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Background
Major concerns

On the one side, this paper concerns with expressing uncertainty. A general expression 
of uncertainty can be used in any scientific field, but especially for the one concerned 
here (geodesy and navigation) inasmuch as the standard uncertainty by means of stand-
ard deviation (SD) is helpless to study the problem under scrutiny. In fact, for continu-
ous measurements based on identification of cells (Cell-Id) such as real time tracking 
of goods and people, if the uncertainty is large—as is the case here—the measurand—
quantity being measured—remains constant over long periods of time which yields null 
deviations from the mean and thus a null SD. As the uncertainty is known to be large 
this null sd has evidently nothing to do with a highly accurate output data.
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general approach is shown by applying it to the particular instance of estimating the 
coordinates of a person in real-time using RFID devices. This way, exact formulae to 
evaluate the quality of this measurement are mathematically deduced, which is useful, 
for example, to predict whether an inexpensive RFID location technology can meet 
a desired quality standard or not. The second optimization problem proposed here 
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On the other side, this paper concerns with the real time tracking of goods and people. 
Much has been developed in this area over the past decades especially with the advent 
of the Global Navigation Satellite Systems (GNSS), from which GPS is its forefront. But 
these GNSS exhaust not the needs for tracking of goods. In this regard, several alterna-
tives have been studied, some GNSS-free others to work integrated with it. Notwith-
standing, these still exhaust not these needs. Among the existing alternatives the one 
eyed for herein is RFID-based (acronym for radio-frequency identification).

RFID is a technology devised to substitute bar codes and its recent development 
includes human implants in its scope, Fig.  1 and Peterson (2001). These implants are 
to enable an unambiguous identification of its host. This way, a society free of printed 
money bills could emerge as each and every financial transaction is done electronically 
by credit or debit cards (Peterson 2001). The implications of the advent of such universal 
credit system and its foreshadowing of an Orwellian totalitarian state (Orwell 1949) are 
the object of an investigation in itself and are not in the scope of this paper, but certainly 
they constitute but a driving force behind its inception.

Noteworthy, the application of RFID devices done throughout the paper is not con-
cerned with implantable tags. We will concern with active tags that are to be attached to 

Fig. 1 RFID tag implantations in the right hand. People can already receive a mark on their right hand 
by means of an RFID tag implanted in it (red mark). Picture originally published under CCAL 3.0 at http://
en.wikipedia.org/wiki/Hand.

http://en.wikipedia.org/wiki/Hand
http://en.wikipedia.org/wiki/Hand
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an object. But the application by human implants has an importance in that it served as 
a motivation for the choice of the research topic that concerns to the current paper. 

Uncertain science

Science is still limited on modeling nature and handling uncertainties (Palmer and 
Hardaker 2011). A problem is that all sources of uncertainty cannot be eliminated and the 
approaches available to handle it are each tangled by their own limitations (BIPM 2008).

Uncertainty in science remains and as political decisions can be influenced by scien-
tific advice, this uncertainty may propagate over policies and in the end affect citizens 
other than scientists. Some examples are the following: the current debate on climate 
change (Smith and Stern 2011; Smith 2011; Slingo 2011), whether or to which extent it 
is anthropogenic, how will this change evolve over the next years and what should we do 
about it; macroeconomic policy-making (Aikman 2011); health policy-making and clini-
cal practice (Wells et al. 2011).

Therefore, advances on handling uncertainty in science have the potential to outstrip 
academia, as lay persons are also benefited.

Unreasonable uncertainty evaluations

The quality evaluation of measurements is a fundamental problem to any field in which a 
quantity has to be measured. Direct measurements are usually evaluated by the standard 
uncertainty (BIPM 2008)—i.e., the standard deviation (SD). For quantities measured in 
terms of a set of input quantities, a common approach is to evaluate their measurement 
by the law of propagation of uncertainties, for details refer to BIPM (2008), Kacker et al. 
(2007). However, this law is generally used in its simplified form, which assumes a first-
order Taylor series approximation of the measurand function (i.e., that the behavior of 
the quantity being measured is well described by a linear function) and that the input 
quantities are uncorrelated [this simplified formula is traditionally referred to as law of 
error propagation, a misnomer (Kacker et al. 2007)]. If higher order approximations are 
to be included, restrictive assumptions have to be made (Kacker et al. 2007). Meanwhile, 
the major reason for unreasonable uncertainty evaluations is the non-identification and, 
consequently, non-incorporation of the correlation between the input quantities (Kacker 
et al. 2007).

On the other side, to determine the propagation of uncertainties when the measurand 
function is non-linear, a routine is to use a Monte Carlo simulation (BIPM 2008) to gen-
erate a probability density function (pdf) for the measurand from propagations of the 
pdf assigned to the input quantities. However, this probabilistic approach (i.e., distinct 
simulations of the same input data set may yield distinct output data) needs a pdf for the 
input quantities, and it also requires the joint distribution of correlated input variables, 
which is often unknown or difficult to simulate (Kacker et al. 2007).

We cannot locate everyone ubiquitously yet, but what if we could?

Ubiquitous positioning is becoming feasible as diverse location technologies (Bensky 
2008; Groves 2008; Do et al. 2007; De Lorenzo 2009) are being created. Designed to give 
the position of any point in the Earth at any given epoch, GPS is the most important 
(Bensky 2008; Groves 2008) location technology nowadays. However, when it comes to 
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indoor and urban environments, because of the non-line-of-sight (Bensky 2008; Groves 
2008; Do et  al. 2007; Prost 2008) (NLOS) between satellites and receivers, the quality 
of the estimated position can be severely degraded. Moreover, these are precisely the 
regions where ubiquitous location would be of greater interest, for the majority of the 
Earth’s inhabitants dwell in urban zones—and its indoor regions—(CIA 2011), and con-
sequently, their mobile terminals—including cell-phones—lie most of the time. There-
fore, to locate a person or an object anywhere, at any time is still out of reach.

The ubiquitous positioning of each person may be used in several ways. Location-
based services (Kupper 2005) as mobile marketing, mobile gaming, mobile yellow pages 
and enhanced emergency services become available, fostering profit generation and 
safety of life. Likewise, improved human-centric sensing (Srivastava et al. 2012), and in 
particular, deeper studies of individual human mobility patterns (Gonzalez et al. 2008) 
based on a more accurate and continuous tracking of a great number of people would be 
feasible. Hence, contributions to the knowledge about the laws governing human motion 
are likely to be made, which may lead to an understanding of the spread of biological 
(Eubank et al. 2004) and mobile (Kleinberg 2007) viruses. This, in turn, could become a 
step towards forecasting the spread of pandemic diseases in a regional and a global scale.

About this article

As science fails to measure all quantities without uncertainty (BIPM 2008), we turn to 
the realm of mathematics which is itself the closest that men alone can get to certainty. 
In this sense, to build our own analytic (i.e., without approximations by series expan-
sions) and deterministic (i.e., non-probabilistic) approach to error modeling, we define 
a concept and we express it mathematically, Eq.  (1). This enables an evaluation of a 
measurement’s quality in the light of this general concept as we show its usefulness by 
applying it to the particular instance of estimating the position (i.e., the coordinates) of 
a person in real-time using wireless positioning techniques based on RFID technology. 
We also present an approach to distribute RFID tags over indoor and urban areas—the 
regions where GPS performs worse—and we show how our error model can be used to 
study its performance through numerical experiments.

RFID is not a new technology, since its origin dates back to the Second World War 
(Glover and Batt 2006). But, as a consequence of cost and size (Catuto et al. 2010; Peter-
son 2001; Zabow et  al. 2008) reductions, RFID is becoming increasingly used in our 
society, especially when it works as an upgrade to bar codes (Gebbers and Adamchuk 
2010; EC 2008). We divide the RFID devices into two categories: tags and readers. An 
RFID tag is a small radio-frequency transmitting device that sends a signal which cov-
ers a certain region, with a known latency (time delay between consecutive signal trans-
missions) and with an identifying code corresponding to it (this definition corresponds 
to active tags which have their own source of energy, typically batteries). Occasionally, 
the tag’s memory will be able to store data other than its unique identity, which might 
also be transmitted through its signal. The signal and its code are readable by an RFID 
reader, which can also be a small device (i.e., small enough to be carried by a person, 
like a cell-phone). Moreover, along a given direction, the distance from the RFID tags 
in which their signal can be detected by the reader is called range. Basically, to build an 
error propagation model, we will first assume that the region covered by the tags signal 
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is a sphere; afterwards, we will employ this spherical range model to determine the error 
propagation when any generic range surface is considered. The range of RFID tags varies 
(Glover and Batt 2006) from dozens of centimeters to tens or even hundreds of meters.

The positioning techniques considered in this article are aimed at the real-time locali-
zation of a person (i.e., the user). Without loss of generality, we consider that the user 
has an RFID reader and that he has to locate himself based solely on it and on the coor-
dinates of RFID tags nearby (this RFID reader is not used to measure distances), where 
each tag is attached to a point with a known location (this is known as a handset-based 
approach). It should be clear that there are not time, angles, received signal strength 
indications (RSSI) or any other quantities being measured. This way, we consider the 
simplest possible techniques to locate the user in real time and to draw our conclusions.

Results
Defining the concept

The accuracy of a measurement is defined as: “closeness of the agreement between the 
result of a measurement and a true value of the measurand” (BIPM 2008). In general, 
we don’t know the true value of a quantity (i.e., the measurand), and, as in the particular 
case of an RFID-based positioning approach, we have infinite possibilities for it. Moreo-
ver, despite being often expressed by a multiple of the unit of measurement concerned, 
the accuracy is a characteristic of the measurement procedure that is not quantifiable 
(Kacker et al. 2007), for it is a qualitative concept (BIPM 2008). In such instances, the 
reference should not be done to its accuracy. Instead, it should be done to its uncertainty 
[usually, the standard uncertainty, which is expressed as the standard deviation of the 
measurement concerned (BIPM 2008)]. Following the recommendations of the Comité 
International des Poids et Mesures (CIPM), we will use the uncertainty of a measure-
ment to numerically represent its quality (BIPM 2008).

To avoid the limitations of an accuracy and to predict the quality of an indirect 
measurement from the uncertainty of its input data alone, we define the uncertainty 
of a measurement as its maximum possible error (maper, /maepər/). If a quantity q is 
directly measured as q0, then the uncertainty of this measurement in terms of the maper 
is denoted by δ, where δ = maxq∈S |q − q0|, S being the set of all possible values for q. 
For indirect measurements, this is equivalent to the maximum input data error propaga-
tion possible. In fact, the maper in the indirect measurement of a quantity (measurand) 
can be determined if the maper in the measurement of each of its input quantities are 
known.

