTRELAQO	TPGR	DEAD	SAT	UF	SRGLD	YVHRIGRTARST	DDX17 protein
DDX18	F1N533	GFTNMTEIQ	AKTGSGKT	PTRELAMO	TPGR	DEAD	SAT	MVF	ARGLD	YIHRVGRTARGL	Uncharacterized protein
DDX19A	L8IM22	GENRPSKTO	SOSGTGKT	PTYELALO	TPGT	DEAD	SAT	MIF	ARGID	YLHRIGRTGRFG	RNA helicase DDX19A
DDX19B	Q2YDF3	GFNRPSKIQ	SOSGTGKT	PTYELALQ	TPGT	DEAD	SAT	MIF	ARGID	YLHRIGRTGRFG	DEAD (Asp-Glu-Ala-As) box polypeptide 19B
DDX20	A7MB49	GFERPSPVQ	AKSGTGKT	PTREIAVQ	SPGR	DEAD	SAT	LVF	SRGID	YMHRIGRAGRFG	DDX20 protein
DDX21	A4FV23	GVTFLFPIQ	ARTGTGKT	PTRELASO	TPGR	DEVD	SAT	IIF	KRGLD	YIHRSGRTGRAG	DDX21 protein
DDX23	A6QLB2	GYKEPTPIQ	AETGSGKT	PTRELAQQ	TPGR	DEAD	TAT	IIF	GRGID	YIHRIGRTGRAG	DDX23 protein
DD24	A6H7B6	GFSAPTPIQ	AETGSGKT	PTRELAVQ	TPGR	DEAD	SAT	LVF	ARGLD	YVHRSGRTARAT	DDX24 protein
DDX25	Q2TBP1	GFNRPSKIQ	SQSGTGKT	PTYELALQ	TPGT	DEAD	SAT	IIF	ARGID	YLHRIGRTGRFG	RNA helicase DDX25
DDX27	A1A4H6	GFKQPTPIQ	AATGTGKT	PTRELGIQ	TPGR	DEAD	SAT	MLF	ARGLD	YVHRVGRTARAG	RNA helicase DDX27
DDX28	A7YWQ8	EVVRPTTVQ	AETGSGKT	PSRELAEQ	TPGA	DEVD	GAT	LVF	SRGLD	YIHRAGRVGRVG	DDX28 protein
DDX31	A6QP73	KMSSMTSVQ	SQTGSGKT	PTRELALQ	TPGR	DEAD	SAT	IVF	ARGLD	YIHRIGRTARIG	DDX31 protein
DDX39A	Q5E970	GFEHPSEVQ	AKSGMGKT	HTRELAFQ	TPGR	DECD	SAT	VIF	GRGMD	YLHRVARAGRFG	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 isoform 1
DDX39B	Q3T147	GFEHPSEVQ	AKSGMGKT	HTRELAFQ	TPGR	DECD	SAT	VIF	GRGMD	YLHRVARAGRFG	Spliceosome RNA helicase DDX39B
DDX41	A3KN07	GIHHPTPIQ	AFTGSGKT	PSRELARQ	TPGR	DEAD	SAT	LIF	SKGLD	YVHRIGRTGRSG	DDX41 protein
DDX42	E1BJD2	EYTQPTPIQ	AKTGSGKT	PTRELCQQ	TPGR	DEAD	SAT	LLF	ARGLD	HTHRIGRTGRAG	Uncharacterized protein
DDX43	E1BII7	GFQKPTPIQ	AQTGTGKT	PTRELALQ	TPGR	DEAD	SAT	IIF	SRGLD	YVHRVGRTGRAG	Uncharacterized protein
DDX46	F1MX40	GYEKPTPIQ	AKTGSGKT	PTRELALQ	TPGR	DEAD	SAT	IIF	ARGLD	YVHRAGRTGRAG	Uncharacterized protein
DDX47	Q29S22	GWTKPTKIQ	AETGSGKT	PTRELAFQ	TPGR	DEAD	SAT	MIF	SRGLD	YIHRVGRTARAG	RNA helicase DDX47
DDX49	A1L507	GLKQPTPVQ	AKTGSGKT	PTRELAYQ	-	-	-	ШF	SRGLD	YIHRVGRTARAG	DEAD (Asp-Glu-Ala-Asp) box polypeptide 49
DDX50	F1MMK3	GVTYLFPIQ	ARTGTGKT	PTRELANQ	TPGR	DEVD	SAT	UF	ARGLD	YIHRSGRTGRAG	Uncharacterized protein
DDX51	F1MGC9	GISSYFPVQ	APTGSGKT	PTKELAQQ	TPGR	DEAD	SAT	LCF	ARGID	YVHRVGRTARAG	Uncharacterized protein
DDX52	A5D7C1	GFQTPTPIQ	APTGSGKT	PTRELASQ	TPNR	DESD	SAT	LVF	ARGID	YIHRIGRTGRAG	RNA helicase DDX52
DDX53	G3MYF0	GFQKPTPIQ	AQTGTGKT	PTRELALQ	TPGR	DEAD	TAS	IVF	ARGLD	YVHRVGRTGRAG	Uncharacterized protein
DDX54	E1BGI6	GYKVPTPIQ	ARTGSGKT	PTRELALQ	TPGR	DEAD	SAT	VVF	ARGLD	FLHRVGRVARAG	Uncharacterized protein
DDX55	Q2NL08	GFPYMTPVQ	AVTGSGKT	PTRELAVQ	TPGR	DEAD	SAT	LVF	ARGID	FVHRCGRTARIG	ATP-dependent RNA helicase DDX55
DD56	Q3SZ40	GWSRPTLIQ	ARTGSGKT	PTKELARQ	TPSR	DEAD	SAT	LLF	ARGID	YIHRAGRTARAN	RNA helicase DDX56
DDX59	G3X7G8	GYEVPTPIQ	ADTGSGKT	PTRELAIQ	TPGR	DEAD	SAT	LVF	GRGLD	YVHQIGRVGRLG	Uncharacterized protein
EIF4AI	Q3SZ54	GFEKPSATQ	AQSGTGKT	PTRELAQQ	TPGR	DEAD	SAT	VIF	ARGID	YIHRIGRGGRFG	Eukaryotic initiation factor 4A-I
EIF4AII	Q3SZ65	GFEKPSATQ	AQSGTGKT	PTRELAQQ	TPGR	DEAD	SAT	VIF	ARGID	YIHRIGRGGRFG	Eukaryotic initiation factor 4A-II
EIF4AIII	Q2NL22	GFEKPSATQ	SQSGTGKT	PTRELAVQ	TPGR	DEAD	SAT	VIF	ARGLD	YIHRIGRSGRYG	Eukaryotic initiation factor 4A-III
Fig. 1	Fig. 1 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DDX proteins										

