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Background
Some natural resources are renewable (e.g. forests or fish stocks) whereas others are 
non-renewable (all minerals). Among the latter, some are durable (such as gemstones, 
precious metals and other metals like copper) whereas others are not (e.g. fossil fuels, 
phosphates and fossil water).

Durable non-renewable resources may be reused after consumption. Therefore, at any 
time there is an inventory of the resource in the ground and an inventory of the already 
used amounts of the resource that are potentially reusable. Conversely, non-durable 
non-renewable resources disappear as such when they are used (burnt or dispersed). 
This paper deals with the latter.

Most economic theory is not explicit about whether inputs into production are renew-
able or non-renewable. This is probably because until the second half of the twentieth 
century the idea prevailed that the Earth had plenty of resources relative to human 
needs. However, for more than 50  years it has been developing a growing awareness 
that the quantity of certain resources is limited, taking into account the past and present 
rates of consumption rates. Establishing optimal extraction and pricing policies for these 
resources requires specific approaches.

However, the first paper to explicitly consider the assumption of exhaustibility was 
Gray (1914), which shows that the present value of the marginal net revenue obtained 
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from an exhaustive resource must be the same in all periods with positive extraction 
(Conrad 2010). In Hotelling (1931), the author wrote as the introduction and motivation 
of his paper that “Contemplation of the world’s disappearing supplies of minerals, for-
ests, and other exhaustible assets has led to demands for regulation of their exploitation. 
The feeling that these products are now too cheap for the good of future generations, 
that they are being selfishly exploited at too rapid a rate, and that in consequence of their 
excessive cheapness they are being produced and consumed wastefully has given rise to 
the conservation movement.”

Since Hotelling’s paper, many works have been published about the economy of 
exhaustible resources (see overview in Sect.  “Literature review”). Nonetheless, many 
questions concerning their optimal extraction and pricing policies under a variety of 
specific assumptions remain unanswered. The present paper deals with the determina-
tion of optimal policies for a monopolist of a non-durable non-renewable resource using 
non-linear programming and Karush, Kuhn and Tucker (KKT) conditions. Although 
mathematical programming typically yields only numerical results for each instance of 
a given problem, in the case in point the specific simple structure of the resulting non-
linear programs makes it possible, and this is the contribution of the paper, to draw 
conclusions about the shape of optimal policies under diverse assumptions concerning 
demand curves, discount rates, costs (including scenarios in which these three elements 
are time-dependent) and lengths of the planning horizon.

The rest of the paper is organised as follows. The next section is devoted to a brief 
literature review. Section  “Problem definition and formulation of mathematical pro-
gramming models” states the problem and formulates the corresponding mathematical 
programs. The properties of the optimal solutions are discussed in Sect. “Properties of 
the optimal solutions”, which also contains some numerical examples. Section “Conclu-
sions” closes the paper with some concluding remarks and future research lines.

Literature review
There is abundant literature on the determination of optimal policies for extracting and 
pricing exhaustible resources.

Leaving aside the precursor paper of Gray, there is a consensus (Solow 1974; Devarajan 
and Fisher 1981; Arrow 1987; Gaudet 2007) on the unique, seminal character of Hotel-
ling (1931) regarding the economic theory of non-renewable resources. This work dis-
cusses the dynamics of optimal prices and production rates of irreplaceable assets under 
the assumptions of free competition, monopoly and duopoly. The author points out that 
the use of the calculus of variations (Pontryagin et al. 1986) cannot be avoided in dealing 
with problems concerning exhaustible assets. As this technique was not widespread at 
that time, the Economic Journal rejected Hotelling’s paper because its mathematics was 
too difficult (Gaudet 2007).

The nowadays famous Hotelling’s rule is stated in Hotelling (1931) in a very simple 
way: “It is not unreasonable to expect that the price [of an exhaustible resource] will be 
a function of the time of the form p = p0 · exp (γ t)” where γ is “the force of interest”. 
Hotelling points out, however, that this “is characteristic of completely free competi-
tion” and “will not apply to monopoly, where the form of the demand function is bound 
to affect the rate of production”. Moreover, in this latter case, “if the demand curve is 
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fixed, the question whether the time until exhaustion will be finite or infinite turns upon 
whether a finite or infinite value of p will be required to make q vanish. For the demand 
function q =  exp(−bp), where b is a constant, the exploitation will continue forever, 
though of course at a gradually diminishing rate. If q = α − βp, all will be exhausted in a 
finite time.” Therefore, Hotelling’s rule is not an attempt to describe the behaviour of the 
real world, but an implication of assuming completely free competition.