Given a quantity (described by a set of one or more output quantities) 
Q = (Q1, Q2, . . . , Qm) that is calculated as a function of the input quantities 
p1, p2, . . . , pn, let us assume that each of these input quantities are respectively meas-
ured as p10, p20, . . . , pn0. Denoting the maper in the measurement of each of these input 
quantities by δ1, δ2, . . . , δn, respectively—i.e., δi = maxpi∈Si |pi − pi0|, 1 ≤ i ≤ n;
�(Q(p1, p2, . . . , pn)) denotes the maper in the measurement of Q and it is given by 

the following equation (m, n ≥ 1):

(1)
�(Q(p1, p2, . . . , pn)) = max {�Q(p1, p2, . . . , pn)−Q(p10, p20, . . . , pn0)�},

|p1 − p10| ≤ δ1, |p2 − p20| ≤ δ2, . . . , |pn − pn0| ≤ δn
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where ‖Y‖ denotes the length of a vector Y = (y1, . . . , yn), where n ≥ 1, given by the square 
root of an inner product and the difference between a vector X and a vector Y is denoted 
by the vector XY. In symbols, XY = Y − X and �Y� =

√
Y.Y =

√

y21 + y22 + · · · + y2n.
This way, Eq.  (1) can be a tool to evaluate the quality of the measurement of any 

quantity, provided that the maper of direct measurements can be determined. 
In particular, the usefulness of this maper approach will be shown in this article 
through its applications to the problem of locating persons using wireless position-
ing techniques. We will deduce formulae  for the maper when the coordinates of a 
person are measured with RFID devices by solving Eq. (1) analytically and determin-
istically—other approaches to solve the optimization problem given by Eq.  (1) are 
not considered in this article as our solution will show useful in the determination of 
closed formulae for the optimal ranges for RFID devices, see "Defining and calculat-
ing optimal ranges". Since this is an indirect measurement, our formulae are a law of 
error propagation.

Defining the problem

We define the problem as follows: given a plane corridor S with L+ l0 width and infi-
nite length; given N static RFID tags, N ≥ 1, attached to points with true positions P1,  
P2, . . . ,Pn, . . . ,PN and with previously measured positions X1, X2, . . . ,Xn, . . . ,XN 
where εn is the uncertainty (i.e., the maper) corresponding to the measurement of the 
coordinates of the RFID tag attached to the point Pn, Rn is the range of the nth RFID 
tag and hn is the height of the nth RFID tag above the plane where the user is; given that 
the user carries an RFID reader, that he is within the region S, that he had detected at 
least one RFID tag, that he is between two RFID tags, that his true position at a given 
time is X and that his estimated position by the RFID-based approach at the same given 
time is X0, the problem is to calculate the maper of the user’s position estimation with 
a wireless positioning technique, where the maper, in the light of Eq.  (1), is given by 
Eq. (2); Bn = �Xn−1Xn�, 1 < n ≤ N , rn =

√

R2
n − h2n, L and l0 are geometric parameters 

involved in this problem and illustrated in Fig. 2.

(2)�(X) = max
X∈S

�X0X�

Fig. 2 Features related to the problem. In this figure, lengths and vectors are presented, in which vectors are 
bold. The region under the coverage of the RFID tags signal is shaded and comprises a union of circles, each 
centered on the true position Pn of the nth RFID tag and with radius rn, 1 ≤ n ≤ N. The greatest distance from 
the corridor’s borders to the line passing through the estimated positions of the tags Xn−1Xn is denoted by L 
and the smallest distance by l0. The white circle centered in the estimated position Xn of the nth tag shows the 
uncertainty of the tag’s position and has a radius εn, 1 ≤ n ≤ N.
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The maper varies according to various factors, including the RFID tags positions uncer-
tainties and the RFID tags positions theirselves. Since the RFID tags are likely to be close 
to one another, the effect of the uncertainties in the RFID tags positions over the com-
puted user’s position cannot be neglected. At the same time, the preliminary calculus of 
each RFID tag position is very time-consuming and, depending on the quality standards 
to be met, may increase costs as their number is likely to be very large. Thus, we consider 
the RFID tags positions uncertainties into our model to determine the quality that will 
be required in the measurement of each RFID tag position, in order to meet a quality 
standard established beforehand.

The solution we will present in the next sections considers the following additional 
assumptions: the RFID tags have a constant and therefore spherical range Rn (this spher-
ical range model will be useful to determine the maper when range variations are also 
taken into account); min1≤n≤N

{

rn =
√

R2
n − h2n

}

 is assumed to be greater than L+ ε,  
where ε = max1≤n≤N {εn}. This way, the RFID tags signal covers the whole width of 
the plane corridor S (otherwise, a person walking close enough to one of the corridor’s 
borders would cross the closest tag without detecting it). Without loss of generality: we 
assume Xn−1Xn, 1 < n ≤ N , is parallel to the axis of the corridor; we assume the RFID 
tags are continuously transmitting their signals (i.e., their latencies are small enough 
to be neglected); we substitute each εn, 1 ≤ n ≤ N , for ε = max1≤n≤N {εn}; we assume 
ε < min1≤n≤N

{

Bn
2

}

 to preserve the RFID tags topology over S and instead of consider-
ing each Bn, 1 ≤ n ≤ N , each hn, 1 ≤ n ≤ N , and each Rn, 1 ≤ n ≤ N , in particular, we 
substitute each Bn for B = max1≤n≤N {Bn}, each hn for h = max1≤n≤N

{

hn
}

 and we con-
sider that the RFID tags have the same range R, i.e., Rn = R, ∀ n, 1 ≤ n ≤ N .

Exactly modeling the error

To construct the error model we will first compute the maper when Cell-Id (Cid) technique 
is used to locate the user—this technique is also referred to as proximity sensing when RFID 
devices are considered (Kupper 2005). Cid is the simplest (Bensky 2008; Groves 2008) wire-
less positioning technique, where the coordinates of the user are the ones of the last (hereaf-
ter also referred to as the nth, n ≥ 1) RFID tag read by the user’s RFID reader.

The current error model for Cid technique is to approximate its uncertainty by the 
size of the cell, or, equivalently, the tag’s maximum range (Kupper 2005; Fu and Retscher 
2009; Retscher and Fu 2009). This model is very limited as it does not take into account 
the uncertainties of the tags positions measurements. Furthermore, the behavior of the 
uncertainty with respect to the tags range can be quite different, even if, as an extreme 
case, ε—the uncertainty of the measurement of the tags positions—is neglected. It can 
be directly verified from the formulae presented in this section that the distance between 
consecutive tags also play a role on Cid’s maper.

In the light of the maper concept, the uncertainty of Cid technique is illustrated in 
Fig. 3 and given by:

where X̄1 and X̄2 are the least upper bounds of X1 = �Xn−1X� and X2 = �XnX�, 
respectively.

(3)�Cid = max
X∈S

{

X̄1; X̄2

}
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To achieve an analytic formula for �Cid we used a number of inequalities. Taking the tri-
angle inequality as starting point, X̄1 and X̄2 were both calculated, according to a number 
of mathematical computations detailed in “Appendix 2” and illustrated in Fig. 4, as (the 
triangle inequality is applied to the triangle defined by the points Xn, Pn and X, Fig. 4):

This already solves the problem. But, to obtain direct formulae  for �Cid and to derive 
an optimal range from them, we performed further mathematical work and the direct 
expression for the maper of Cid technique was reached, which is given by Eqs. (5, 6). The 
deduction of these equations is also in “Appendix 2”.

(4)







X̄1 =
�

X̄1a, if L+ ε ≤ r ≤ rB

X̄1b, if r ≥ rB

X̄2 = r + ε, r ≥ L+ ε

where:



































X̄1a =
�

B2 + (r − ε)2 − 2B
�

(r − ε)2 − L2

X̄1b =
�

B2 + (r + ε)2 − 2B
�

(r + ε)2 − L2

rB =
�

B2+L2−ε2

B2−ε2
B

(5)ε <

√
B2 + L2 − L

2
⇒ �Cid(R) =















X̄1a, if L+ ε ≤ r ≤
�

(B/2)2+L2−ε2

(B/2)2−ε2
B

2

X̄2, if r ≥
�

(B/2)2+L2−ε2

(B/2)2−ε2
B

2

Fig. 3 Error modeling of cell-id and mean cell-id techniques. This figure illustrates a hypothetical instant 
when the maper is observed. Lengths are typed with normal font and vectors with bold. The region under the 
coverage of the nth RFID tag’s signal, 1 ≤ n ≤ N, is shaded and comprises a circle centered on its true position 
Pn and radius r. The greatest distance from the corridor’s borders to the line passing through the estimated 
positions of the tags Xn−1Xn is denoted by L and the smallest distance by l0. The white circle centered in the 
estimated position Xn of the nth tag, 1 ≤ n ≤ N, shows the uncertainty of the tag’s position and has a radius 
ε for all tags. Depending on the technique employed, the maper at the very situation illustrated might be X1
, X2 or X3.

Fig. 4 Derivation of the maper formulae for cell-id technique. Angles are represented by greek letters, vectors 
by bold latin letters and lengths by both latin and greek letters. The angles are oriented towards an axis parallel 
to the vector Xn−1Xn in a counterclockwise direction. The maper occurs at the boundary of the region delim-
ited by the tag’s signal, here a circle centered at Pn and with radius r.
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where X̄1a and X̄2 are given by Eq. (4), r =
√
R2 − h2.

We note that though the uncertainties of the tags coordinates are usually not taken 
into account this is not the case for robotics. There (Meiller and Fabiani 1999), the 
uncertainty of the position is denoted by u and it also corresponds to the maper. How-
ever, the step forward of defining an expression of uncertainty for the maper as done 
here is not done there.

Modifying cell‑id technique

We propose a modified cell-id technique (MCid, which stands for mean cell-id) as fol-
lows: if the RFID reader is detecting two or more RFID tags at a given time, the user’s 
position is the arithmetic mean of the positions of the last two (i.e., the n− 1th and the 
nth, n ≥ 2) RFID tags read; the user’s position is the one of the last (i.e., the nth) RFID 
tag read otherwise. This wireless positioning technique is as simple to implement as cell-
id, but, as it will be shown in this article, outperforms it.

The maper for MCid is ruled by the number of tags detected at a given time. This 
depends on the interval of range considered. If r <

√

(B/2)2 + L2 − ε then at most one 
tag is detected at all times, and hence, the maper for MCid is identical to the maper for 
Cid in this case. If 

√

(B/2)2 + L2 − ε ≤ r < min
{

√

(B/2)2 + L2 + ε;
√
B2 + L2 − ε

}

 
then at most two tags may be detected at a given time. Furthermore, the reader will 
not be always detecting two tags. Thus, the maper is equal to maxX∈S

{

X̄1; X̄2; X̄3

}

 
in this case, where X̄1, X̄2 and X̄3 are the least upper bounds of X1 = �Xn−1X�,  
X2 = �XnX� and X3 = �X − (Xn−1 + Xn)/2�, respectively, each illustrated by 
Fig. 3. But, in Eq.  (65), "Appendix 3", we show that X̄2 is greater than X̄3 in this inter-
val of ranges, thus implying a maper equal to maxX∈S

{

X̄1; X̄2

}

 in this same interval of 
ranges. If 

√

(B/2)2 + L2 + ε ≤ r <
√
B2 + L2 − ε then one tag is detected at any given 

time and it is still not possible for the reader to be always detecting two tags. Two tags 
are detected only at some of the points between the last two tags detected and not 
at each one of them. This implies a maper equal to maxX∈S

{

X̄1; X̄3

}

 in this case. If 
r ≥

√
B2 + L2 − ε then at least one tag is detected at any given time and it may occur, 

depending on the geometry of the tags, that two tags are always detected, which implies 
a maper equal to maxX∈S

{

X̄1; X̄3; X̄4

}

 for these ranges. X̄4 is the least upper bound of 
X4, where X4 = �X − (Xn−2 + Xn−1)/2�. But, as we show in Eq.  (85), "Appendix 3", 
maxX∈S

{

X̄1; X̄3; X̄4

}

= maxX∈S
{

X̄3; X̄4

}

. Therefore, the uncertainty in the light of the 
maper concept for MCid technique is illustrated in Fig. 3 and given by:

where X̄1 and X̄2 are given by Eq. (4), X̄3 and X̄4 are given by Eq. (8). The details of X̄3 and 
X̄4 computation are in “Appendix 3”, Fig. 5.