Protein IDIIaIbIIIIIIVVVIDHX8FIMEM4GETGSGKT1TQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX9Q28141GATGCGKT1TQPRRVTDGMLLRDEIHSATFLTGTNIAETQRAGRAGRDHX16 StatDHX16 belta helicase ADHX16E1BF68GETGSGKT1TQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRDHX15 proteinDHX16E1BF68GETGSGKT1TQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX29E1B9N7GETGSGKSTTQPRRITTGVLLRDEVHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX30Q2NKY8GDTGCGKTTTQPRRITTGVLLRDEVHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX33FIMW24GETGSGKTTTQPRRITOGMLLRDEHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX33FIMW24GETGSGKTTTQPRRITOGMLLRDEHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX35E1BDN4GETGSGKTTTQPRRITOGMLLRDEHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX35E1BDN4GETGSGKTTTQPRRITOGMLLRDEHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX35E1BDN4 <th>C</th> <th></th>	C										
DHX8F1MEM4GETGSGKTTTQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX9Q28141GATGCGKTTTQPRRITVGVLLRDEIHSATFLFGTNIAETQRAGRAGRATP-dependent RNA helicase ADHX15A5D7D9GETGSGKTTTQPRRVTDGMLLRDEAHSATFLFGTNIAETQRAGRAGRDHX15 proteinDHX16E1B568GETGSGKTTTQPRRVTDGMLLRDEAHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX25E1B9N7GETGSGKSTTQPRRITYGILLRDEAHSATFLPGTNIAETQRAGRAGRUncharacterized proteinDHX32G2NKY8GDTGCGKTTTQPRRITYGILLRDEHSATFLPGTNIAETQRAGRAGRUncharacterized proteinDHX32A7MBI4GDAKCGKSSTQYSKPTDDMLQRDDIHFLACDHX32proteinDHX33F1MW24GETGSGKTTTQPRRVTDGMLLRDEHSATFLGTNIAETQRAGRAGRUncharacterized proteinDHX33E1BDV4GETGSGKTTTQPRRVTDGMLLRDEHSATFLGTNIAETQRAGRAGRUncharacterized proteinDHX34E1BJ90GDTGCGKSTTQPRRVTDGMLLRDEHSATFLGTNIAETQRAGRAGRUncharacterized proteinDHX35E1BDV4GETGSGKTTTQPRRVTDGMLLRDEAHSATFLGTNIAETQRAGRAGRUncharacterized proteinDHX35 <t< td=""><td></td><td>Protein ID</td><td>1</td><td>la</td><td>lb</td><td>Ш</td><td>ш</td><td>IV</td><td>v</td><td>VI</td><td></td></t<>		Protein ID	1	la	lb	Ш	ш	IV	v	VI	
DHX9Q28141GATGCGKTTTQPRRITVGVLLRDEIHSATFLPGTNIAETQRKGRAGRATP-dependent RNA helicase ADHX15A5D7D9GETGSGKTTTQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRDHX15 proteinDHX16E1BF68GETGSGKTTTQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX29E1B9N7GETGSGKTTTQPRRITTGULLRDEHSATFLPGTNIAETQRQGRAGRUncharacterized proteinDHX30Q2NKY8GDTGCGKTTTQPRRITVGILLRDEHSATFLPGTNIAETQRQGRAGRRNA helicase DHX30DHX32A7MBI4GDAKCGKSSTQVSKPTDDMLQRDDIHFLACDHX32 proteinDHX33FILMV24GETGSGKTTTQPRRITVGLLRDEHSATFLTGTNIAETQRKGRAGRUncharacterized proteinDHX34E1B90GDTGCGKSTTQPRRITVGLLRDEHSATFLTGTNIAETQRKGRAGRUncharacterized proteinDHX34E1B90GDTGCGKSTTQPRRITVGLLRDEVHSATFLGTNVAETQRAGRAGRUncharacterized proteinDHX35E1BDN4GETGSGKTTTQPRRITVGLLRDEVHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX35E1BDN4GETGSGKTTTQPRRITVGLLRDEVHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX35E1BDN4 <t< td=""><td>DHX8</td><td>F1MEM4</td><td>GETGSGKTT</td><td>TQPRRV</td><td>TDGMLLR</td><td>DEAH</td><td>SAT</td><td>FLTG</td><td>TNIAET</td><td>QRAGRAGR</td><td>Uncharacterized protein</td></t<>	DHX8	F1MEM4	GETGSGKTT	TQPRRV	TDGMLLR	DEAH	SAT	FLTG	TNIAET	QRAGRAGR	Uncharacterized protein