After Hotelling’s paper, the rate of publication on the subject was low until the seven-
ties of the past century. Byé (1957), which examines the case of the firm that decides the 
period over which the operation of a given natural resource is spread out, and Barnett 
and Morse (1963), which minimises the relevance of scarcity, are two significant refer-
ences from that period.

Concerns about natural resource scarcity were triggered by the famous report Limits 
to Growth by the Club of Rome (Meadows et  al. 1972) and the 1973 oil crisis. At the 
Eighty-Sixth Annual Meeting of the American Economic Association, held in New York, 
December 1973, Solow gave the Richard T. Ely Lecture on the economics of resources 
(Solow 1974), in which he highlighted the relevance and contemporaneousness of Hotel-
ling’s paper. Since those days, the number of publications about the economy of exhaust-
ible resources has increased steadily.

The comparison between the rates of production of an exhaustible resource in com-
petitive and monopolist markets, already dealt with in Hotelling (1931), is also addressed 
in Stiglitz (1976).

Many papers discuss or try to improve and test Hotelling’s rule, e.g. Kay and Mirrlees 
(1975), Riley (1980), Slade (1982), Slade and Thille (1997), Livernois and Martin (2001), 
Livernois et al. (2006), Gaudet (2007), Livernois (2009) and Slade and Thille (2009).

Others focus on extraction costs, e.g. Heal (1976), Gilbert (1978), Hanson (1980), Far-
zin (1992, 1995) and Krautkraemer (1998). Gaudet et  al. (2001) addresses specifically 
transportation costs when resource sites are spatially distributed.

Uncertainties in the amount of the resource available and the related question of 
exploration and investment to find new deposits are discussed in Long (1975), Loury 
(1978), Pindyck (1978), Arrow and Chang (1982), Liu and Sutinen (1982), Gaudet and 
Khadr (1991) and Ghoddusi (2010).

The concept of peak oil, also known as Hubbert’s peak, was introduced in Hubbert 
(1956). The Hubbert curve resulted from fitting historic production data to a symmet-
ric bell-shaped function (Cleveland and Kaufmann 1991).Therefore, initially it was an 
empirically based result. Subsequently, other authors have come up with economic 
explanations of why the Hubbert curve or similarly shaped curves represent the time 
evolution of non-durable non-renewable resource production (Menard and Sharman 
1975; Cleveland and Kaufmann 1991; Al-Jarri and Startzman 1999; Reynolds 1999; Bardi 
2005, 2007; Jakobsson et al. 2012). In short, the basic element of the proposed models is 
the fact that these resources have unknown reserves that should be explored. Recently, 
debates over whether Hubbert’s peak has been reached have become frequent. From 
an analysis of global production data, Aleklett et al. (2010) concludes that the peak oil 
was probably reached in 2008 and Campbell (2012) holds a similar point of view. On the 
other hand, Lynch (2003) does not give validity to the theory of peak oil itself.
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Comprehensive treatments of the economy of exhaustible resources may be found in 
Dasgupta and Heal (1979), Conrad and Clark (1987), Sweeney (1993), Conrad (2010) 
and Perman et al. (2011).

Following Hotelling’s approach, time is commonly regarded as a continuous variable. 
A proposal to use mathematical programming to determine optimal policies on exhaust-
ible resources considering discrete time was suggested, but not developed, in Conrad 
and Clark (1987). Sweeney (1993) and Conrad (2010) also consider the discrete time 
case for competitive and monopolistic markets using a Lagrangian approach.

Some publications dealing with optimal policies of exhaustible resources in a monop-
olistic market contain the formulation of the optimisation problem, the necessary and 
sufficient conditions of optimality and the solution to particular cases, such as linear 
demand curve. However, the general properties and conclusions we derive using a non-
linear programming formulation and KKT conditions under diverse assumptions about 
the demand curve, discount rates and length of the planning horizon are new, at the best 
of our knowledge.