(6)
B

2
> ε ≥

√
B2 + L2 − L

2
⇒ �Cid(R) = X̄2, if r ≥ L+ ε

(7)�MCid(R) =











max
�

X̄1; X̄2

�

, if L+ ε ≤ r < min

�√
B2 + L2 − ε;

�

(B/2)2 + L2 + ε

�

max
�

X̄1; X̄3

�

, if
�

(B/2)2 + L2 + ε ≤ r <
√
B2 + L2 − ε

max
�

X̄3; X̄4

�

, if r ≥
√
B2 + L2 − ε
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The direct formulae  to the problem are given by Eqs.  (9–11). The deductions are also 
detailed in “Appendix 3”.

(8)











X̄3 =
�

(B/2)2 + (r + ε)2 − B
�

(r + ε)2 − L2, if r ≥
�

(B/2)2 + L2 − ε

X̄4 =
�

X̄4a, if L+ ε ≤ r ≤ r3B/2
X̄4b, if r ≥ r3B/2
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Fig. 5 Derivation of the maper formulae for mean cell-id technique. Angles are represented by greek letters, 
vectors by bold latin letters and lengths by both latin and greek letters. The angles are oriented towards an axis 
parallel to the vector Xn−1Xn in a counterclockwise direction. The maper occurs at the boundary of the region 
delimited by the tag’s signal, here a circle centered at Pn and with radius r—note that now this region may 
correspond to the intersection of the regions delimited by the last two tags detected, in case at least two 
tags may be simultaneously detected.
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where X̄1a and X̄2 are given by Eq. (4), X̄3 and X̄4a are given by Eq. (8), r =
√
R2 − h2. 

Defining and calculating optimal ranges

For broad is the spectrum of possible ranges for the RFID tags (Glover and Batt 2006) 
used in this location technology we propose an optimal range (orange). This way, time 
and costs could be reduced because the formulae would take the place of the trials and 
faster, better assessed choices could be made when the tags are about to be purchased or 
even manufactured as its spectrum of possible ranges is dramatically narrowed.

Since we have deduced a set of analytic and direct formulae  for the maper of each 
presented technique, the orange is defined as the one for which the maper is minimal. By 
doing so, the quality of an RFID-based location approach is expected to be maximized.

First, if the set of possible ranges is finite, such as a finite set of pre-defined values 
established by manufacturers or offered by sellers, then the orange is obtained by substi-
tuting each of the range candidates in the maper formulae and checking for which one 
the maper is the least. Otherwise, if there are infinite possibilities, then the orange can 
be obtained by studying the maper as a function of the range. After some mathematical 
work, outlined in “Appendix 4”, the oranges of both Cid and MCid techniques consider-
ing the entire spectrum of ranges, RCid and RMCid respectively, are obtained. For Cid 
technique, the orange follows:

where rCid is given by Eqs. (14) and (15).

The orange of MCid technique is given by:

where rMCid is given by Eqs. (17–19).
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For reference, we are providing an ODS spreadsheet with the maper and orange for-
mulae as a shared link available at mendeley.com/profiles/eduardo-del-rio, see Del Rio 
(2011). There, their outputs can be studied for any desired instance as its cells may be 
freely edited by everyone. We included both the direct and indirect maper formulae of 
each technique in it.

Addressing range variations

For any solid there are always two solids that interact with it in the following way: the 
one contains it and the other is contained by it. Further, these two solids can always be 
taken for spheres. This obvious mathematical fact is laid as the foundation to model the 
error when varying ranges, as opposed to the constant ones assumed thus far, are con-
sidered (it is implicit that the solids dealt with in this paper have no holes).
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Fig. 6 Varying ranges and the two-spheres approximation. Aerial view of the region covered by a hypotheti-
cal tag (grayed region) located at the figure’s center (black dot). This region’s section is denoted by s and has 
an average radius R0. The inner and the outer circles of the two-spheres approximation are denoted by i and 
o respectively. Their radii Rmin and Rmax correspond to the minimum and maximum distance from the tag’s 
range surface to the tag itself.
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To address the computation of the maper when a generic surface, rather than spheri-
cal, is considered, we will approximate the solid corresponding to the region covered by 
the RFID tags signal based on two concentric spheres of revolution, the one to contain 
it and the other to be contained by it, Fig.  6. These spheres are generated by rotating 
two circles among an axis containing any of their own, respective, diameters. Regard-
ing these circles, they are concentric; both centered at the true position of a tag. The 
first circle (namely the inner circle) contains the plane region defined by the intersection 
between the generic range surface and the plane corridor S where the user is. Among 
all these, it corresponds to the one with the least radius. The second circle (namely the 
outer circle) is inside the plane region defined by the intersection between the generic 
range surface and the plane corridor S where the user is. Among all these, it corresponds 
to the one with the greatest radius.

Two possibilities are presented to compute the maper when varying ranges are taken 
into account in the light of the two-spheres approximation just described. They set an 
upper bound for the maper based on the maper formulae  for spherical range surfaces 
heretofore presented. The first approach is to bound the maper by �̃(R0,K ), according to 
the following equation:

where R0 is the nominal range, K is the maper of the range’s measurement—or equiv-
alently, the maximum possible magnitude of range variations—and �(R) is the maper 
of the technique in consideration in the absence of range variations. As a condition, 
R0 − K ≥

√

(L+ ε)2 + h2 must be satisfied; otherwise, �̃(R0,K ) will not be defined. 
If the tags have a nominal range—e.g. as advertised by their seller on the time of their 
purchase or as a choice to be done prior to their production or, still, an average range—
but, in practice, it is observed that the signal is transmitted over different distances then 
K can be equaled to the maximum variation in magnitude from the nominal range. In 
other words, the tags have a range R0 which may vary from R0 − K  to R0 + K , the radii 
of the inner and the outer circle respectively. Moreover, the maper �(R0,K ) relates to its 
approximation �̃(R0,K ) as follows:

The maper can also be approximated as �̃(Rmin,Rmax), which is given by the following 
equation:

where Rmax and Rmin are the maximum and the minimum range observed in practice, 
respectively. As a condition, Rmin must satisfy Rmin ≥

√

(L+ ε)2 + h2. For the numer-
ical tests performed in the current article, only Eq.  (20) was considered. It should be 
noted that Eqs. (20) and (22) are identical since Eq. (22) is derived from Eq. (20) by let-
ting R0 = (Rmax + Rmin)/2 and K = (Rmax − Rmin)/2 in it. Moreover, the actual maper 
�(Rmin,Rmax) is related to its approximation �̃(Rmin,Rmax) as follows:

(20)�̃(R0,K ) = max
|R−R0|≤K

{�(R)}, R0 ≥ K +
√

(L+ ε)2 + h2

(21)�̃(R0,K ) ≥ �(R0,K ), ∀K ≥ 0,R0 ≥ K +
√

(L+ ε)2 + h2

(22)�̃(Rmin,Rmax) = max
Rmin≤R≤Rmax

{�(R)}, Rmin ≥
√

(L+ ε)2 + h2
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In like manner, the orange can be redefined if Eq. (20) or (22) is considered to estimate 
the maper. For example, if Eq. (20) is considered, the orange would be the R0 for which: 
�̃(R0,K ) is defined; �̃(R0,K ) is minimized. In addition, instead of an analytic computa-
tion of the orange formula for this situation, its value may be computed numerically.

Thus, Eqs. (20) and (22) also addressed issues like variation in tag and reader antenna 
sensitivity with direction; reflection of signals off floor, ceilings and walls that will pro-
duce both constructive and destructive interference; variation in read sensitivity between 
different models; variation in tag performance with aging; variation in range due to body 
shadowing; since each one of these issues will produce, in the light of Cid and MCid 
techniques, the same effect: variations on the RFID tags ranges. In other words, varia-
tions from the spherical range surface model to a generic range surface model.

Locating emergency calls in real‑time

Safety of life is a public concern all over the world. In particular, the US is concerned 
about the localization of emergency phone calls in real time, in the sense that they are 
establishing quality standards (Bensky 2008) for the localization of mobile radio services. 
A new emergency calls service, named Enhanced 911 service (E911), in its phase II, obli-
gated every handset based technologies to provide by September 11, 2012 the location of 
an emergency phone call with the uncertainties (FCC 2010): 50 m for 67% of the phone 
calls; 150 m for 95% of the phone calls. GPS is likely to be out of service indoors. In 
regard to urban regions, it may have an uncertainty worst than E911 standards (Do et al. 
2007; Prost 2008) as well, depending on the particular urban environment where the 
localization takes place.

State‑of‑the‑art of location technologies

The effort to meet FCC requirements and also to provide other Location Based Services 
(LBS) gave rise to a variety of urban and indoor positioning solutions. Some alterna-
tives to GPS are: the cellular towers identification, which is the simplest and, at the same 
time, the most degraded approach, providing (Bensky 2008; Groves 2008) an uncertainty 
within kilometers; the cellular trilateration, which provides (Bensky 2008; Groves 2008) 
an uncertainty within hundreds of meters. Examples of recent and more accurate urban 
and indoor positioning solutions are based on the integration of GPS with other location 
technology like cellular (De Lorenzo 2009) and TV (Do et al. 2007) trilateration. Among 
the approaches presented, the ones that meet E911 standards are based on GPS. How-
ever, GPS technology is usually not available indoors and it may well perform poorly in 
urban regions.

Since RFID tags are replacing bar codes (Peterson 2001; Glover and Batt 2006) as its 
prices fall and taking into consideration technical difficulties and cost to deploy net-
work-based solutions (Catuto et  al. 2010), we seek a handset-based solution to urban 
and indoor positioning based solely on RFID devices. In regard to it, pedestrians had 
been located over small urban areas of Vienna, Austria, in real time using only Cid tech-
nique (Fu and Retscher 2009). The obtained uncertainty for the singular urban environ-
ment considered was about 20 m (Fu and Retscher 2009), which satisfies FCC standards 

(23)�̃(Rmin,Rmax) ≥ �(Rmin,Rmax), ∀Rmin ≥
√

(L+ ε)2 + h2
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for their E911. Inside indoor areas, if RSSI data is used uncertainties within few meters 
may be achieved (Fu and Retscher 2009; Retscher and Fu 2009).