DHX15A5D7D9GETGSGKTTTQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRDHX15 proteinDHX16E1BF68GETGSGKTTTQPRRVTDGMLLRDEAHSATFLTGTNIAETQRAGRAGRUncharacterized proteinDHX29E1B9N7GETGSGKSTTQPRRITTGVLLRDEVHSATFLPGTNIAETQRQGRAGRUncharacterized proteinDHX30Q2NKY8GDTGCGKTTTQPRRITTGULLRDEVHSATFLPGTNIAETQRGRAGRUncharacterized proteinDHX32A7MBI4GDAKCGKSSTQVSKPTDDMLQRDDIHFLACDHX32proteinDHX34E1B90GDTGCGKSTTQPRRITVGLLRDEHSATFLGTNIAETQRGRAGRUncharacterized proteinDHX34E1B90GDTGCGKSTTQPRRITVGLLRDEHSATFLGTNIAETQRAGRAGRUncharacterized proteinDHX35Q3B579GETGCGKTTTQPRRITVGLLRDEHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX35Q3B59GETGSGKTTTQPRRVTDGVLLKDEAHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX35Q3B59GETGSGKTTTQPRRVTDGVLLKDEAHSATFLFGTNIAETQRAGRAGRUncharacterized proteinDHX35Q3B599GNTGSGKTTTQPRVVTDGVLLKDEAHSATFLFGTNIAETQRAGRAGRDEAHSATFLFGDHX36Q	DHX9	Q28141	GATGCGKTT	TQPRRI	TVGVLLR	DEIH	SAT	FLPG	TNIAET	QRKGRAGR	ATP-dependent RNA helicase A
DHX16 E1BF68 GETGSGKTT TQPRRV TDGMLLR DEAH SAT FLTG TNIAET QRAGRAGR Uncharacterized protein DHX29 E1B9N7 GETGSGKST TQPRRI TTGULR DEVH SAT FLPG TNIAET QRQGRAGR Uncharacterized protein DHX30 Q2NKY8 GDTGCGKTT TQPRRI TYGILR DEEH SAT FLPG TNIAET QRQRAGR Nucharacterized protein DHX32 A7MBI4 GDAKCGKSS TQPRRI TYGILR DEEH SAT FLPG TNIAET QRGRAGR Nucharacterized protein DHX33 F1MW24 GETGSGKTT TQPRRI TYGILLR DEVH SAT FLFG TNIAET QRTGRAGR Uncharacterized protein DHX34 E1B90 GDTGCGKST TQPRRI TYGILLR DEVH SAT FLFG TNIAET QRTGRAGR Uncharacterized protein DHX35 E1B0V4 GETGSGKST TQPRRI TYGILLR DEVH SAT FLFG TNIAET QRAGRAGR Uncharacterized protein DHX35 GDTGCGKST TQPRRI TYGILLR <t< td=""><td>DHX15</td><td>A5D7D9</td><td>GETGSGKTT</td><td>TQPRRV</td><td>TDGMLLR</td><td>DEAH</td><td>SAT</td><td>FLTG</td><td>TNIAET</td><td>QRAGRAGR</td><td>DHX15 protein</td></t<>	DHX15	A5D7D9	GETGSGKTT	TQPRRV	TDGMLLR	DEAH	SAT	FLTG	TNIAET	QRAGRAGR	DHX15 protein
DHX29 E1B9N7 GETGSGKST TQPRRI TTGVLLR DEVH SAT FLPG TNIAET QRQGRAGR Uncharacterized protein DHX30 Q2NKY8 GDTGCGKTT TQPRRI TVGILLR DEH SAT FLPG TNIAET QRGRAGR RNA helicase DHX30 DHX32 A7MBI4 GDAKCGKSS TQVSKP TDDMLQR DDIH FLAC DHX32 protein DHX32 protein DHX33 F1MWZ4 GETGSGKTT TQPRRI TVGILLR DEH SAT FLG DHX32 protein DHX32 protein DHX34 F1B90 GDTGCGKST TQPRRI TVGILLR DEH SAT FLG TNIAET QRKGRAGR Uncharacterized protein DHX34 E1B90 GDTGCGKST TQPRRV TDGMLUR DEAH SAT FLG TNIAET QRKGRAGR Uncharacterized protein DHX35 E1BDN4 GETGCGKST TQPRV TDGMLUR DEAH SAT FLG TNIAET QRAGRAGR Uncharacterized protein DHX35 E1BDN4 GETGSGKTT TQPRV TDGMLUR DEAH SAT FLG TN	DHX16	E1BF68	GETGSGKTT	TQPRRV	TDGMLLR	DEAH	SAT	FLTG	TNIAET	QRAGRAGR	Uncharacterized protein
DHX30 Q2NKY8 GDTGCGKTT TQPRRI TVGILLR DEH SAT FLPG TNIAET QRRGRAGR RNA helicase DHX30 DHX32 A7MBIA GDAKCGKSS TQVSKP TDDMLQR DDIH FLAC DHX32 protein DHX33 FIMWZ4 GETGSGKTT TQPRRV TDGMLLR DEH SAT FLG TNIAET QRTGRAGR Uncharacterized protein DHX34 E1BJ90 GDTGCGKST TQPRRV TDGMLLR DEVH SAT FLTG TNIAET QRRGRAGR Uncharacterized protein DHX35 E1BDN4 GETGCGKST TQPRRV TDGMLLR DEVH SAT FLTG TNIAET QRAGRAGR Uncharacterized protein DHX35 E1BDN4 GETGCGKTT TQPRRV TDGNLLR DEVH SAT FLTG TNIAET QRAGRAGR Uncharacterized protein DHX35 E1BDN4 GETGCGKTT TQPRNV TDGVLLK DEAH SAT FLTG TNVAET QRAGRAGR Uncharacterized protein DHX35 GDS79 GETGSGKTT TQPRNV TDGVLLK DEAH SAT FLTG	DHX29	E1B9N7	GETGSGKST	TQPRRI	TTGVLLR	DEVH	SAT	FLPG	TNIAET	QRQGRAGR	Uncharacterized protein