Problem definition and formulation of mathematical programming models
We deal with a monopolistic market of a non-durable non-renewable resource whose 
available amount, R, is assumed to be positive and known. The planning horizon is 
divided into T  periods of equal (or different) length.

The demand curve of each period, t, is also assumed known by means of a function 
giving the quantity, qt, from the price, p, considered as the argument, or the inverse 
demand curve, giving the price from the quantity considered as the argument. There-
fore, we have either q = qt(p) or p = pt(q), which we assume to be differentiable and 
having the following properties:

Pt is called the choke price, which, for some kinds of demand curves, is not bounded 
above.

Moreover, we assume:

  • The cost of extracting a unit of resource, ct (t = 1, . . . ,T ), depends on the period 
and is also known. We also assume that ct < Pt (t = 1, . . . ,T ), since otherwise there 
would be no extraction at all during period t.

  • The discount coefficients αt (t = 1, . . . ,T ) to be applied to the cash flows of each 
period to obtain their present values are known.

  • The full amount of resource extracted in a period must be consumed during that 
period (i.e. there is no possibility to stockpile the resource during a period for sale in 
subsequent periods).

Then, we can formulate the following non-linear mathematical program (MQ) in order 
to obtain the optimal extraction policy:

qt(p) ≥ 0,
dqt(p)

dp
< 0, 0 ≤ p ≤ Pt , where Pt |qt

(

Pt

)

= 0

pt(q) ≥ 0,
dpt(q)

dq
< 0, 0 ≤ q ≤ Qt , where Qt |pt

(

Qt

)

= 0
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Thus, it is clear that the problem of finding the optimal extraction policy for a non-
durable non-renewable resource is not much different from that of maximising the util-
ity of a consumer having a given amount of income to spend, which, as it is known, leads 
to Gossen’s second law. According to it, the ratio of the marginal utility of each good or 
service to its price has the same value for all effectively consumed products and it is not 
less than the ratios corresponding to non-consumed products.

Note that if, instead of quantities, prices are used as variables, a similar mathematical 
program can be formulated in which the objective function and also the constraint cor-
responding to the availability of the resource are non-linear. Therefore, MQ is simpler, 
because all its constraints are linear, and is the only that will be used in the rest of the 
paper.

Properties of the optimal solutions
For R > 0, MQ has a non-empty set of feasible solutions with interior points.

Therefore, Karush, Kuhn and Tucker conditions are necessary and sufficient for opti-
mality if pt(qt) · qt is concave ∀t. In what follows, we will assume that this property 
holds.

For instance,

  • If q = 1− pγ with γ ≥ 1, then p(q) · q is concave.

  • If q = e−p then p(q) · q is concave.

We will apply the Karush, Kuhn and Tucker conditions to find the optimal solutions of 
the non-linear program MQ. Let uo be the multiplier corresponding to constraint (1) and 
u1, . . . ,uT those associated with constraints (2).

Recall that dpt (q)
dq

≤ 0 ∀t and d
2[pt (q)·q]

dq2
≤ 0 ∀t (because of the concavity of pt(qt) · qt ). 

If we assume that 
(

dpt (q)
dq

)

q=0
 has an upper bound or that limq→0

dpt (q)
dq

· q = 0, then 
holds the following:

MQ

maximise

T
∑

t=1

αt ·
[

pt(qt)− ct
]

· qt

s.t.

(1)
T
∑

t=1

qt ≤ R

(2)−qt ≤ 0

(3)qt ≤ Qt
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Proposition 

where t and t ′ are two periods belonging to the planning horizon, q∗t  and q∗t ′ the cor-
responding quantities in an optimal policy and P̂t = Pt − ct , P̂t ′ = Pt ′ − ct ′ (net choke 
prices). The proof of the proposition is shown in “Appendix 1”.

Hence, if the periods are arranged in the non-increasing order of the products αt · P̂t , 
there is always an optimal policy such that the periods in which q∗t > 0 are either all 
those belonging to the planning horizon or a certain number of them occupying the first 
positions in the defined sequence. Notice that the order of the periods depends neither 
on the available amount of the resource nor on the shape of the demand curves.