Limitations of RFID‑handset‑based approaches

To date, the way in which the tags are to be distributed over urban and indoor regions 
was not yet taken into account or discussed. Moreover, despite good uncertainties 
already achieved (Fu and Retscher 2009; Retscher and Fu 2009), the distribution of the 
tags becomes an issue when it comes to the implementation of this approach over larger 
and more complicated environments that will demand much more tags, such as the 
entire urban regions of a major city, including the indoor areas within them. After all, as 
active tags were used (Fu and Retscher 2009; Retscher and Fu 2009), which are currently 
among the most expensive and require batteries to work, some issues arise (noteworthy, 
currently, passive tags cannot be used for positioning especially outdoors due to their 
limited range which is the reason why other authors and we have focused on active tags): 
the need to install each of the tags in the urban and indoor environments prior to the 
implementation of the location system; the need for periodic replacement of the tags 
batteries, as they must be always transmitting their signals (here, this does not mean that 
their latency is zero, but rather, that they must not be turned off), since the goal is to 
locate emergency calls in real time (this “continuous” transmission decreases the life of 
the tags batteries); the need for periodic replacement of the tags due to aging; the need 
to survey each of the tags prior to the implementation of the location system (i.e., calcu-
late the coordinates of each one of them). Due to the large number of tags required for 
implementation, addressing these issues is time-consuming and increases costs.

Since there are countless ways to convey a distribution of tags, a fundamental question 
comes to light: how to smartly distribute the tags over urban and indoor environments 
in order to address as many of these issues employing as few tags as possible and still 
meet E911 quality standards?

A tags‑in‑lamps approach

To develop cheaper active RFID tags will certainly decrease the overall cost of this approach, 
but it will not answer this question as it does not address the issues afore posed. Therefore, 
we propose an approach to distribute RFID tags over urban and indoor areas as follows: in 
urban areas, RFID tags are attached to the lamps of the lamp-posts on the urban streets, or 
to the lamp-posts; in indoor areas the approach is similar, except for the fact that the RFID 
tags are now attached to the lamps of the ceiling or directly to the ceiling. Due to the greater 
density of RFID tags in the indoor approach—the lamps are closer to each other—its accu-
racy will be better than that of the urban approach. For reference, the user carries an RFID 
reader and RSSI readings are not used as input data, even if the RFID reader is able to deter-
mine them; Cid or MCid technique is used to estimate the user’s position in real-time.

Its implementation

The implementation of this approach takes place in the following steps: establishing the 
set of lamps to be used (e.g. all the lamps or half of the lamps); surveying the positions 
of each lamp belonging to this set (e.g. using total stations to compute their coordinates 
through the measurement of distances and angles as for outdoors and using the buildings 
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blueprints as for indoors); attaching an RFID tag to each lamp (or, alternatively, the lamp-
posts post and indoors ceilings) of this set. Now, if the tags are not able to send their own 
coordinates through their signals but their unique identities alone, then two additional 
steps are required: to create a database that associates a set of coordinates (e.g. latitude, 
longitude and height on a reference frame; ITRF2008 if one wishes) to the unique iden-
tity of each tag; embed this database into the positioning software of the user’s location 
system, which is based on the standard Cid or on the MCid technique proposed here and 
comprises the reader and a processing unit. For instance, the processing unit can be a lap-
top to which the RFID reader is connected through a serial/RS232 port or a USB port—as 
for this article, without loss of generality, the user carries the laptop with an RFID reader 
connected to it, c.f. our own field experiments (Del Rio 2009, 2010).

This way, while the user walks over the streets and indoors his position is simply cal-
culated from the coordinates of the tags (the tags will be transmitting their signals all 
the time, in which their unique identities are embedded) in his vicinity. His position 
is estimated by equaling his own coordinates to the ones of the last tag detected or to 
the arithmetic mean of the ones of the last two tags detected (after reading the tags 
unique identities, their coordinates will be retrieved from the database constructed and 
embedded into the processing unit beforehand), regardless of the number of tags being 
detected at this very time—as far as the user’s RFID reader had detected at least one tag 
over the course of time. In addition, a periodic replacement of the tags batteries and, 
probably, of the tags their selves is required, in principle, to cope with the limited life 
span of the batteries and with the variation in the tags performance as they grow old.

The formulae

If there are two or more possible ranges for the RFID tags to be employed, then the 
maper and the orange formulae  presented in the preceding sections can be used to 
decide which one should be adopted for this positioning system. Our maper formu-
lae are also a tool to define the set of lamps to which the tags are to be attached—this 
will be demonstrated by a numerical experiment described later on in this subsection—
and to address the tags surveying. In these formulae, the quality of a surveying tech-
nique is represented by ε. From the good or bad quality of a technique follows a lesser 
or a greater ε, respectively. This way, the maper of the user’s position estimation can be 
known prior to surveying the tags. Thus, the best surveying technique might be chosen 
based on cost-benefits criteria prior to the surveying itself. After all, it is not manda-
tory to survey the positions of all tags with the same quality; e.g. tags within less densely 
populated urban regions could be surveyed with the worst, and likely, cheapest possible 
technique only for basic applications such as E911.

Some grounds

Some grounds for choosing the lamps of the lamp-posts and ceilings as the place for the 
RFID tags are stated over this paragraph. The lamps are regularly distributed over the 
urban streets and indoors and the distance between consecutive lamp-posts may have an 
official value. For example, in the Brazilian state of São Paulo this distance is established 
by Eletropaulo (Santos 2008)—the energy supplier of São Paulo—as 35 m; the level dif-
ference between the RFID tags and the RFID reader of the user decreases the effects of 
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the NLOS. In fact, Eletropaulo (Santos 2008) states for the lamp-posts heights a value 
between 10 and 12 m and as for indoors, their ceilings are at a higher level than their 
dwellers; the energy supply of the lamps could also be used by the RFID tags as their 
main power source, allowing greater ranges, lesser latencies or even a continuous trans-
mission and definitely dismissing the use of batteries; the tag’s installation and periodic 
replacement could be performed in conjunction with the periodic replacement of the 
lamps; the prices of RFID devices are diminishing and a mass production to implement 
our proposed approach could be an adding factor to decrease their cost. Furthermore, 
compared to GPS, it does not require advanced technologies and it has a simpler imple-
mentation, as GPS is based (Bensky 2008; Groves 2008) on a particular satellite constel-
lation and on precise time estimations using atomic clocks. However, our approach is 
not global like GPS but local, as it must be set on a previously prepared environment.

The numerical experiment

To study the performance of our approach, we applied the maper concept to two sce-
narios, both based in São Paulo: in the first scenario, every lamp-post is RFID tagged; in 
the second scenario, the lamp-posts are alternately tagged with RFID tags, there are not 
two consecutive lamp-posts with RFID tags attached and there are not three consecutive 
lamp-posts without RFID tags attached. We assume the distance between consecutive 
lamp-posts is 35 m as stated by Santos (2008), the urban streets width (including both of 
its sidewalks) is 25 m, the lamp-posts heights are 12 m and the ranges of the RFID tags 
used are the optimal ones. Taking into account the dynamics of the urban environment 
with its great number of vehicles, people, buildings and in some cases even trees (as well 
as other error sources highlighted in the next subsection) we consider that the range, R, 
of the RFID tags is not constant. Instead, we assume that it may vary by 20 m in magni-
tude. In other words, the ranges are within the following interval: R− 20 ≤ R ≤ R+ 20

—noteworthy, the amplitude of range variations is actually 40 m. Under these hypoth-
eses, the maper of Cid and MCid techniques was calculated with our formulae. For 
instances in which range variations were considered, the corresponding maper was com-
puted by Eq. (20), introduced in the preceding section. Now considering that the range 
is always greater than L+ ε, the maper is computed considering an amplitude of range 
variations equals 40 m, i.e. Rmax − Rmin = 40 m. This way, the corresponding maper can 
be computed by Eq. (22).

The results are displayed on Tables  1, 2 and 3, respectively. It should be noted that 
even with 40 m variations in the magnitude of the ranges of the RFID tags used, E911 
standards were met with MCid, since a maper lesser than 50 m means that the uncer-
tainty is lesser than 50 m at 100% of the time. For most of the situations considered in 
this numerical experiment, MCid technique provided better accuracies than Cid. More-
over, if E911 standards are to be met in the light of range varations, the formulae tells the 
quality required in the knowledge of tags’s coordinates. For São Paulo, it should not be 
worse than 2 m.

Discussion
In this article we developed an analytic and deterministic error model for the most basic 
wireless positioning techniques. In the End, the maper mapped the error and produced 
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oranges. Moreover, the maper can be regarded as a parameter to evaluate the quality of 
measurements in general, since it was generally defined prior to its application to loca-
tion techniques. This way, the quality metric and the law of error propagation comprised 
by the maper concept might be used in distinct scientific and technological instances as 
well. For example, although we consider an RFID-based location technology, our for-
mulae can also be applied to a cellular-based technology. In this case, the RFID tags are 
replaced by cellular tower antennas, the RFID reader is replaced by a cell-phone and the 
range of the RFID tags would now be the one of the cellular tower antennas. However, 

Table 3 Maper and oranges for Cid and MCid technique considering a maximum range

Maper of cell‑id and mean cell‑id technique for B = 35 m and B = 70 m, where B is the distance between consecutive RFID 
tags and the amplitude of range variations is Rmax − Rmin = 40 m, in the light of Eq. (22). The results are in meters and 
h = 12 m, L = 20 m, l0 = 5 m. r ≥ L+ ε, with r =

√
R2 − h2 , is always satisfied because it corresponds to rmin.

Values that comply with FCC standards (lesser than 50 m) are highlighted in italics.

ε B Rmax �̃Cid(Rmin, Rmax ) �̃MCid(Rmin, Rmax )

2 35 65.1 64.0 47.7

5 35 67.7 70.0 53.5

10 35 72.3 80.0 63.2

2 70 65.1 72.8 72.8

5 70 67.7 72.8 72.8

10 70 72.3 80.0 72.8

Table 2 Maper and oranges for MCid technique

Maper and oranges of mean cell‑id technique for B = 35 m and B = 70 m, where B is the distance between consecutive 
RFID tags and maximum variations of K = 10, 20 m are admitted on the tags ranges magnitude in the light of Eq. (20). 
The results are in meters and h = 12 m, L = 20 m, l0 = 5 m. Fields marked with a # are those where there is at least a range 
r =

√
R2 − h2  for which r ≥ L+ ε is not satisfied.

Values that comply with FCC standards (lesser than 50 m) are highlighted in italics.