DHX32 A7MBI4 GDAKCGKSS TQVSKP TDDMLQR DDIH FLAC DHX32 protein DHX33 FIMWZ4 GETGSGKTT TQPRRV TDGMLLR DEAH SAT FLTG TNIAET QRTGRAGR Uncharacterized protein DHX34 E1BJ90 GDTGCGKST TQPRRI TVGLLR DEVH SAT FLTG TNIAET QRKGRAGR Uncharacterized protein DHX34 E1BDN4 GETGCGKST TQPRRI TVGLLR DEVH SAT FLTG TNIAET QRAGRAGR Uncharacterized protein DHX35 E1BDN4 GETGCGKTT TQPRRI TTGIILQ DEIH SAT FLPG TNIAET QRAGRAGR DEAH-(Asp-Glu-Ala-His) box polypeptide 36 DHX35 E1BNQ2 GETGSGKTT TQPRRI TTGILQ DEH SAT FLFG TNIAET QRAGRAGR Uncharacterized protein DHX35 E1BNQ2 GETGSGKTT TQPRRI TDGILLR DEAH SAT FLTG TNIAET QRAGRAGR Uncharacterized protein DHX36 FLMU2 GETGSGKTT TQPRRV TDGILLR DEAH SAT	DHX30	Q2NKY8	GDTGCGKTT	TQPRRI	TVGILLR	DEEH	SAT	FLPG	TNIAET	QRRGRAGR	RNA helicase DHX30
DHX33 F1MWZ4 GETGSGKTT TQPRRV TDGMLLR DEAH SAT FLTG TNIAET QRTGRAGR Uncharacterized protein DHX34 E1BJ90 GDTGCGKST TQPRRV TDGMLLR DEVH SAT FLG TNIAET QRTGRAGR Uncharacterized protein DHX34 E1BJ90 GDTGCGKST TQPRRV TDGMLLR DEVH SAT FLG TNIAET QRAGRAGR Uncharacterized protein DHX35 Q05B79 GETGCGKTT TQPRRV TDGVLLK DEAH SAT FLFG TNIAET QRAGRAGR DEAH-IA:-biliobilio box polypeptide 36 DHX35 Q05B79 GETGCGKTT TQPRRV TDGVLLK DEAH SAT FLFG TNIAET QRAGRAGR DEAH-IA:-biliobilio box polypeptide 36 DHX37 E1BNQ2 GETGSGKTT TQPRV TDGVLLK DEAH SAT FLFG TNIAET QRAGRAGR Uncharacterized protein DHX38 F1MV1 GETGSGKTT TQPRV TDGLLK DEAH SAT FLFG TNIAET QRAGRAGR Dech-IA:-biliog factor ATP-dependent RNA helicase PRP16 DHX38 GNTGSG	DHX32	A7MBI4	GDAKCGKSS	TQVSKP	TDDMLQR	DDIH		FLAC			DHX32 protein
DHX34 E1BJ90 GDTGCGKST TQPRRI TVGLLLR DEVH SAT FLSG TNIAET QRKGRAGR Uncharacterized protein DHX35 E1BDN4 GETGCGKTT TQPRRV TDGMLVR DEAH SAT FLG TNVAET QRAGRGGR Uncharacterized protein DHX35 E1BDN4 GETGCGKTT TQPRRV TDGMLVR DEAH SAT FLFG TNVAET QRAGRGR DEAH (Asp-Glu-Ala-His) box polypeptide 36 DHX36 Q05B79 GETGSGKTT TQPRRV TDGVLLK DEH SAT FLFG TNVAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 36 DHX37 E1BNQ2 GETGSGKTT TQPRRV TDGULLK DEAH SAT FLTG TNVAET QRAGRAGR Uncharacterized protein DHX38 FIBNQ2 GETGSGKTT TQPRRV TDGULLK DEAH SAT FLTG TNIAET QRAGRAGR Uncharacterized protein DHX39 GMTGCGKTT TQPRRV TDGULLK DEAH SAT FLTG TNIAET QRSGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX37 F1N1A2 GMTGCGKTT </td <td>DHX33</td> <td>F1MWZ4</td> <td>GETGSGKTT</td> <td>TQPRRV</td> <td>TDGMLLR</td> <td>DEAH</td> <td>SAT</td> <td>FLTG</td> <td>TNIAET</td> <td>QRTGRAGR</td> <td>Uncharacterized protein</td>	DHX33	F1MWZ4	GETGSGKTT	TQPRRV	TDGMLLR	DEAH	SAT	FLTG	TNIAET	QRTGRAGR	Uncharacterized protein
DHX35 E1BDN4 GETGCGKST TQPRRV TDGMLVR DEAH SAT FLTG TNVAET QRAGRGGR Uncharacterized protein DHX36 Q05B79 GETGCGKTT TQPRRI TTGIILQ DEIH SAT FLFG TNVAET QRAGRGGR DEAH (Asp-Glu-Ala-His) box polypeptide 36 DHX37 E1BNQ2 GETGSGKTT TQPRRV TDGVLLK DEAH SAT FLFG TNVAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 36 DHX38 FIBNQ1 GETGSGKTT TQPRRV TDGVLLK DEAH SAT FLFG TNVAET QRAGRAGR Uncharacterized protein DHX38 GETGSGKTT TQPRRV TDGULLK DEAH SAT FLFG TNIAET QRAGRAGR Uncharacterized protein DHX39 GMS059 GNTGSGKTT TQPRRV TDGULLK DEAH SAT FLFG TNIAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX57 F1N1A2 GMTGCGKTT TQPRRI TTGVLR DEVH SAT FLFG TNIAET QRKGRAGR Uncharacterized protein DHX58 Q5E9G8 GSEGGGKTT	DHX34	E1BJ90	GDTGCGKST	TQPRRI	TVGLLLR	DEVH	SAT	FLSG	TNIAET	QRKGRAGR	Uncharacterized protein
