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Background
Let H be a real Hilbert space with inner product �·, ·�H and norm � · �H . An operator 
A : H → H is called monotone if

and is called strongly monotone if there exists k ∈ (0, 1) such that

Interest in monotone operators stems mainly from their usefulness in numerous appli-
cations. Consider, for example, the following: Let f : H → R ∪ {∞} be a proper lower 
semi continuous and convex function. The subdifferential, ∂f : H → 2H of f at x ∈ H is 
defined by

It is easy to check that ∂f : H → 2H is a monotone operator on H, and that 0 ∈ ∂f (x) 
if and only if x is a minimizer of f. Setting ∂f ≡ A, it follows that solving the inclusion 
0 ∈ Au, in this case, is solving for a minimizer of f.

(1.1)�Ax − Ay, x − y�H ≥ 0 ∀ x, y ∈ H ,

(1.2)�Ax − Ay, x − y�H ≥ k�x − y�2H ∀x, y ∈ H .

∂f (x) =
{

x∗ ∈ H : f (y)− f (x) ≥ �y− x, x∗� ∀ y ∈ H
}

.

Abstract 

Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux differentiable 
norm, and E∗ its dual space. Let A : E → E

∗ be a bounded strongly monotone mapping 
such that A−1(0) �= ∅. For given x1 ∈ E , let {xn} be generated by the algorithm: 

where J is the normalized duality mapping from E into E∗ and {αn} is a real sequence in 
(0, 1) satisfying suitable conditions. Then it is proved that {xn} converges strongly to the 
unique point x∗ ∈ A

−1(0). Finally, our theorems are applied to the convex minimiza-
tion problem.

Keywords:  Strongly monotone, Lipschitz, Bounded

xn+1 = J
−1(Jxn − αnAxn), n ≥ 1,
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Several existence theorems have been established for the equation Au = 0 when A is 
of the monotone-type (see e.g., Deimling 1985; Pascali and Sburian 1978).

The extension of the monotonicity definition to operators from a Banach space into 
its dual has been the starting point for the development of nonlinear functional analy-
sis. The monotone maps constitute the most manageable class because of the very sim-
ple structure of the monotonicity condition. The monotone mappings appear in a rather 
wide variety of contexts since they can be found in many functional equations. Many of 
them appear also in calculus of variations as subdifferential of convex functions. (Pascali 
and Sburian 1978, p. 101).

Let E be a real normed space, E∗ its topological dual space. The map J : E → 2E
∗ 

defined by

is called the normalized duality map on E. where, 〈, 〉 denotes the generalized duality 
pairing between E and E∗.

A map A : E → E∗ is called monotone if for each x, y ∈ E, the following inequality 
holds:

A is called strongly monotone if there exists k ∈ (0, 1) such that for each x, y ∈ E, the fol-
lowing inequality holds:

A map A : E → E is called accretive if for each x, y ∈ E, there exists j(x − y) ∈ J (x − y) 
such that

A is called strongly accretive  if there exists k ∈ (0, 1) such that for each x, y ∈ E, there 
exists j(x − y) ∈ J (x − y) such that

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert 
spaces, monotonicity and accretivity coincide. For accretive-type operator A, solutions 
of the equation Au = 0, in many cases, represent equilibrium state of some dynamical 
system (see e.g., Chidume 2009, p. 116).

For approximating a solution of Au = 0, assuming existence, where A : E → E is of 
accretive-type, Browder (1967) defined an operator T : E → E by T := I − A, where I 
is the identity map on E. He called such an operator pseudo-contractive. It is trivial to 
observe that zeros of A correspond to fixed points of T. For Lipschitz strongly pseudo-
contractive maps, Chidume (1987) proved the following theorem.

Theorem C1  (Chidume 1987) Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be nonempty 
closed convex and bounded. Let T : K → K  be a strongly pseudo-contractive and 
Lipschitz map. For arbitrary x0 ∈ K , let a sequence {xn} be defined iteratively by 
xn+1 = (1− �n)xn + �nTxn, n ≥ 0, where {�n} ⊂ (0, 1) satisfies the following conditions: 

Jx :=
{

x∗ ∈ E∗ : �x, x∗� = �x�.�x∗�, �x� = �x∗�
}

(1.3)
〈

Ax − Ay, x − y
〉

≥ 0.

(1.4)�Ax − Ay, x − y� ≥ k�x − y�2.

(1.5)
〈

Ax − Ay, j(x − y)
〉

≥ 0.

(1.6)�Ax − Ay, j(x − y)� ≥ k�x − y�2.
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(i)
∑∞

n=1 �n = ∞, (ii)
∑∞

n=1 �
2
n < ∞. Then, {xn} converges strongly to the unique fixed 

point of T.