ε B RMCid �MCid(RMCid) �̃MCid(RMCid , 10) �̃MCid(RMCid , 20)

2 35 35.1 23.0 38.6 #

5 35 35.3 25.0 # #

10 35 42.5 35.3 52.8 #

2 70 57.5 28.0 36.8 47.6

5 70 57.5 30.4 39.7 51.0

10 70 57.6 34.6 60.3 60.3

Table 1 Maper and oranges for Cid technique

 Maper and Oranges of Cell‑Id Technique for B = 35 m and B = 70 m, where B is the distance between consecutive RFID tags 
and maximum variations of K = 10, 20 m are admitted on the tags ranges magnitude in the light of Eq. (1). The results are in 
meters and h = 12 m, L = 20 m, l0 = 5 m. Fields marked with a # are those where there is at least a range r =

√
R2 − h2  for 

which r ≥ L+ ε is not satisfied.

ε B RCid �Cid(RCid) �̃Cid(RCid , 10) �̃Cid(RCid , 20)

2 35 29.2 28.7 # #

5 35 29.8 32.2 # #

10 35 32.3 40.0 # #

2 70 42.1 42.3 54.6 #

5 70 42.2 45.4 58.8 #

10 70 42.5 50.7 70.2 #
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the topology of cellular antennas is different from the linear distribution of RFID tags 
over streets, subways and buildings corridors. Thus, the formulae of this article provide 
an upper bound for the possible errors of positioning techniques with cellular signals but 
not the maper (i.e., the least upper bound). To enhance the model for a cell-phone based 
technology and to evaluate the corresponding maper, the problem and the MCid tech-
nique should be restated for a triangular geometry of cellular antennas. Another point 
regarding cellular-based location technologies is that the uncertainty of the coordi-
nates of the cellular antennas is very small compared to the distance between neighbor-
ing antennas and to the distance between the antennas and the cell-phone of the user. 
Hence, the error model for a cellular-based technology can be constructed assuming 
ε = 0. Moreover, the formulae we have deduced ensemble an orange, which was defined 
and deduced here.

Field experiments are not presented but rather, only numerical experiments. Although, 
the positioning in urban and indoor areas based solely on RFID technology is indeed 
feasible (Fu and Retscher 2009). In fact, the positioning in urban areas can be performed 
using Cid and even better results are achieved in indoor areas by considering RSSI data 
(Fu and Retscher 2009; Retscher and Fu 2009). Nevertheless, the fundamental issue of 
how to distribute the tags over the large and complicated urban and indoor environ-
ments remained open. We brought it to light and we proposed a way to address it in this 
article.

Outcomes of mean cell‑id technique

The drawback of our solution to the problem is the variation on the RFID tags range due 
to urban and indoor composition and dynamics and other error sources, since we have 
assumed a spherical and therefore constant range. Nevertheless, our model remains con-
sistent as variable ranges can be inserted into it and the corresponding maper computed 
by either Eqs. (20) or (22). The procedure could be that of the previous section, in which 
E911 standards were shown to be met with the proposed MCid technique, even when 
the range varied from the optimal range by 20 m in magnitude in the light of Eq. (20), 
Table 2. The MCid technique provided better uncertainties than Cid and this improve-
ment was enhanced when range variations took place.

Surprisingly, in the light of range variations from the optimal, the best results were 
achieved in the second implementation scenario, which uses only half of the tags con-
sidered in the first scenario and is therefore, the smartest distribution so far, see Table 2. 
In the second scenario, time, labor and costs related to purchase, installation, surveying 
and maintenance of the tags are cut roughly by half and, still, E911 standards are met 
even if the tags range vary by 20 m in magnitude from the optimal one. What is more, 
the implementation of our tags-in-lamps approach under this circumstance was only 
feasible through the MCid technique proposed. We see that even with range variations 
the use of the optimal range significantly improves the quality of the location system, 
compare Tables 2 and 3. Without optimal ranges but under the same amplitude of range 
variations E911 standards could only be met in the first implementation scenario which 
requires the double of tags, see Table 3 (and again E911 are met only through the MCid 
technique proposed here).
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Low‑cost improvements of the solution

Additionally, RSSI data could be used to deal with range variations. Usually, RFID 
readers are able not only to detect the signal of nearby tags, but also to determine the 
strength of the tag’s signal that is received at the time of the reading. This quantity var-
ies according to the distance between the source and the receiver of the signal (Bensky 
2008) as it generally decreases when the source–receiver distance is increased. This sig-
nal’s power information is usually available as RSSI data (Fu and Retscher 2009; Retscher 
and Fu 2009). Therefore, the variations of range observed in practice could be also 
addressed by the incorporation of RSSI data into Cid and MCid techniques. The detec-
tion of a tag would be redefined in the light of the RSSI data. For instance, the tags iden-
tified by the reader at a certain time and with a RSSI corresponding to a signal’s power 
below a specified threshold would not be taken for detected tags but neglected. This 
way, tags detected too far away from the nominal or average range would not interfere 
with the quality of the location and K would be diminished, thus, decreasing the uncer-
tainty achieved [Eqs. (20) and (22) remain valid for this technique as this change in the 
algorithms translates solely as a decrease in the magnitude of range variations]. Moreo-
ver, uncertainties within few meters had been achieved by employing this approach in 
indoor areas (Retscher and Fu 2009).

Specific applications might require a much higher quality than the one standardized 
by FCC in their E911. In the light of our RFID approach, improvements are feasible by 
integrating an inertial navigation system (INS) to it. An INS is based on dead-reckoning 
(Groves 2008), a location technique that depends on recurrent updates of the location 
of the user. Thus, an INS would compute an accurate location using the RFID tags posi-
tions to make the required periodic updates. In indoor areas, uncertainties about 1.00 m 
may be achieved through the integration of RFID with a low-cost INS (Retscher and Fu 
2009). This way, specific users seeking for an improved solution may, independently and 
on their own, integrate an INS to their private RFID readers.

Practical remarks

The establishment of the maper as a benchmark was useful since it led to a singular 
expression of uncertainty and to oranges. However, the maper for Cid and MCid tech-
niques is unlikely to be perfectly determined in practice because it is a function of ε and 
it might also be a function of K, parameters that are both defined in terms of the maper. 
In an implementation scenario, an alternative is to consider the standard uncertainty—
i.e., standard deviations—of the measurements associated to these parameters by choos-
ing a coverage factor (BIPM 2008). Thus, ε and K can be both equaled to the double of 
the standard deviation (SD) corresponding to the measurement of the tags positions and 
to the measurement of their ranges, respectively. This way, if a Gaussian distribution is 
assumed then the probability that these quantities are within the interval of confidence 
delimited by the sd increased twofold will be about 95%, which is still close to the 100% 
achieved with the maper. Otherwise, ε and K could be both equaled to 2.5 or even 3 
times the SD of each of the corresponding measurements or distinct probability distri-
butions could be tried in order to choose a reasonable coverage factor. Technically, this 
would not be the maper, but an uncertainty corresponding to a highly likely maximum 
error.
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Furthermore, Eqs. (20) and (22) are an upper bound for the maper, but not the maper 
(i.e., the least upper bound) itself. Notwithstanding, from the mathematics of its con-
struction and the results achieved in the numerical experiments, the two-spheres 
approximation given by Eqs.  (20) and (22) is sound inasmuch as the 100% probability 
in attaining the interval of confidence provided is preserved and the maper is actually 
lesser than this approximation, Eqs. (21) and (23).

In the experiments performed it was assumed that the ranges may vary by at most 
20 m in magnitude—i.e., K ≤ 20 m. However, though the true amplitude of such varia-
tions is unknown—which means that they can be either much less or much more than 
that—Eqs. (20) and (22) span any theoretically possible value for these range variations. 
In other words, though we lack empirical evidence to state the value of K or one of its 
upper bounds, our formulae predict de facto the maper and the orange (regardless of K’s 
magnitude).

Towards ubiquitous positioning

The non-dependence on estimations of distances, angles, time intervals and received 
signal strength indications points up to the ease of implementation, regardless of envi-
ronment preparations. Our error model provides consistent results with reality in the 
light of input parameters and previous work on urban and indoor location based solely 
on RFID. What is more, the RFID-based approach proposed in this article is independ-
ent from other location technologies and it might locate emergency calls in real time 
using the pre-existing lamp-posts and indoor lamps structure. This greatly diminishes 
the implementation’s labor, which comprises the measurement of each RFID tag coor-
dinates and their individual installation—analogous to the installation of lamps over the 
streets and indoors. It also simplifies the tags periodic replacement, as it is likely that 
unified operations to simultaneously replace lamps and RFID tags will be feasible. And 
there is more, the energy supply of the lamps could serve as the tags main power, dis-
missing the use of batteries and allowing a continuous transmission of the signals along 
the great ranges required by this approach.

Last, in a large scale implementation scenario, every single lamp produced could 
embed an RFID tag (i.e., these lamps would transmit not only light but an RFID signal as 
well). The range of an embedded tag would be ruled by the type of the respective lamp. 
This way, their ranges could be chosen based on the orange formulation presented in this 
article and just as easily as to pick oranges. If such “radio-lamps” are feasible, ubiquitous 
positioning would draw nigh at hand.

Conclusions
The expression of uncertainty proposed here was succesfully applied to positioning with 
RFID. Its mathematical formulation as an optimization problem makes it suitable to be 
used as a law of error propagation. It can be used to measure uncertainties in the absence 
of direct measurements of the quantity concerned and when the standard uncertainty 
fails. Moreover, it provides a 100% likely confidence interval. However, it should be 
pointed out that the concept of the maper is not per se new as it is also considered in 
robotics (Meiller and Fabiani 1999).
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Here, the usefulness of the maper was shown by studying the urban and indoor 
positioning with RFID devices. The maper and orange formulae were shown here and 
constitute a means of determining parameters of a RFID location system prior to its 
implementation. For example, using the proposed formulae two implementation scenar-
ios were studied and several conclusions could be drawn: MCid technique usually pro-
vide significantly more certain results than Cid technique; under range variations E911 
standards can still be met if MCid technique is used and the tags coordinates are known 
with a specified quality; MCid is more robust than Cid under range variations. In sum-
mary: (1) key to an optimal performance is the range used and the distance between 
consecutive tags; (2) the use of MCid technique is recommended over Cid technique; (3) 
the surveying technique to be used in the determination of the tags’s coordinates should 
be chosen based on the proposed formulae; (4) the production of tags with the opti-
mal range can significantly reduce the number of tags required to reach E911 standards, 
compare Tables 2 and 3 where this number is reduced by half. This saves time and costs 
related to purchase, installation, surveying and maintenance of tags significantly. There-
fore the use of the optimal range is recommended.

In the review of literature it was shown that the positioning in urban and indoor areas 
using RFID based solely on Identification of Cells is feasible (Fu and Retscher 2009; 
Retscher and Fu 2009) and that the quality of the coordinates determined this way satis-
fies E911 standards. However, no study reported optimal ranges or smart distributions 
of tags for location systems as done here. Moreover, the error model considered in these 
studies is very poor because it does not consider several important parameters as the 
uncertainty of the tags coordinates, the distance between tags, geometric parameters 
concerning the environment and range variations. Therefore, the use of the error model 
proposed here is highly advised.

Methods
The method employed in our approach to determine error propagation was the mathe-
matical modeling. In other words, the formulae presented in the “Results” section of this 
article were each mathematically deduced. These mathematical proofs are all presented 
separately in four appendices.