This property makes it possible to easily determine the optimal policy under diverse 
assumptions.

Let us first suppose that T is too short to allow for exhaustion of the resource when the 
optimal policy is used.

Then,

i.e. the optimal quantities depend neither on R nor on the discount coefficients (there-
fore, nor on the interest rates).

E.g.

Let us call these optimal quantities, ⌣q
∗

t , stock-independent optima.
Thus, when the planning horizon is too short for the sum of stock-independent optima 

to be greater than R, the optimal behaviour of the monopolist is the same as if the stock 
of the resource were unlimited.

Let 
⌣

T  be the maximum value of T  such that 
∑T

t=1
⌣
q
∗

t ≤ R.
Then, when T >

⌣

T  the resource will be exhausted. If we call active a period in which 
the extraction is not null, and we arrange the periods in the planning horizon in the 
non-increasing order of αt · P̂t, all or only a certain number of those periods that occupy 
the first positions in the above order will be active. We will use the notation [x] to indi-
cate the period that occupies the position x. The number of active periods (τ, such that 

(

q∗t > 0 ∧ q∗
t
′ = 0

)

⇒
(

αt · P̂t ≥ αt ′ · P̂t ′
)

T
∑

t=1

q∗t < R ⇒ u0 = 0

pt
(

q∗t
)

− ct + q∗t ·

(

dpt(q)

dq

)

q=q∗t

= 0

∀t ∈ T |q∗t > 0

For the function pt(q) = Pt ·

(

1−
q

Qt

)

we obtain q∗t =
Qt

2 · Pt
· P̂t

and p∗t =
1

2
· (Pt + ct).

For pt(q) = −
1

�t
· ln

qt

Qt
, q∗t =

Qt

e
· e−�t ·ct and p∗t =

1

�t
+ ct .
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⌣

T ≤ τ ≤ T) increases monotonically with T  and, when the planning horizon is unlim-
ited, may or may not have an upper bound.

The condition u0 = α[t] ·

(

(

d[pt (q)·q]
dq

)

q=q∗[t]

− ct

)

 must hold for t = 1, . . . , τ and must 

not for t > τ (when τ < T). The right-hand side depends only on q∗[t], so we may write 

u0 = ϕ[t]

(

q∗[t]

)

. If p[t](q) · q is strictly concave, then ϕ[t] is strictly decreasing. Therefore, 

q∗[t] = ϕ
−1
[t] (u0), which is also strictly decreasing. Hence, so is 

∑τ
t=1 ϕ

−1
[t] (u0). Thus, the 

equation 
∑τ

t=1 ϕ
−1
[t] (u0) = R has a unique solution u0 = �(R) ≥ 0 and the function �(R) 

is therefore strictly decreasing (as expected, as u0 is the shadow price of the resource; 
moreover, given R, u0 increases monotonically with T  because the shadow price of the 
resource cannot decrease when the planning horizon increases, since this enlarges the 
space of feasible solutions). With the value �(R) we can obtain the optimal values of the 
quantities q∗[t] = ϕ

−1
[t] (�(R)) ≥ 0.

Indeed, τ is not known a priori unless the products αt · P̂t are unbounded 
(t = 1, . . . ,T ), in which case τ = T . In order to find its value, we can use either of the 
following two ways.

On the one hand, we can give increasing values to τ, beginning with τ =
⌣

T  and stop-
ping when the optimality condition does not hold or, of course, when τ = T .

On the other hand, when it has a finite upper bound, τ depends on the amount of the 
resource available, R. If we call r(n) the critical value for which the period [n] becomes 
active, the following conditions must hold:

Given the values of r(n), it is straightforward to find τ for any specific R.
Let us see two examples. In both we assume T >

⌣

T .