By setting T := I − A in Theorem C1, the following theorem for approximating a solu-
tion of Au = 0 where A is a strongly accretive and bounded operator can be proved.
Theorem C2  Let E = Lp, 2 ≤ p < ∞. Let A : E → E be a strongly accretive and 
bounded map. Assume A−1(0) �= ∅. For arbitrary x0 ∈ K , let a sequence {xn} be defined 
iteratively by xn+1 = xn − �nAxn, n ≥ 0, where {�n} ⊂ (0, 1) satisfies the following condi-
tions: (i)

∑∞
n=1 �n = ∞, (ii)

∑∞
n=1 �

2
n < ∞. Then, {xn} converges strongly to the unique 

solution of Au = 0.

The main tool used in the proof of Theorem C1 is an inequality of Bynum (1976). This 
theorem signalled the return to extensive research efforts on inequalities in Banach 
spaces and their applications to iterative methods for solutions of nonlinear equations. 
Consequently, Theorem C1 has been generalized and extended in various directions, 
leading to flourishing areas of research, for the past thirty years or so, for numerous 
authors (see e.g., Censor and Reich 1996; Chidume 1986, 1987, 2002; Chidume and 
Bashir 2007; Chidume and Chidume 2005, 2006; Chidume and Osilike 1999; Deng 1993; 
Zhou and Jia 1996; Liou 1990; Qihou 1990; Reich 1977, 1978, 1979; Reich and Sabach 
2009, 2010; Weng 1991; Xiao 1998; Xu  1991, 1991, 1992; Berinde and Maruster 2014; 
Moudafi 2003, 2004;  2010; Moudafi and Thera 1997; Xu and Roach 1991; Xu et  al. 
1995; Zhu 1994 and a host of other authors). Recent monographs emanating from these 
researches include those by Berinde (2007), Chidume (2009), Goebel and Reich (1984), 
and William and Shahzad (2014).

Unfortunately, the success achieved in using geometric properties developed from the 
mid 1980s to early 1990s in approximating zeros of accretive-type mappings has not car-
ried over to approximating zeros of monotone-type operators in general Banach spaces. 
Part of the problem is that since A maps E to E∗, for xn ∈ E, Axn is in E∗. Consequently, a 
recursion formula containing xn and Axn may not be well defined.

Attempts have been made to overcome this difficulty by introducing the inverse of the 
normalized duality mapping in the recursion formulas for approximating zeros of mono-
tone-type mappings.

In this paper, we introduce an iterative scheme of Mann-type to approximate the 
unique zero of a strongly monotone bounded mapping in 2-uniformly convex real Banach 
with uniformly Gâteaux differentiable norm. Then we apply our results to the convex 
minimization problem. Finally, our method of proof is of independent interest.

Remark 1  In Lp spaces, 1 < p < ∞, the formula for J is known precisely (see e.g., Chi-
dume 2009; Cioranescu 1990). In fact, from Cioranescu (1990), Corollary 4.10, p. 72, we 
have for J : Lp → Lp

∗, 1 < p < ∞,

J (f ) = |f |p−1 · sign
f

�f �p−1
.
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Preliminaries
Let E be a normed linear space. E is said to be smooth if

exist for each x, y ∈ SE (Here SE := {x ∈ E : ||x|| = 1} is the unit sphere of E). E is said to 
be uniformly smooth if it is smooth and the limit is attained uniformly for each x, y ∈ SE , 
and E is Fréchet differentiable if it is smooth and the limit is attained uniformly for 
y ∈ SE .

A normed linear space E is said to be strictly convex if:

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by:

E is uniformly convex if and only if δE(ǫ) > 0 for every ǫ ∈ (0, 2]. Let p > 1. Then E is 
said to be p-uniformly convex if there exists a constant c > 0 such that δE(ǫ) ≥ cǫp for all 
ǫ ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly convex.

It is well known that E is smooth if and only if J is single valued. Moreover, if E is a 
reflexive smooth and strictly convex Banach space, then J−1 is single valued, one-to-one, 
surjective and it is the duality mapping from E∗ into E. Finally, if E has uniform Gâteaux 
differentiable norm, then J is norm-to-weak∗ uniformly continuous on bounded sets.

In the sequel, we shall need the following results and definitions.