For reference, we are providing an ODS spreadsheet with the maper and orange for-
mulae as a shared link at mendeley.com/profiles/eduardo-del-rio, see Del Rio 2011) and 
also as a Additional file 1. There, their outputs can be studied for any desired instance as 
its cells may be freely edited by everyone. We included both the direct and indirect 
maper formulae of each technique in it.
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Appendix 1: Definitions, assumptions and auxiliary relations for the proofs
These appendices are organized as follows: first, we demonstrate the validity of a few 
relations after defining three functions and stating some assumptions, in a total number 
of 12 equations—“Appendix 1”; second, the deduction of the maper formulae  for Cid 
and MCid techniques follows—“Appendices 2 and 3”, respectively; last, the proof of the 
orange formulae  is presented, which is an immediate consequence of the direct maper 
formulae—“Appendix 4”.

Let us define three functions and a set of assumptions to be kept along all of the four 
Appendices:

where  the  assumptions  are  the  following:  b ≥ B
2 , |l| ≤ L, |ρ| ≤ ε < B

2 , r ≥ L+ ε. 
Based on these functions and on these assumptions, we can deduce a number of equa-

tions that will be used to prove the formulae of this article.

Proof G(r) is decreasing, since its first derivative is negative:

Thus, G(r) does not have more than 1 zero in the interval [l + ρ,∞). To determine the 
sign of G(r), let us compute the sign of G(l + ρ):

(24)
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If ρ >
√
4b2+l2−l

2 , then G(l + ρ) is negative and therefore G(r) is also negative for 
greater values of r, since G(r) is decreasing. On the contrary, G(l + ρ) is positive and 
thus, G(r) would be positive for values of r lesser than the zero of G(r) and negative for 

values of r greater than the zero of G(r). The zero of the function G(r) is 
√

b2−ρ2+l2

b2−ρ2
b.

 

Proof Derivating r2(b) comes:

Except for the last factor of the previous equation, each factor of the right member is 
positive, thus concluding the proof.

Proof Let us define a function H(b):

Factorizing H(b):

Proof Let us define a function I(b):

(26)ρ <
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4b2 + l2 − l

2
⇒ r′(b) > 0
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Factorizing I(b):

 Proof Let us define a function J(b):

Factorizing J(b):

Once ρ ≤
√
4b2+l2−l

2 , if 
√
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Proof Trivial.

Proof Trivial.

Proof Let us define the auxiliary functions

Then:

The right member of the previous equation is a second degree polynomial in the vari-
able 3M(b). Factorizing it:

Now we have a product of second degree polynomials in ρ. Factorizing each one:

Concluding the proof.
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Proof Starting from Eq. (70), if we show that

under the assumptions considered here, the proof is concluded, since from b ≥ 3B
4  and 

B
2 > ρ, it follows: ρ ≤ 2b

3 . This is done by the following factorization:

Proof Let us define the function

To show that N(b) is always negative concludes the proof. This can be done through 
the following factorization:

which concludes the proof.

Appendix 2: Proof of the cell‑id formulae
The error modeling and its related parameters are shown in Fig. 4. The maper occurs in 
one of the following instants: when the user’s RFID reader detects a different tag than 
the last one he had detected—this last tag might be or not, being detected at this instant; 
at the very instant immediately before this different tag is detected; when the user’s RFID 
reader ceases from detecting the last detected tag; at the very instant immediately before 
this last detected tag ceased from being detected.

In other words, the maper is observed at the intersection of the boundary of the sur-
face corresponding to the signal of the last RFID tag detected and the region correspond-
ing to the plane corridor S, Figs. 2 and 4. Without loss of generality, we consider that the 
user’s reader had first detected the tag attached to Xn−1 and is now going to detect that 
of Xn. Maintaining the general assumptions of the article, since ε is the maper of the 
RFID tags positions measurement, let ρ, ρ ≤ ε, be the true error of this measurement 
and let us assume that when the maper is observed the user is at a distance l,
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from the line passing through Xn−1Xn. Angles are referenced to a semi-axis parallel to 
vector Xn−1Xn and measured in a counterclockwise direction. Thus, from Fig. 4:

where

The triangle inequality applied to triangle XnPnX yields:

where the equality occurs if and only if Pn, X and Xn are collinear. Now we will deduce a 
similar inequality for X1 taking Eq. (38) as starting point. Let us consider two cases, each 
corresponding to a particular interval of range: 
Case a r ≤

√
B2 + l2 − ρ 

Here, Eq. (38) leads to:

thus, −π
2 ≤ α ≤ π

2 . Hence, from Eqs. (36) and (37):

From Eq. (38):

as it is assumed r ≤
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B2 + l2 − ρ, both members of the previous inequality can be 
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Case b r ≥
√
B2 + l2 − ρ 

In this interval of range, two subcases will be considered, each corresponding to a 
given interval of angle.  
Case b1 −π

2 ≤ α ≤ π
2

For this interval of angles, the Eq. (39) holds. Thus, considering this equation together 
with Eq. (38), over analogous algebraic manipulations to those of Case a, it follows:

and hence:

Case b2  π2 ≤ α ≤ 3π
2

Here, Eqs. (36) and (37) imply:

From Eq. (38):

once it had been considered r ≥
√
B2 + l2 − ρ, the right member of the previous ine-

quality can be squared.

Then, Eqs. (41) and (43) lead to:

Now, in order to achieve the final expression corresponding to Case b, let us determine 
the least upper bound for X1 from two possibilities, X̄1a and X̄1b:

factorizing X̄1a − X̄1b:

B−
√

(r + ρ)2 − l2 ≤
√

X2
1 − l2 ≤ B−

√

(r − ρ)2 − l2

(41)

{

r ≥
√
B2 + l2 − ρ

−π/2 ≤ α ≤ π/2
⇒ X1 ≤

√

(

B−
√

(r − ρ)2 − l2
)2

+ l2

(42)
π

2
≤ α ≤ 3π

2
⇒

√

X2
2 − l2 −

√

X2
1 − l2 = B

√

(r − ρ)2 − l2 ≤
√

X
2
2 − l2 ≤

√

(r + ρ)2 − l2
Eq. (42)
=⇒

(43)

X2
1 ≤

(

B−
√

(r + ρ)2 − l2
)2

+ l2 ⇒
{

r ≥
√
B2 + l2 − ρ

π/2 ≤ α ≤ 3π/2
⇒X1 ≤

√

(

B−
√

(r + ρ)2 − l2
)2

+ l2

(44)

r ≥
√

B2 + l2 − ρ ⇒

X1 ≤ max

{
√

(

B−
√

(r − ρ)2 − l2
)2

+ l2;
√

(

B−
√

(r + ρ)2 − l2
)2

+ l2

}

(45)















X̄1a =
�

�

B−
�

(r − ρ)2 − l2
�2

+ l2

X̄1b =
�

�

B−
�

(r + ρ)2 − l2
�2

+ l2
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Equation (46) can be rewritten as:

In the light of Eq. (25), the sign of X̄1a − X̄1b depends on the magnitude of B and on the 
magnitude of the range, whether r is above or beneath r(B) since r(B) is always greater 
than 

√
B2 + l2 − ρ from Eq. (27).

If B ≥ 2L/3 then 
(√

4B2 + l2 − l
)

/2 ≥ B/2 from the following factorization:

Therefore, denoting the least upper bounds of X1 and X2 by X̄1 and X̄2 respectively, 
from Eqs. (25, 27, 39) and (47), with b = B where applicable, it follows:

Furthermore, since r(B) <
√
4B2 + L2 − ε < L+ ε when ε >

(√
4B2 + L2 − L

)

/2, 
by letting ρ = ε and b = B in Eq.  (28); Eqs.  (48–50) can be synthetically expressed by 
Eq. (4).

The maper is the greatest amongst X̄1 and X̄2. Factorizing X̄1 − X̄2 based on the previ-
ous equation:

If B ≥ 2L/3 or 
[

B < 2L/3 and ε ≤
(√

4B2 + l2 − l
)

/2
]

 then the relation of order 
between X̄1 and X̄2 depends on the relation of order between r and r(B). First, if r ≥ r(B) 
then, from Eq. (27), r ≥

√
B2 + l2 − ρ and hence

(46)
X̄1a − X̄1b =

4

X̄1a + X̄1b

(
√

(r + ρ)2 − l2 −
√

(r − ρ)2 − l2

2B+
√

(r + ρ)2 − l2 −
√

(r − ρ)2 − l2

)

×
(

B
2 − rρ − B

√

(r − ρ)2 − l2
)

(47)
(

X̄1a − X̄1b

)

β = B2 − rρ − B
√

(r − ρ)2 − l2, β > 0

√
4B2 + l2 − l

2
− B

2
= 3B

2
(√

4B2 + l2 + B+ l
)

(

B− 2

3
L

)

(48)B ≥
2

3
L and ε <

B

2
⇒







X̄1 =
�

X̄1a = F(B, r, ρ, l), if l + ρ ≤ r ≤ r(B)

X̄1b = F(B, r,−ρ, l), if r ≥ r(B)

X̄2 = r + ρ, if r ≥ l + ρ

(49)B <
2

3
L and

√
4B2 + l2 − l

2
< ε <

B

2
⇒

{

X̄1 = X̄1b = F(B, r,−ρ, l), if r ≥ l + ρ

X̄2 = r + ρ, if r ≥ l + ρ

(50)B <
2

3
L and ε ≤

√
4B2 + l2 − l

2
⇒







X̄1 =
�

X̄1a = F(B, r, ρ, l), if l + ρ ≤ r ≤ r(B)

X̄1b = F(B, r,−ρ, l), if r ≥ r(B)

X̄2 = r + ρ, if r ≥ l + ρ

(51)X̄1 − X̄2 =











4
X̄1a+X̄2

�

�

B
2

�2
− rρ − B

2

�

(r − ρ)2 − l2
�

, if X̄1 = X̄1a

2B
X̄1b+X̄2

�

B
2 −

�

(r + ρ)2 − l2
�

, if X̄1 = X̄1b

r ≥
√

(B/2)2 + l2 − ρ
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which for instance implies X̄1 − X̄2 < 0 from Eq.  (51). Second, if r ≤ r(B) the sign of 
X̄1 − X̄2 follows from Eq. (25) considering b = B/2 on it. Thus, two more cases have to 
be considered. If ρ ≥

(√
B2 + l2 − l

)

/2 then it immediately follows that X̄1 − X̄2 is neg-
ative. Otherwise, if

since r(B/2) < r(B) from Eq. (25), the sign of X̄1 − X̄2 will depend whether r is above or 
beneath r(B / 2). 

On the other side, if B < 2L/3 and 
(√

4B2 + l2 − l
)

/2 ≤ ε < B/2 then 

L+ ε ≥
√
4B2 + l2 − ε >

√

(B/2)2 + l2 − ε. Since X̄1 = X̄1b in the intervals considered, 

X̄2 is always greater than X̄1.
Therefore, from the aforementioned:

Letting b ≥ B/2 in Eq.  (26), we find that r(b) is monotonic increasing for b ≥ B/2 if 

ρ ≤
(√

B2 + l2 − l
)

/2–note that b ≥ B/2 implies

Hence, from Eq.  (48) X̄1b cannot be the maper of Cid, in the light of Eq.  (52), as 
r(B/2) < r(B).