DHX36 Q05B79 GETGCGKTT TQPRRI TTGIILQ DEIH SAT FLPG TNIAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 36 DHX37 E1BNQ2 GETGSGKTT TEPRRV TDGVLLK DEAH SAT FLFG TNVAET QRAGRAGR Uncharacterized protein DHX38 F1MVJ1 GETGSGKTT TQPRRV TDGULLK DEAH SAT FLFG TNVAET QRAGRAGR Uncharacterized protein DHX38 F1MVJ1 GETGSGKTT TQPRRV TDGULLK DEAH SAT FLFG TNIAET QRAGRAGR Uncharacterized protein DHX38 GNTGSGKTT TQPRRV TDGULLK DEAH SAT FLFG TNIAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX57 F1N1A2 GMTGCGKTT TQPRRI TTGULLK DEAH SAT FLFG TNIAET QRSGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX57 GSE9G8 DECH SAT FLFG TNIAET QRKGRAGR Uncharacterized protein DHX58 Q5E9G8 DECH DECH DECH LGP2 <t< td=""><td>DHX35</td><td>E1BDN4</td><td>GETGCGKST</td><td>TQPRRV</td><td>TDGMLVR</td><td>DEAH</td><td>SAT</td><td>FLTG</td><td>TNVAET</td><td>QRAGRGGR</td><td>Uncharacterized protein</td></t<>	DHX35	E1BDN4	GETGCGKST	TQPRRV	TDGMLVR	DEAH	SAT	FLTG	TNVAET	QRAGRGGR	Uncharacterized protein
DHX37 E1BNQ2 GETGSGKTT TEPRRV TDGVLLK DEAH SAT FLTG TNVAET QRAGRAGR Uncharacterized protein DHX38 FIMV1 GETGSGKTT TQPRKV TDGULLR DEAH SAT FLTG TNVAET QRAGRAGR Uncharacterized protein DHX38 FIMV1 GETGSGKTT TQPRKV TDGULLR DEAH SAT FLTG TNIAET Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 DHX37 SIN1A2 GMTGCGKTT TQPRKV TDGULLR DEAH SAT FLTG TNIAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX57 SIN1A2 GMTGCGKTT TQPRRV TDGULLR DECH SAT FLG TNIAET QRAGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX58 Q5E9G8 GMTGCGKTT TQPRRV TGVLR DECH LGP2 Fig. 2 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins DHX proteins	DHX36	Q05B79	GETGCGKTT	TQPRRI	TTGIILQ	DEIH	SAT	FLPG	TNIAET	QRAGRAGR	DEAH (Asp-Glu-Ala-His) box polypeptide 36
DHX38 F1MVJ1 GETGSGKTT TQPRRV TDGILLR DEAH SAT FMPG TNIAET Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 DHX40 Q08DS9 GNTGSGKTT TQPRKV TDGCLLK DEAH SAT FLTG TNISAT QRSGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX57 F1N1A2 GMTGCGKTT TQPRRI TTGVLLR DEVH SAT FLPG TNIAET QRKGRAGR Uncharacterized protein DHX58 Q5E9G8 DECH DECH LGP2 Fig. 2 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins	DHX37	E1BNQ2	GETGSGKTT	TEPRRV	TDGVLLK	DEAH	SAT	FLTG	TNVAET	QRAGRAGR	Uncharacterized protein
DHX40 Q08DS9 GNTGSGKTT TQPRKV TDGCLLK DEAH SAT FLTG TNISAT QRSGRAGR DEAH (Asp-Glu-Ala-His) box polypeptide 40 DHX57 F1N1A2 GMTGCGKTT TQPRRI TTGVLLR DEVH SAT FLPG TNIAET QRKGRAGR Uncharacterized protein DHX58 Q5E9G8 DECH LGP2 Fig. 2 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins	DHX38	F1MVJ1	GETGSGKTT	TQPRRV	TDGILLR	DEAH	SAT	FMPG	TNIAET		Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16
DHX57 F1N1A2 GMTGCGKTT TQPRRI TTGVLLR DEVH SAT FLPG TNIAET QRKGRAGR Uncharacterized protein DHX58 Q5E9G8 DECH LGP2 Fig. 2 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins	DHX40	Q08DS9	GNTGSGKTT	TQPRKV	TDGCLLK	DEAH	SAT	FLTG	TNISAT	QRSGRAGR	DEAH (Asp-Glu-Ala-His) box polypeptide 40
DHXS8 Q5E9G8 LGP2 Fig. 2 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins	DHX57	F1N1A2	GMTGCGKTT	TQPRRI	TTGVLLR	DEVH	SAT	FLPG	TNIAET	QRKGRAGR	Uncharacterized protein
Fig. 2 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins	DHX58	Q5E9G8				DECH					LGP2
	Fig. 2										