Theorem 2.1  (Xu 1991) Let p > 1 be a given real number. Then the following are equiv-
alent in a Banach space:

(i)		�  E is p-uniformly convex.
(ii)		� There is a constant c1 > 0 such that for every x, y ∈ E and jx ∈ Jp(x), The following 

inequality holds: 

(iii)	There is a constant c2 > 0 such that for every x, y ∈ E and jx ∈ Jp(x), jy ∈ Jp(y), the 
following inequality holds: 

Corollary 2.2  Let E be a 2-uniformly convex and smooth real Banach space. Then J−1 
is Lipschtzian form E∗ into E, i.e., there exists constant L > 0 such for all u, v ∈ E∗ the fol-
lowing holds

Proof  This follows from inequality (iii) of Theorem 2.1 with p = 2.� �

(2.1)lim
t→0

�x + ty� − �x�
t

�x� = �y� = 1, x �= y ⇒
∥

∥

∥

x + y

2

∥

∥

∥
< 1.

δE(ǫ) := inf
{

1−
1

2
�x + y� : �x� = �y� = 1, �x − y� ≥ ǫ

}

.

�x + y�p ≥ �x�p + p�y, jx� + c1�y�p.

�x − y, jx − jy� ≥ c2�x − y�p.

(2.2)�J−1u− J−1v� ≤ L||u− v�.
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Let E be a smooth real Banach space with dual E∗. The function φ : E × E → R, 
defined by

where J is the normalized duality mapping from E into E∗, introduced by Alber has been 
studied by Alber (1996), Alber and Guerre-Delabiere (2001), Kamimura and Takahashi 
(2002), Reich (1979) and a host of other authors. This functional φ will play a central role 
in what follows. If E = H , a real Hilbert space, then Eq. (2.3) reduce to φ(x, y) = �x − y�2 
for x, y ∈ H . It is obvious from the definition of the function φ that

Define a functional V : E × E∗ → R by

Then, it is easy to see that

Lemma 2.3  (Alber 1996) Let E be a reflexive strictly convex and smooth real Banach 
space with E∗ as its dual. Then,

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.4  (Kamimura and Takahashi 2002) Let E be a smooth uniformly convex real 
Banach space, and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded 
and φ(xn, yn) → 0 as n → ∞, then �xn − yn� → 0 as n → ∞.

Lemma 2.5  (Tan and Xu 1993) Let {an} be a sequence of non-negative real numbers 
satisfying the following relation:

Such that 
∞
∑

n=0

σn < ∞. Then lim
n→∞

an exists. If addition, the sequence {an} has a subse-

quence that converges to 0. Then {an} converges to 0.
The following results will be useful.

Lemma 2.6  (Alber and Ryazantseva 2006) For p > 1, let X be a p-uniformly convex 
and smooth real Banach space and S a bounded subset of X. Then there exists a positive 
constant α such that

Lemma 2.7  Let E be a 2-uniformly convex smooth real Banach space. Then the follow-
ing inequality holds:

(2.3)φ(x, y) = �x�2 − 2�x, Jy� + �y�2, x, y ∈ E,

(2.4)(�x� − �y�)2 ≤ φ(x, y) ≤ (�x� + �y�)2 ∀ x, y ∈ E.

(2.5)V (x, x∗) = �x�2 − 2�x, x∗� + �x∗�2, x ∈ E, x∗ ∈ E∗.

(2.6)V (x, x∗) = φ(x, J−1x∗) ∀ x ∈ E, x∗ ∈ E∗.

(2.7)V (x, x∗)+ 2�J−1x∗ − x, y∗� ≤ V (x, x∗ + y∗)

an+1 ≤ an + σn n ≥ 0.

α�x − y�p ≤ φ(x, y) ∀ x, y ∈ S.

||x − y�2 ≥ φ(x, y)+ (c1 − 1)�x�2 x, y ∈ E,
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where 0 ≤ c1 ≤ 1 has the same meaning as in Theorem 2.1.

Proof  Using (ii) of Theorem 2.1, we have

Interchanging x and y, we obtain

�
Main results
We now prove the following result

Theorem 3.1  Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux 
differentiable norm and E∗ its dual space. Let A : E → E∗ be a bounded and k-strongly 
monotone mapping such that A−1(0) �= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence 
defined iteratively by:

where J is the normalized duality mapping from E into E∗ and {αn} ⊂ (0, 1) is a real 
sequence satisfying the following conditions: (i)

∑∞
n=1 αn = ∞; (ii)

∑∞
n=0 α

2
n < ∞. Then, 

there exists γ0 > 0 such that if αn < γ0, the sequence {xn} converges strongly to the unique 
solution of the equation Au = 0.