Example 1 

From KKT, we have

Then,

n−1
�

t=1

q∗[t] = r(n)

α[t] ·













d
�

p[t](q) · q
�

dq





q=q∗
[t]

− c[t]









= α[n] ·











d
�

p[n](q) · q
�

dq





q=0

− c[n]






= α[n] · P̂[n]

t = 1, . . . , n− 1

pt(q) = Pt ·

(

1−
q

Qt

)

.

q∗[t] =
Q[t]

2 · P[t]
·

(

P̂[t] −
u0

α[t]

)

∀t ≤ τ

u0(τ ) =

∑τ
t=1

Q[t]

P[t]
· P̂[t] − 2 · R

∑τ
t=1

1
α[t]

Q[t]

P[t]

, u0(τ ) ≥ 0
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However, the condition α[τ+1] · P̂[τ+1] ≤ u0(τ ) must hold since

which would imply that q∗[τ+1] > 0 (contrary to the assumption that τ is the num-
ber of active periods). Therefore, to find τ it suffices to calculate the successive values 
u0(1), u0(2) . . . τ is the first value fulfilling the condition α[τ+1] · P̂[τ+1] ≤ u0(τ ); if there 
is no such value, then τ = T .

Example 2 

From KKT,

All periods are active and the greater T is, the greater the profit.
Table  1 shows some significant features of the optimal policies for different combi-

nations of demand curves, amounts of the resource available, discount coefficients and 
planning horizons.

Note that one of the assumptions that define the problem dealt with in this paper is that 
the amount of the resource, R, is known from the intial instant. If we consider that there 
are reserves to be discovered, the problem becomes considerably more complicated and 
lies beyond the scope of this work, although it is a promising line of future research. All the 
same, a simple setting including an expectation of founding new reserves of the resource is 
presented in “Appendix 2’’ in order to compare the behaviour of different approaches.

Conclusions
Mathematical programming is a useful tool to analyse the optimisation of the extraction 
rate of a non-durable non-renewable resource provided that demand curves and extrac-
tion costs depend only on time and not on availability of the resource.

Under monopolistic conditions, the optimal extraction rate depends on the demand 
curve features, discount coefficients and length of the time horizon.

Given the demand curves and discount coefficients, the shape of the optimal policy 
depends on the length of the time horizon and may consist in:

  • Extracting, in all periods of the planning horizon, the same amount of the resource 
that would be extracted if its availability were unlimited and leaving the remaining 
stock in the ground, or

α[τ+1] · P̂[τ+1] > u0(τ ) ⇔ [u0(τ + 1) > u0(τ )] ∧
[

α[τ+1] · P̂[τ+1] > u0(τ + 1)
]

,

pt(q) = −
1

�t
· ln

qt

Qt
.

qt =
Qt

e
·
e−�t ·ct

e
u0
αt

> 0

T
∑

t=1

qt =
1

e

T
∑

t=1

Qt ·
e−�t ·ct

e
u0
αt

= R ⇒

[uo > 0] ∧ [u0(T + 1) > u0(T )] ∀T |

T
∑

t=1

⌣
q
∗

t > R
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  • Depleting the resource by either
  – extracting in all periods of the planning horizon, or
 – extracting only in those periods occupying the first τ positions in the non-increas-

ing order of αt · P̂t.

Under the stated assumptions, there is no reason to suppose, apart from particular 
cases, that there is a peak ore, and even less that the peak would coincide with a stock 
equal to the half of the initial stock.

Optimal policies for some combinations of planning horizons, demand curves and dis-
count coefficients result in positive extraction rates for a finite number of periods and an 
abrupt interruption of the supply of the resource. This may be compatible with a steady 
increase of the extraction rate and a moderate or even no increase of price throughout 
the planning horizon.

Future extensions could include consideration of extraction costs depending on the 
available stock, perfect competitive markets, uncertainty about future availability of the 
resource and determination of optimal policies for durable non-renewable resources.
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Appendix 1: Proof of the proposition 
(

q∗
t
> 0 ∧ q∗

t′
= 0

)

⇒

(

αt · P̂t ≥ αt′ · P̂t′
)

Particularising KKT conditions for MQ yields

which implies αt ·
(

(

d[pt (q)·q]
dq

)

q=q∗t

− ct

)

≥ αt ′ ·

(

(

d[pt′ (q)·q]
dq

)

q=0
− ct ′

)

.