DHX36-DHX57 show close relationship. All these members occur as separate clades.

In Silico Characterization of Bovine DExH/D family members

Putative molecular weights and isoelectric points of bovine DExH helicases were determined in silico (Tables 1 and 2). Similarly predictive subcellular localizations of these proteins were examined (Tables 1 and 2). These helicases varied in their isoelectric point and molecular subunit mass. Isoelectric point of DDX members varied from 5.12 (EIF4AI) to 10.68 (DDX54) whereas pI for DHX members ranged between 4.79 (DHX32) and 9.23 (DHX33). 24 DDX and 8 DHX members had pI above 8. Molecular mass for these helicases ranged between 44.39 kDa (DDX49) and 117.46 kDa (DDX46) in case of DDX members and between 77.19 kDa (DHX58) and 155.76 kDa (DHX57) for DHX members. The predictive pI value and molecular mass will help in isolation and purification leading to further characterization of these helicases. Analysis with WoLF PSORT program indicated that cattle RNA helicases are localized in the nucleus, cytoplasm and mitochondria (Tables 1 and 2).

Comparative analysis of human and bovine DExH/D family members and putative function assignment

Bos taurus has a 2.86 billion bp long genome with a minimum of 22,000 genes (The Bovine Genome

Sequencing and Analysis Consortium 2009). Similarly, 2.91 billion bp long human genome has around 20,000-25,000 genes (International Human Genome Sequencing C 2004). Cattle genome encodes all orthologs of human DExH/D family members. Bovine DEAD box RNA helicases has typically Q motif, ATP binding and Helicase C-terminal domains as found in human helicases. Domain structures of bovine DExH/D RNA helicases as compared with that of human helicases indicated high similarity between the two species (Figs. 6 and 7). Despite this identity DDX17, DDX18, DDX24, DDX27, DDX31, DDX42, DDX49, DDX51, DDX53 and DDX54 show difference in positions of domains as compared to human helicases (Fig. 6). In bovine DDX49 typically overlapping of ATP binding and Helicase domain was observed. Interestingly, both bovine and human DHX32 showed only ATP binding domain and no other domain was observed. Further, levels of homology amongst human and bovine DExH/D RNA helicases are shown in Tables 1 and 2. Bovine DEAD helicases showed high similarity with their human counterpart (identity 76-100 %).

The higher similarity of these bovine helicases with well characterized human helicases can help to predict their functions in cattle developmental processes also. The putative functions of these helicases have been summarized in Tables 3 and 4. The importance of DExH/D RNA helicases in environmental stress is becoming evident (Shih and Lee 2014). DDX1, 3, 5, 6, 17, 21, 24, 47, DHX9 and DHX36 are associated with various viral infections. Similarly DDX6 and DDX19 are associated with neurological disorders, as summarised previously (Steimer and Klostermeier 2012). This manuscript presents first report on genome-wide comprehensive analysis of bovine DExH/D helicases providing valuable information regarding classification and putative function of these RNA helicases, essential for growth and development. Identification of bovine counterparts of helicases associated with various stress and diseases can be exploited as prognostic and diagnostic markers.

Conclusions

Bos taurus genome encodes 54 DExH/D family members (38 DDX and 16 DHX). Present work describes their evolutionary relationship, putative functions, pI, molecular weight and localization. Despite high similarity with well characterized counterparts, for some members, functions could not be predicted which needs further analysis. Hence, this study emphasises towards some bovine DExH/D members requiring further biological characterisation. Similarly, bovine DDX49 and DHX32 need biochemical characterization as they showed unique properties. Association analysis of these members with different abiotic and biotic stress may facilitate new diagnostic markers and drug targets.

acids spanning motifs in bovine and Human DEAD box proteins

acids spanning motifs in bovine and Human DEAH box proteins

Table 3 Putative functions of DDX members

Protein	Function	Ref.
DDX1	Associated with ARE mediated mRNA decay	Chou et al. (2013)
DDX3X, DDX3Y	DDX3X can bind with DNA, RNA splicing, nuclear transport of RNA and transla- tional regulation	Franca et al. (2007); Rosner and Rinkevich (2007)
DDX4	Bovine vasa homolog (BVH) and is expressed in gonads	Bartholomew and Parks (2007)
DDX5, DDX17	Splicing and transcriptional regulation	Auboeuf et al. (2002)
DDX6	Spermatogenesis and localized in spermatogenic cells	Kawahara et al. (2014)
DDX10	Ribosome assembly	Savitsky et al. (1996)
DDX18	Hematopoiesis and deletion resulted into p-53 depended cell arrest in G1	Payne et al. (2011)
DDX19	m-RNA nuclear transport by remodelling of RNP particles through nuclear pore complex	Collins et al. (2009)
DDX20	Transcriptional regulation, splicing process and mi-RNA pathway	Takata et al. (2012)
DDX23	Pre-mRNA splicing	Ismaïli et al. (2001)
DDX24	Innate immune signalling regulation	Ma et al. (2013)
DDX25	Posttranscriptional regulations of genes for spermatid elongation & completion of spermatogenesis	Dufau and Tsai-Morris (2007)
DDX27	ND	
DDX28	Cellular division	Loo et al. (2012)
DDX31	Transcription of rRNA gene and assembly of 60 s ribosomal subunit	Bish and Vogel (2014)
DDX39	mRNA splicing, genome integrity and telomere protection	Yoo and Chung (2011)
DDX41	Type 1 interferon response	Zhang et al. (2011a)
DDX42	Function as chaperon	Uhlmann-Schiffler et al. (2006)
DDX43	ND	
DDX46	Pre-mRNA splicing	Hozumi et al. (2012)
DDX47	Pre-RNA processing	Sekiguchi et al. (2006)
DDX49	ND	
DDX51	Ribosome synthesis and formation of 3'end of 28S rRNA	Srivastava et al. (2010)
DDX52	ND	
DDX53	ND	
DDX54	Maintenance of central nervous system	Zhan et al. (2013)
DDX55	ND	
DDX56	Assembly of pre-ribosomal particles	Zirwes et al. (2000)
DDX59	Pathogenesis of orofaciodigital syndrome	Shamseldin et al. (2013)
EIF4A	elF4F complex formation and facilitates translation	Harms et al. (2014)
Nucleolar RNA Hel2 (DDX21)	RNA processing during interphase of mitosis	De Wever et al. (2012)