To compute the uncertainty in terms of the maper for cid technique it must be deter-
mined ρ and l for which the error is the greatest. First, if ρ >

(√
B2 + l2 − l

)

/2 then 
the maper equals X̄2 from the previous equation. X̄2 is monotonic increasing in the var-
iable ρ, thus the maper is reached for ρ = ε. If ρ ≤

(√
B2 + l2 − l

)

/2 then the maper 
might be X̄1 or X̄2. If it equals X̄2 the maper occurs when ρ = ε. Else, if it equals X̄1 then 
r ≤ r(B/2). From Eq. (29), with b = B/2, follows r(B/2) <

√

(B/2)2 + l2 + ρ, and hence 
r <

√

(B/2)2 + l2 + ρ, which implies from Eq. (31) that X̄1a = F(B, r, ρ, l) is monotonic 
increasing in the variable ρ. F(B, r, ρ, l) is always monotonic increasing in the variable l 
as a consequence of Eq. (30). Let ρ1 < ε and l1 < L, then:

Thus, the maper of Cid technique happens when ρ = ε and l = L; it follows by making 
these substitutions in Eq. (52), which gives rise to its direct formulas given by Eqs. (4–6).

ρ ≤
(
√

B2 + l2 − l
)

/2

(52)
ρ ≤

√
B2+l2−l

2 ⇒



















X̄1 > X̄2, if L+ ε ≤ r ≤
�

(B/2)2−ρ2+l2

(B/2)2−ρ2
B
2

X̄1 = X̄2, if r =
�

(B/2)2−ρ2+l2

(B/2)2−ρ2
B
2

X̄1 < X̄2, if r >
�

(B/2)2−ρ2+l2

(B/2)2−ρ2
B
2

ρ >
√
B2+l2−l

2 ⇒ X̄1 < X̄2, r ≥ L+ ε

(
√

4b2 + l2 − l
)

/2 ≤
(
√

B2 + l2 − l
)

/2

{

F(B, r, ρ1, l1) < F(B, r, ε, l1)
F(B, r, ε, l1) < F(B, r, ε, L)

⇒

(53)F(B, r, ρ1, l1) < F(B, r, ε, L), ∀ρ1 < ε, ∀l1 < L, r ≤ r

(

B

2

)
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Appendix 3: Proof of the mean cell‑id formulae
The error modeling and its related parameters are shown in Fig. 5. The instant when the 
maper is observed depends on the number of tags being simultaneously detected. If two 
tags are never detected simultaneously then MCid is identical to Cid and so it is the occur-
rence of the maper. If at least two tags may be detected at the same time then four pos-
sibilities arise: first, no tag is being detected when a distinct tag is detected; second, no 
more tags are detected when the reader ceases from detecting the last detected tag; third, 
one tag is being detected at a time when another tag is detected; fourth, two or more tags 
are being detected at the same time when the reader ceases from detecting one of them. In 
the first two cases, MCid is equivalent to Cid; thus, the locus of points in which the maper 
is observed is the one described on the beginning of "Appendix 2" for Cid technique. In 
the third and fourth cases, if two or more tags are being detected at the same time then 
the maper occurs in one of the following instants: at the very instant when the user’s RFID 
reader ceases from detecting one of the last two tags detected; at the very instant imme-
diately before it ceased from detecting one of the last two tags detected. Otherwise, the 
maper occurs in one of the following instants: at the very instant when the user’s RFID 
reader turns to two tags being simultaneously detected; at the very instant immediately 
before it turned to two tags being simultaneously detected.

In other words, if at least two tags are being simultaneously detected, the maper is 
observed at the intersection of the boundary of the surface corresponding to the region 
simultaneously covered by the signals of the last two RFID tags detected and the region 
corresponding to the plane corridor S, Figs. 2 and 5. Without loss of generality, we con-
sider that the user’s reader had first detected the tag attached to Xn−2 and is now going 
to detect the tags of Xn−1 and Xn, respectively. Keeping the general assumptions of the 
Article, X1 and X2 were both calculated in the previous section and their least upper 
bounds X̄1 and X̄2 are given by Eqs.  (48–50). Angles are still referenced to a semi-axis 
parallel to vector Xn−1Xn and are also measured in a counterclockwise direction. Hence, 
X3 follows from Fig. 5:

Equation (38) yields:

When r ≥
√

(B/2)2 + l2 − ρ both members of the previous inequality may be 
squared. In the interval of γ angles considered in Eq. (54) we have X2 ≥

√

(B/2)2 + l2.  
Then, from Eq. (38):

(54)

{

X3 cos γ − X2 cosβ = B
2 ,

π
2 ≤ γ ≤ 3π

2 , π
2 ≤ β ≤ 3π

2

X3 cos γ = −
√

X2
3 − l2

(r − ρ)2 − l2 ≤ X2
2 − l2 ≤ (r + ρ)2 − l2

(54)=⇒

√

(r − ρ)2 − l2 −
B

2
≤

√

X2
3 − l2 ≤

√

(r + ρ)2 − l2 −
B

2

{

X2 ≤ r + ρ
√

(B/2)2 + l2 ≤ X2
⇒ r ≥

√

(B/2)2 + l2 − ρ
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Therefore, it follows for X3:

There is no purpose on the consideration of different intervals for the angle γ. For such 
angles, r <

√

(B/2)2 + l2 − ρ and therefore X3 would not be defined because the user’s 
RFID reader would never detect more than one RFID tag at a given time.

Denoting the least upper bound of X3 by X̄3, there are 4 possibilities for the maper of 
MCid technique: X̄1, X̄2, X̄3 or X̄4, where X̄4 is the least upper bound of

The expression of X̄4 is easily determined by making the following substitutions in Cid 
technique deduction: B for 3B / 2, X1 for X4, X̄1a for X̄4a, X̄1b for X̄4b, X̄1 for X̄4. There-
fore, by letting ρ = ε, l = L and changing B for 3B / 2 in Eq. (47) follows:

In the light of Eq.  (25), the solution depends on whether 
(√

9B2 + L2 − L
)

/2, it is 
greater than or lesser than B / 2. This can be determined from the following factorization:

Therefore:

Furthermore, since r(3B/2) <
√
9B2 + L2 − ε < L+ ε when ε > (

√
9B2 + L2 − L)/2, 

by letting ρ = ε and b = 3B/2 in Eq. (28); Eqs. (57–59) can be synthetically expressed by 
Eq. (8).

As we have shown in the preceding section, the maper of X̄1 and X̄2 occurs when ρ = ε 
and l = L. At the same time, X̄4b is not a candidate for the maper of MCid technique, as 
it will be shown along this “Appendix 3”. Consequently, the maper of X̄4 also occurs when 
ρ = ε and l = L for its computation is analogous to that of X̄1. In regard to X̄3, this is also 

(55)

r ≥

√

(

B

2

)2

+ l2 − ρ ⇒
√

(

B

2
−

√

(r − ρ)2 − l2
)2

+ l2 ≤ X3 ≤

√

(

B

2
−

√

(r + ρ)2 − l2
)2

+ l2

X4 = �X − (Xn−2 + Xn−1)/2�

(56)
(

X̄4a − X̄4b

)

θ =
(

3B

2

)2

− rε −
3B

2

√

(r − ε)2 − L2, β > 0

√
9B2 + L2 − (B+ L)

2
=

B√
9B2 + L2 + B+ L

(4B− L)

(57)B ≥ L

4
and ε <

B

2
⇒ X̄4 =

{

X̄4a = F(3B/2, r, ε, L), if L+ ε ≤ r ≤ r(3B/2)

X̄4b = F(3B/2, r,−ε, L), if r ≥ r(3B/2)

(58)B <
L

4
and

√
9B2 + L2 − L

2
< ε <

B

2
⇒ X̄4 = X̄4b = F(3B/2, r,−ε, L), if r ≥ L+ ε

(59)
B <

L

4
and ε ≤

√
9B2 + L2 − L

2
⇒

X̄4 =
{

X̄4a = F(3B/2, r, ε, L), if L+ ε ≤ r ≤ r(3B/2)

X̄4b = F(3B/2, r,−ε, L), if r ≥ r(3B/2)
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true, since X̄3 = F
(

B
2 ,−r, ρ, l

)

. Making b = B
2 and substituting r by −r in Eq. (30) imply 

X̄3 is monotonic increasing in the variable l. The same substitutions in Eq. (31) imply X̄3 
is monotonic increasing in the variable ρ, since r ≥

√

(B/2)2 + l2 − ρ (otherwise, X̄3 is 
not defined). Let ρ1 < ε and l1 < L, then:

Along these lines, it will be shown that only X̄4a is a candidate for the maper of MCid 
technique. The maper of X̄4 occurs when ρ = ε and l = L, in an analogous procedure to 
that used in “Appendix 2” for X̄1. Thus, the maper for MCid technique also occurs when 
ρ = ε and l = L.

The least upper bound of X3, denoted by X̄3, follows from Eq. (55) and is given by:

To determine the corresponding maper of MCid technique let us consider four cases, 
each corresponding to a different interval of range.

Case a L+ ε ≤ r <

√

(

B
2

)2
+ L2 − ε

In this interval, at most one RFID tag is detected at any given time. Thus, MCid is 
identical to Cid in this case, which leads to the following maper:

Case b 
√

(

B
2

)2
+ L2 − ε ≤ r < min

{

√
B2 + L2 − ε;

√

(

B
2

)2
+ L2 + ε

}

In this interval, at most two RFID tags may be detected at a given time. Furthermore, 
the reader will never detects two tags simultaneously at all times, but only at some times. 
The maper in this case is max

{

X̄1; X̄2; X̄3

}

. However, factorizing X̄3 − X̄2 yields:

once r ≥
√

(

B
2

)2
+ L2 − ε, it also holds r >

√

(

B
4

)2
+ L2 − ε, which implies 

X̄3 − X̄2 < 0. This way, X̄3 cannot be the greatest amongst X̄1, X̄2 and X̄3, and hence:

{

F(B/2,−r, ρ1, l1) < F(B/2,−r, ε, l1)
F(B/2,−r, ε, l1) < F(B/2,−r, ε, L)

⇒

(60)F(B/2,−r, ρ1, l1) < F(B/2,−r, ε, L),∀ρ1 < ε, ∀l1 < L, r ≥
√

(B/2)2 + l2 − ρ

(61)X̄3 = F

(

B

2
,−r, ε, L

)

, if r ≥

√

(

B

2

)2

+ L2 − ε

(62)�MCid = max
{

X̄1; X̄2

}

, if L+ ε ≤ r <

√

(

B

2

)2

+ L2 − ε

X̄3 − X̄2 =
B2

(

X̄3 + X̄2

)

(

(B/2)2 + B
√

(r + ε)2 − L2
)

(

(

B

4

)2

− (r + ε)2 + L2

)

(63)

�MCid =max
�

X̄1; X̄2

�

, if
�

�

B

2

�2

+ L2 − ε ≤ r < min







�

B2 + L2 − ε;

�

�

B

2

�2

+ L2 + ε







.
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Equations (62) and (63) can be joined together in the following equation:

Solving Eq.  (64) by Eq.  (52), with l = L and ρ = ε, as r(B2 ) <
√
B2 + L2 − ε and 

r(B2 ) <

√

(

B
2

)2
+ L2 + ε, by letting l = L and ρ = ε in Eqs.  (28) and (29) respectively, 

yields:

Case c 
√

(

B
2

)2
+ L2 + ε ≤ r <

√
B2 + L2 − ε

In this case, the user’s RFID reader will always detect at least one tag. The reader will 
never detects two tags simultaneously at all times, but only at some times. Thus:

To factorize X̄1 − X̄3, first, if r ≤ r(B) Eq.  (48) with ρ = ε and l = L yields 
X̄1 − X̄3 = X̄1a − X̄3. Since, r(B) >

√
B2 + L2 − ε by letting b = B, l = L and ρ = ε in 

Eq. (27) we always have X̄1 − X̄3 = X̄1a − X̄3 in this interval of range. Hence:

which is equivalent to:

By letting b = 3B/4 in Eq.  (25), it can be verified that the sign of X̄1a − X̄3 depends 
on: the magnitude of ε, whether it is above or beneath 

(

√

(3B/2)2 + L2 − L
)

/2. 