Moreover, because of the concavity of pt(q) · q :
(

d[pt (q)·q]
dq

)

q=q∗t

≤
(

d[pt (q)·q]
dq

)

q=0
=

(

pt(q)+
dpt (q)
dq

· q
)

q=0
= Pt .

Therefore, αt ·
(

(

d[pt (q)·q]
dq

)

q=q∗t

− ct

)

≤ αt · (Pt − ct) = αt · P̂t.

On the other hand, 
(

d[pt′ (q)·q]
dq

)

q=0
=

(

pt ′(q)+
dpt′ (q)
dq

· q
)

q=0
= Pt ′

−αt ·

(

(

d[pt(q) · q]

dq

)

q=q∗t

− ct

)

+ u0 = −αt ′ ·

(

(

d[pt ′ (q) · q]

dq

)

q=0

− ct ′

)

+ u0 − ut ′ = 0

u0 = αt ·

(

(

d[pt(q) · q]

dq

)

q=q∗t

− ct

)

= αt ′ ·

(

(

d[pt ′ (q) · q]

dq

)

q=0

− ct ′

)

+ ut ′ ,
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Consequently, αt ′ ·
(

(

d[pt′ (q)·q]
dq

)

q=0
− ct ′

)

= αt ′ · (Pt ′ − ct ′) = αt ′ · P̂t ′.

Therefore, αt · P̂t ≥ αt ′ · P̂t ′, which proves the proposition.

Appendix 2
The traditional theory of investment supposes that the decision-maker should decide 
what to do in the planning horizon in the initial instant using the information available 
at that moment. The option approach (Dixit and Pyndick, 1994), however, considers the 
possibility of delaying decisions until the moment in which new information is available 
to avoid potential sunk costs. These ideas can be applied to the management of renew-
able (Pindyck 2007) and non-renewable (Reynolds 2013) resources. In some circum-
stances, the expectation of having a large reserve available in the future with a high (or 
even not so high) probability can lead to the exploitation of presently available resources 
as if there were certainty about the future availability of large reserves.

To illustrate these ideas, let us present and solve the decision problem in a very simple 
setting: p = 1− q, T = 2, α = 1/1.1, R = 0.75, costs are negligible; at the end of period 
1, the result of an exploration process underway will be known: the result will be posi-
tive (i.e. a very large—in fact, 0.5 units would be more than enough—new amount of 
resource will be available) with a probability equal to π and will be negative (no new 
reserves will be available) with a probability equal to 1− π.

In a more general setting, the optimal policy should be determined by dynamic pro-
gramming. However, in the example it is straightforward to find the maximum of the 
expected income values, which, if we call x (0 ≤ x ≤ R) the quantity produced in the first 
period, is equal to

which is optimal for x∗ = min
(

R, 1+α·(1−π)·(2·R−1)
2·[1+α·(1−π)]

)

.

Note that, in this example, ⌣q
∗

1 =
⌣
q
∗

2 = 0.5. Hence, this is the optimal production value 
if the monopolist has a sufficient amount of the resource available.

Let us consider three different extraction policies:

P1  In the first period, we will act as if we were sure of having a large reserve avail-
able at the beginning of the second period. Therefore, we will extract ⌣q

∗

1 = 0.5 
in the first period and, in the second, 0.5 or 0.25, according to the positive or 
negative result of the prospection, respectively

P2  In the first period, we will extract the quantity corresponding to the optimal policy 
under the assumption that we will have only the initially available R units of the 
resource. Then, in the second period, according to the positive or negative result of 
the prospection, we will extract 0.5 or R minus the production of the first period

P3  It is the optimal policy under the assumptions defining the example. In the first 
period, we will extract x∗ and, in the second, 0.5 or R− x∗, depending on the 
outcome of the exploration process

Table 2 shows the expected income values for several values of the probability π cor-
responding to the three above policies.

x · (1− x)+ α · π ·
1

4
+ α · (1− π) · (R− x) · [1− (R− x)],
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The differences between the best expected value (which always corresponds to P3) and 
the worst one are always lower than 7 %. P1 is better than P2 for π < 0.6 and worse for 
π > 0.6. Of course, when π = 1.0, P1 and P3 are equivalent.
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