Table 4 Putative functions of DHX members

Protein	Function	Ref.
DHX8	Mitosis and involved in mRNA splicing	English et al. (2012)
DHX9	RNA induced silencing complex (RISC) loading factor	Fu and Yuan (2013)
DHX15	RNA virus sensing and activating immune system	Lu et al. (2014)
DHX16	Splicing	Gencheva et al. (2010)
DHX29	Protein synthesis	Pisareva et al. (2008)
DHX30	Mitochondrial DNA replication	Zhou et al. (2008)
DHX32	Lymphocyte differentiation and T cell apoptosis	Huang et al. (2009)
DHX33	rRNA transcript and nucleolar organizer	Zhang et al. (2011b)
DHX34	NMD (nonsense-mediated mRNA decay)	Anastasaki et al. (2011)
DHX35	ND	
DHX36	Viral nucleic acid sensors, affinity towards G4-quadruplex	Fullam and Schroder (2013)
DHX37	Glycinergic synaptic transmission and associated motor behaviour	Hirata et al. (2013)
DHX38	Associated with retinitis pigmentosa	Ajmal et al. (2014)
DHX40	Pre mRNA splicing and ribosome biogenesis	Xu et al. (2002)
DHX57	ND	
DHX58	Innate antiviral immune response	Li et al. (2009)

Authors' contributions

MKS designed, performed experiments, analysed data and prepared manuscript; MP performed experiments; SM analysed and reviewed manuscript data; SKK supervised all experiments. All authors read and approved the final manuscript.

Acknowledgements

The present work was supported by grants from RKVY (RashtriyaKrishiVikasYojna) Bio-Informatics Project (RAJUVAS CSA-RKVY-1(11)).

Competing interests

The authors declare that they have no competing interests.

Received: 9 July 2015 Accepted: 20 December 2015 Published online: 07 January 2016

References

- Ajmal M, Khan MI, Neveling K, Khan YM, Azam M, Waheed NK, Hamel CP, Ben-Yosef T, De Baere E, Koenekoop RK, Collin RW, Qamar R, Cremers FP (2014) J Med Genet 51:444–448
- Anastasaki C, Longman D, Capper A, Patton EE, Caceres JF (2011) Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish. Nucleic Acids Res 39:3686–3694
- Auboeuf D, Honig A, Berget SM, O'Malley BW (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298:416–419
- Bartholomew RA, Parks JE (2007) Identification, localization, and sequencing of fetal bovine VASA homolog. Anim Reprod Sci 101:241–251
- Bish R, Vogel C (2014) RNA binding protein-mediated post-transcriptional gene regulation in medulloblastoma. Mol Cells 37:357–364
- Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133
- Chou CF, Lin WJ, Lin CC, Luber CA, Godbout R, Mann M, Chen CY (2013) DEAD box protein DDX1 regulates cytoplasmic localization of KSRP. PLoS One 8:e73752
- Collins R, Karlberg T, Lehtio L, Schutz P, van den Berg S, Dahlgren LG, Hammarstrom M, Weigelt J, Schuler H (2009) The DEXD/H-box RNA helicase DDX19 is regulated by an {alpha}-helical switch. J Biol Chem 284:10296–10300

Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

- De Wever V, Lloyd DC, Nasa I, Nimick M, Trinkle-Mulcahy L, Gourlay R, Morrice N, Moorhead GB (2012) Isolation of human mitotic protein phosphatase complexes: identification of a complex between protein phosphatase 1 and the RNA helicase Ddx21. PLoS One 7:e39510
- Dufau ML, Tsai-Morris CH (2007) Gonadotropin-regulated testicular helicase (GRTH/DDX25): an essential regulator of spermatogenesis. Trends Endocrinol Metab 18:314–320
- English MA, Lei L, Blake T, Wincovitch SM Sr, Sood R, Azuma M, Hickstein D, Liu PP (2012) Incomplete splicing, cell division defects, and hematopoietic blockage in dhx8 mutant zebrafish. Dev Dyn 241:879–889
- Franca R, Belfiore A, Spadari S, Maga G (2007) Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity. Proteins 67:1128–1137
- Fu Q, Yuan YA (2013) Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9). Nucleic Acids Res 41:3457–3470
- Fullam A, Schroder M (2013) DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta 1829:854–865
- Gencheva M, Lin TY, Wu X, Yang L, Richard C, Jones M, Lin SB, Lin RJ (2010) Nuclear retention of unspliced pre-mRNAs by mutant DHX16/hPRP2, a spliceosomal DEAH-box protein. J Biol Chem 285:35624–35632
- Harms U, Andreou AZ, Gubaev A, Klostermeier D (2014) elF4B, elF4G and RNA regulate elF4A activity in translation initiation by modulating the elF4A conformational cycle. Nucleic Acids Res 42:7911–7922
- Hartung F, Plchova H, Puchta H (2000) Molecular characterisation of RecQ homologues in *Arabidopsis thaliana*. Nucleic Acids Res 28:4275–4282
- Hirata H, Ogino K, Yamada K, Leacock S, Harvey RJ (2013) Defective escape behavior in DEAH-box RNA helicase mutants improved by restoring glycine receptor expression. J Neurosci 33:14638–14644
- Hozumi S, Hirabayashi R, Yoshizawa A, Ogata M, Ishitani T, Tsutsumi M, Kuroiwa A, Itoh M, Kikuchi Y (2012) DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish. PLoS One 7:e33675
- Huang C, Liang X, Huang R, Zhang Z (2009) Up-regulation and clinical relevance of novel helicase homologue DHX32 in colorectal cancer. J. Exp. Clin. Cancer Res 28:11
- International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945
- Ismaïli N, Sha M, Gustafson EH, Konarska MM (2001) The 100 kDa U5 snRNP protein (hPrp28p) contacts the 5' splice site through its ATPase site. RNA 7:182–193