Proof  The proof is in two steps:

Step 1: We prove that {xn} is bounded. Since A−1(0) �= ∅, let x∗ ∈ A−1(0).There exists 
r > 0 such that:

We show that φ(xn, x∗) ≤ r for all n ≥ 1. The proof is by induction. We have φ(x1, x∗) ≤ r. 
Assume that φ(xn, x∗) ≤ r for some n ≥ 1. We show that φ(xn+1, x

∗) ≤ r. From the 
induction assumption and Lemma 2.6, there exists α∗ > 0 such that �xn − x∗�2 ≤ rα∗. 
Since A is bounded, we have:

where L is a Lipschitz constant of J−1. Define

Using the definition of xn+1, we compute as follows:

�x − y�2 ≥ �x�2 − 2�y, Jx� + c1�y�2.

�x − y�2 ≥ �y�2 − 2�x, Jy� + c1�x�2

= φ(x, y)+ (c1 − 1)�x�2.

(3.1)xn+1 = J−1(Jxn − αnAxn), n ≥ 1,

(3.2)r ≥ max
{

4(1− c1)�x∗�2,φ(x1, x∗)
}

.

(3.3)M0 = 2L sup{�Ax�2, �x − x∗� ≤
√
rα∗} + 1 < ∞,

(3.4)γ0 = min
1

2

{

1,
kr

M0

}

�
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Using Lemma 2.3, with y∗ = αnAxn, we have:

Using the strong monotonocity of A, Schwartz inequality and the Lipzchitz property of 
J−1, we obtain

Using Lemma 2.7, it follows that

Finally, using inequality (3.2), the definition of γ0 (3.4), and the induction assumption, we 
have

Therefore, φ(x∗, xn+1) ≤ r. Thus, by induction, φ(x∗, xn) ≤ r for all n ≥ 1. So, by inequal-
ity (2.4), {xn} is bounded.

Step 2: We now prove that {xn} converges strongly to the unique point x∗ of A−1(0). 
Following the same arguments as in Step 1, using the fact the sequence {xn} is bounded 
and A is bounded, there exists a positive constant M such that

Therefore,

Using the hypothesis 
∞
∑

n=0

α2
n < ∞ and Lemma 2.5, it follows that lim

n→∞
φ(x∗, xn) exists. 

From (3.6), we have

φ(x∗, xn+1) = φ(x∗, J−1(Jxn − αnAxn))

= V (x∗, Jxn − αnAxn).

φ(x∗, xn+1) = V (x∗, Jxn − αnAxn)

≤ V (x∗, Jxn)− 2αn�J−1(Jxn − αnAxn)− x∗,Axn − Ax∗�
= φ(x∗, xn)− 2αn�xn − x∗,Axn − Ax∗� − 2αn�J−1(Jxn − αnAxn)− xn,Axn�
= φ(x∗, xn)− 2αn�xn − x∗,Axn − Ax∗�

− 2αn�J−1(Jxn − αnAxn)− J−1(Jxn),Axn�.

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2αnk||xn − x∗||2 + 2αn||J−1(Jxn − αnAxn)− J−1(Jxn)||||Axn�
≤ φ(x∗, xn)− 2αnk||xn − x∗||2 + 2α2

nL||Axn�2.

(3.5)φ(x∗, xn+1) ≤ φ(x∗, xn)− 2αnkφ(x
∗, xn)+ 2αnk(1− c1)||x∗||2 + α2

nM0.

φ(x∗, xn+1) ≤ (1− 2kαn)r + αnk
r

2
+ αnk

r

2

≤
(

1− kαn

(

2−
1

2
−

1

2

))

r

≤ (1− kαn)r.

(3.6)φ(x∗, xn+1) ≤ φ(x∗, xn)− 2αnk||xn − x∗||2 + α2
nM.

φ(x∗, xn+1) ≤ φ(x∗, xn)+ α2
nM.

∞
∑

n=1

αn�xn − x∗� < ∞.
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Using the fact that 
∑∞

n=0 αn = ∞, it follows that lim inf �x∗ − xn�2 = 0. Therefore, there 
exists a subsequence {xnk } of {xn} such that xnk → x∗ as k → ∞. We have

Since {xn} is bounded and J is norm-to weak∗ uniformly continuous on bounded subsets 
of E, it follows that {φ(x∗, xn)} has a subsequence that converges to 0. Thus, by Lemma (), 
{φ(x∗, xn)} converges strongly to 0. Applying Lemma(), we obtain that �xn − x∗� → 0 as 
n → ∞. This completes the proof. � �

Corollary 3.2  Let E = Lp, 1 < p ≤ 2 and A : E → E∗ be a bounded and strongly mono-
tone mapping. For arbitrary x1 ∈ E, let {xn} be the sequence defined iteratively by:

where J is the normalized duality mapping from E into E∗ and {αn} ⊂ (0, 1) is a real 
sequence satisfying the following conditions: (i)

∑∞
n=1 αn = ∞; (ii)

∑∞
n=0 α

2
n < ∞.