- Lawrence P, Rieder E (2009) Identification of RNA helicase A as a new host factor in the replication cycle of foot-and-mouth disease virus. J Virol 83:11356–11366
- Li X, Ranjith-Kumar CT, Brooks MT, Dharmaiah S, Herr AB, Kao C, Li P (2009) The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J Biol Chem 284:13881–13891
- Linder P (2006) Dead-box proteins: a family affair–active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180
- Linder P, Daugeron MC (2000) Are DEAD-box proteins becoming respectable helicases? Nat Struct Biol 7:97–99
- Loo LW, Cheng I, Tiirikainen M, Lum-Jones A, Seifried A, Dunklee LM, Church JM, Gryfe R, Weisenberger DJ, Haile RW, Gallinger S, Duggan DJ, Thibodeau SN, Casey G, Le Marchand L (2012) cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS One 7:e30477
- Lu H, Lu N, Weng L, Yuan B, Liu YJ, Zhang Z (2014) DHX15 senses doublestranded RNA in myeloid dendritic cells. J Immunol 193:1364–1372 Ma Z, Moore R, Xu X, Barber GN (2013) DDX24 negatively regulates cytosolic
- RNA-mediated innate immune signaling. PLoS Pathog 9:e1003721 Murphy WJ, Pevzner PA, O'Brien SJ (2004) Mammalian phylogenomics comes
- of age. Trends Genet 20:631–639 Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem
- 281:18265–18268 Payne EM, Bolli N, Rhodes J, Abdel-Wahab OI, Levine R, Hedvat CV, Stone R, Khanna-Gupta A, Sun H, Kanki JP, Gazda HT, Beggs AH, Cotter FE, Look AT (2011) Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML. Blood 118:903–915
- Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (2008) Translation initiation on mammalian mRNAs with structured 5'UTRs requires DExH-box protein DHX29. Cell 135:1237–1250
- Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336
- Radi M, Falchi F, Garbelli A, Samuele A, Bernardo V, Paolucci S, Baldanti F, Schenone S, Manetti F, Maga G, Botta M (2012) Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg Med Chem Lett 22:2094–2098
- Rosner A, Rinkevich B (2007) The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem 14:2517–2525
- Savitsky K, Ziv Y, Bar-Shira A, Gilad S, Tagle DA, Smith S, Uziel T, Sfez S, Nahmias J, Sartiel A, Eddy RL, Shows TB, Collins FS, Shiloh Y, Rotman G (1996) A human gene (DDX10) encoding a putative DEAD-box RNA helicase at 11q22-q23. Genomics 33:199–206
- Sekiguchi T, Hayano T, Yanagida M, Takahashi N, Nishimoto T (2006) NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47. Nucleic Acids Res 34:4593–4608
- Shamseldin HE, Rajab A, Alhashem A, Shaheen R, Al-Shidi T, Alamro R, Al Harassi S, Alkuraya FS (2013) Mutations in DDX59 implicate RNA helicase in the pathogenesis of orofaciodigital syndrome. Am J Hum Genet 93:555–560
- Shih J, Lee YW (2014) Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 436:45–58
- Srivastava L, Lapik YR, Wang M, Pestov DG (2010) Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 30:2947–2956
- Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326
- Steimer L, Klostermeier D (2012) RNA helicases in infection and disease. RNA Biol 9:751–771

- Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure. RNA 7:382–394
- Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Kudo Y, Goto T, Yoshida H, Koike K (2012) A miRNA machinery component DDX20 controls NF-kB via micro-RNA-140 function. Biochem Biophys Res Commun 420:564–569
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
- Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262
- Tanner NK, Cordin O, Banroques J, Doere M, Linder P (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11:127–138
- The Bovine Genome Sequencing and Analysis Consortium (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528
- Tuteja N, Tuteja R (2004a) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848
- Tuteja N, Tuteja R (2004b) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863
- Uhlmann-Schiffler H, Jalal C, Stahl H (2006) Ddx42p–a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 34:10–22
- Umate P, Tuteja N, Tuteja R (2011) Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 4:118–137
- Xu J, Wu H, Zhang C, Cao Y, Wang L, Zeng L, Ye X, Wu Q, Dai J, Xie Y, Mao Y (2002) Identification of a novel human DDX40 gene, a new member of the DEAH-box protein family. J Hum Genet 47:681–683
- Xu R, Zhang S, Huang J, Zheng C (2013) Genome-wide comparative in silico analysis of the RNA helicase gene family in *Zea mays* and *Glycine max*: a comparision with *Arabidopsis* and *Oryza sativa*. PLoS One 8:e78982
- Yoo HH, Chung IK (2011) Requirement of DDX39 DEAD box RNA helicase for genome integrity and telomere protection. Aging Cell 10:557–571
- Zhan R, Yamamoto M, Ueki T, Yoshioka N, Tanaka K, Morisaki H, Seiwa C, Yamamoto Y, Kawano H, Tsuruo Y, Watanabe K, Asou H, Aiso S (2013) A DEADbox RNA helicase Ddx54 protein in oligodendrocytes is indispensable for myelination in the central nervous system. J Neurosci Res 91:335–348
- Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ (2011a) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12:959–965
- Zhang Y, Forys JT, Miceli AP, Gwinn AS, Weber JD (2011b) Identification of DHX33 as a mediator of rRNA synthesis and cell growth. Mol Cell Biol 31:4676–4691
- Zhou Y, Ma J, Bushan Roy B, Wu JY, Pan Q, Rong L, Liang C (2008) The packaging of human immunodeficiency virus type 1 RNA is restricted by overexpression of an RNA helicase DHX30. Virology 372:97–106
- Zirwes RF, Eilbracht J, Kneissel S, Schmidt-Zachmann MS (2000) A novel helicase-type protein in the nucleolus: protein NOH61. Mol Biol Cell 11:1153–1167

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com