Then, there exists γ0 > 0 such that if αn < γ0, ∀ n ≥ 1 the sequence {xn} converges 
strongly to the unique solution of the equation Au = 0.

Proof  Since Lp spaces, 1 < p ≤ 2 are 2-uniformly convex Banach space with uniformly 
Gâteaux differentiable norm, then the proof follows from Theorem 3.1.� �

Application to convex minimization problems
In this section, we study the problem of finding a minimizer of a convex function f 
defined from a real Banach space E to R.

The following basic results are well known.

Lemma 4.1  Let f : E → R be a real-valued differentiable convex function and a ∈ E. 
df : E → E∗ denotes the differential map associated to f. Then the following hold.

1.	 The point a is a minimizer of f on E if and only if df (a) = 0.

2.	 If f is bounded, then f is locally Lipschitzian, i.e., for every x0 ∈ E and r > 0, there 
exists γ > 0 such that f is γ-Lipschitzian on B(x0, r), i.e. 

Lemma 4.2  Let E be normed linear space and f : E → R a real-valued differentiable 
convex function. Assume that f is bounded. Then the differential map df : E → E∗ is 
bounded.

Proof  Let x0 ∈ E and r > 0. Set B := B(x0, r). We show that df(B) is bounded. From 
lemma 4.1, there exists γ > 0 such that

φ(x∗, xnk ) = �x�2 − 2�x∗, Jxnk � + �xnk�
2.

(3.7)xn+1 = J−1(Jxn − αnAxn), n ≥ 1,

|f (x)− f (y)| ≤ γ �x − y� ∀ x, y ∈ B(x0, r).

(4.1)|f (x)− f (y)| ≤ γ �x − y� ∀ x, y ∈ B.
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Let z∗ ∈ df (B) and x∗ ∈ B such that z∗ = df (x∗). Since B is open, for all u ∈ E, there 
exists t > 0 such that x∗ + tu ∈ B. Using the fact that z∗ = df (x∗) the convexity of f and 
inequality (4.1), it follows that

so that

Therefore �z∗� ≤ γ . Hence df(B) is bounded.�  �

Definition 4.3  A function f : E → R is said to be strongly convex if there exists α > 0 
such that for every x, y ∈ E with x �= y and � ∈ (0, 1), the following inequality holds:

Lemma 4.4  Let E be normed linear space and f : E → R a real-valued differentiable 
convex function. Assume that f is strongly convex. Then the differential map df : E → E∗ 
is strongly monotone, i.e., there exists a positive constant k such that

We now prove the following theorem.

Theorem 4.5  Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux 
differentiable norm and let f : E → R be a differentiable, bounded, strongly convex real-
valued function which satisfies the growth condition: f (x) → +∞ as �x� → +∞. For 
arbitrary x1 ∈ E, let {xn} be the sequence defined iteratively by:

where J is the normalized duality mapping from E into E∗ and {αn} ⊂ (0, 1) is a real 
sequence satisfying the following conditions: (i)

∑∞
n=1 αn = ∞; (ii)

∑∞
n=0 α

2
n < ∞. Then, 

f has a unique minimizer a∗ ∈ E and there exists γ0 > 0 such that if αn < γ0, the sequence 
{xn} converges strongly to a∗.

Proof  Since E is reflexive, then from the growth condition, the continuity and the strict 
convexity of f, f has a unique minimizer a∗ characterized by df (a∗) = 0 (Lemma 4.1). 
Finally, from Lemmas 4.2 and 4.4, the differential map df : E → E∗ is bounded and 
strongly monotone. Therefore, the proof follows from Theorem 3.1.�  �

Conclusion
In this work, we proposed a new iteration scheme for the approximation of zeros of 
monotone mappings defined in certain Banach spaces. Our results are used to approxi-
mate minimizers of convex functions. The results obtained in this paper are important 
improvements of recent important results in this field.

�z∗, tu� ≤ f (x∗ + tu)− f (x∗)

≤ tγ �u�

�z∗,u� ≤ γ �u� ∀u ∈ E.

(4.2)f (�x + (1− �)y) ≤ �f (x)+ (1− �)f (y)− α�x − y�2.

(4.3)�df (x)− df (y), x − y� ≥ k�x − y�2 ∀ x, y ∈ E.

(4.4)xn+1 = J−1
(

Jxn − αndf (xn)
)

, n ≥ 1,
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