(64)�MCid = max
�

X̄1; X̄2

�

, if L+ ε ≤ r < min







�

B2 + L2 − ε;

�

�

B

2

�2

+ L2 + ε







(65)

ε <

√
B2 + L2 − L

2

⇒ �MCid =















X̄1a, if L+ ε ≤ r < r

�

B

2

�

X̄2, if r

�

B

2

�

≤ r < min

�

√
B2 + L2 − ε;

�

�

B

2

�2

+ L2 + ε

�

(66)

B

2
> ε ≥

√
B2 + L2 − L

2
⇒ �MCid = X̄2,

if L+ ε ≤ r < min







�

B2 + L2 − ε;

�

�

B

2

�2

+ L2 + ε







(67)�MCid = max
{

X̄1; X̄3

}

, if

√

(

B

2

)2

+ L2 + ε ≤ r <
√

B2 + L2 − ε

(68)

X̄1a − X̄3 =
B/2+

√

(r + ε)2 − L2 −
√

(r − ε)2 − L2
(

3B/2+
√

(r + ε)2 − L2 −
√

(r − ε)2 − L2
)

(

X̄1a + X̄3

)

×
(

(

3B

4

)2

− rρ −
3B

4

√

(r − ε)2 − L2

)

(69)r ≤ r(B) ⇒ X̄1 − X̄3 =
(

X̄1a − X̄3

)

β =
(

3B

4

)2

− rε −
3B

4

√

(r − ε)2 − L2, β > 0
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Furthermore, still from Eq. (25), this sign may depend on the magnitude of r, whether it 
is above or beneath r(3B / 4). First of all, let us determine the relation of order between:

which is given by the following equation

Therefore, to determine the uncertainty in the light of the maper for MCid technique 
in this interval of range, let us consider two additional subcases:       
Case c1 B > 8

5L

Equation (70) implies (
√

(3B/2)2 + L2 − L)/2 > B/2. Thus, ε < (
√

(3B/2)2 + L2 − L) 
for these values of B. From Eq. (25), with b = 3B/4, ρ = ε and l = L, the sign of X̄1 − X̄3 
depends on the magnitude of r. 

If r(3B/4) <
√

(B/2)2 + L2 + ε then X̄1 − X̄3 is always negative. Otherwise, the signal 
of X̄1 − X̄3 is ruled by the relation of order between r and r(3B / 4). 

Here, it is assumed B > 8L/5. As 8L/5 >
√
64/105L, it follows that B >

√
64/105L. 

Letting b = 3B/4, ρ = ε and l = L in Eqs. (25) and (34), the maper arises—in this Case c, 

it is assumed that r ≥
√

(B/2)2 + L2 + ε and this must be taken into account:

Case c2 B ≤ 8
5L

 B ≤ 8
5L implies 

(

√

(3B/2)2 + L2 − L
)

/2 ≤ B/2. 
If 

(

√

(3B/2)2 + L2 − L
)

/2 < ε < B/2 then the maper follows immediately from 
Eq. (25) with b = 3B/4, ρ = ε and l = L:

Now, if ε ≤ (
√

(3B/2)2 + L2 − L)/2 then the maper depends on the magnitude of r 
and whether r(3B / 4) is greater than or lesser than 

√

(B/2)2 + L2 + ε. 

(

√

(3B/2)2 + L2 − L

)

/2 and B/2

(70)
8

5B

(

√

(3B/2)2 + L2 + B+ L

)

(
√

(3B/2)2 + L2 − L

2
−

B

2

)

= B−
8

5
L

(71)

B >
8

5
L and ε ≤

√
B2 + L2 −

�

(B/2)2 + L2

2
⇒

�MCid =











X̄1a, if

�

�

B
2

�2
+ L2 + ε ≤ r ≤ r

�

3B
4

�

X̄3, if
√
B2 + L2 − ε ≥ r > r

�

3B
4

�

(72)

B >
8

5
L and

B

2
> ε >

√
B2 + L2 −

√

(B/2)2 + L2

2
⇒

�MCid = X̄3, if
√

B2 + L2 − ε ≥ r ≥

√

(

B

2

)2

+ L2 + ε

(73)B ≤
8

5
L and

B

2
> ε >

√

(3B/2)2 + L2 − L

2
⇒ �MCid = X̄3, if r ≥

√

(

B

2

)2

+ L2 + ε
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L <
√

(B/2)2 + L2 implies −L > −
√

(B/2)2 + L2 and, since 
√

(3B/2)2 + L2 >
√
B2 + L2, it follows from addition and subsequent division by 2:

From Eq. (35), also with b = 3B/4:

Therefore, the maper will be derived from two possibilities:

The maper when ε ≤
(

√

(3B/2)2 + L2 − L
)

/2 is achieved by letting l = L, ρ = ε and 
b = 3B/4 in Eqs. (25) and (33):

Therefore the maper for subcase c2 is given by two equations: the first being obtained 
by joining Eqs. (73) and (94) into the the following equation:

The second corresponding to Eq. (75) itself. Thus, the maper for subcase c2 is given by 
Eqs. (75) and (76).

Finally, the maper corresponding to Case c follows from Eqs.  (71, 72, 75) and (76):

(

√

(3B/2)2 + L2 − L

)/

2 >

(

√

(B/2)2 + L2 −
√

B2 + L2
)/

2

(

√

(3B/2)2 + L2 − L

)/

2 <

(

√

(2B)2 + L2 −
√

(B/2)2 + L2
)/

2

ε ≤
(

√

B2 + L2 −
√

(B/2)2 + L2
)/

2

and

(

√

B2 + L2 −
√

(B/2)2 + L2
)/

2 < ε ≤
(

√

(3B/2)2 + L2 − L

)/

2

(74)

B ≤
8

5
L and

√

(3B/2)2 + L2 − L

2
≥ ε ≥

√
B2 + L2 −

√

(B/2)2 + L2

2
⇒

�MCid = X̄3, if
√

B2 + L2 − ε ≥ r ≥

√

(

B

2

)2

+ L2 + ε

(75)

B ≤
8

5
L and ε ≤

√
B2 + L2 −

�

(B/2)2 + L2

2
⇒

�MCid =











X̄1a, if

�

�

B
2

�2
+ L2 + ε ≤ r ≤ r

�

3B
4

�

X̄3, if
√
B2 + L2 − ε ≥ r > r

�

3B
4

�

(76)

B ≤
8

5
L and

B

2
≥ ε ≥

√
B2 + L2 −

√

(B/2)2 + L2

2
⇒

�MCid = X̄3, if
√

B2 + L2 − ε ≥ r ≥

√

(

B

2

)2

+ L2 + ε

(77)

ε ≤
√
B2 + L2 −

�

(B/2)2 + L2

2
⇒ �MCid =











X̄1a, if

�

�

B
2

�2
+ L2 + ε ≤ r ≤ r

�

3B
4

�

X̄3, if
√
B2 + L2 − ε > r > r

�

3B
4

�
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Case d r ≥
√
B2 + L2 − ε

For this interval of ranges the reader always detect at least one RFID tag at any given 
time. But it may occur that it detects two RFID tags at any given time. Therefore, three 
possibilities arise for the maper in this case: X̄1, X̄3 and X̄4. 

We will now show that in this particular interval of range 
max

{

X̄1; X̄3; X̄4

}

= max
{

X̄3; X̄4

}

. To do this, let us consider two possibilities: 
−π/2 ≤ α ≤ π/2 or π/2 ≤ α ≤ 3π/2.

First, if π/2 ≤ α ≤ 3π/2 then Eq. (42) and Eq. (54) imply:

thus:

As a consequence, X̄1 ≤ X̄3. 
On the other side, if −π/2 ≤ α ≤ π/2 then, from Eq. (39), 

√

X2
2 − L2 ≤ B and:

since the deduction of X4 is analogous to that of X1.
Concurrently, Eq. (39) for X1 and Eq. (54) for X3, imply:

thus:

Therefore, if −π/2 ≤ α ≤ π/2 then X1 ≤ X4. Consequently, X̄1 ≤ X̄4. This way, from 
Eqs. (79) and (80), X̄1 can be removed from the expression for the maper of MCid in this 
interval of range.

(78)

B

2
> ε >

√
B2 + L2 −

√

(B/2)2 + L2

2
⇒

�MCid = X̄3, if
√

B2 + L2 − ε > r ≥

√

(

B

2

)2

+ L2 + ε

√

X2
2 − L2 = B+

√

X2
1 − L2 =

B

2
+

√

X2
3 − L2 ⇒

√

X2
1 − L2 =

√

X2
3 − L2 −

B

2
⇒

√

X2
1 − L2 <

√

X2
3 − L2

(79)π/2 ≤ α ≤ 3π/2 ⇒ X1 ≤ X3

√

X2
2 − L2 ≤ B

Eq. (49)
=⇒ 3B

2
−

√

X2
4 − L2 ≤ B ⇒ X4 ≥

√

(B/2)2 + L2

√

X2
2 − L2 = B−

√

X2
1 − L2 =

B

2
+

√

X2
3 − L2 ⇒

√

X2
1 − L2 +

√

X2
3 − L2 =

B

2
⇒ X1 ≤

√

(B/2)2 + L2

(80)−π/2 ≤ α ≤ π/2 ⇒ X1 ≤ X4

(81)ε <
B

2
⇒ �MCid = max

{

X̄3; X̄4

}

, if r ≥
√

B2 + L2 − ε
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Now, to analytically calculate max
{

X̄3; X̄4

}

, let us factorize X̄3 − X̄4:

which implies:

In case X̄4 = X̄4b:

which means that X̄3 is always greater than X̄4b if

For this reason, X̄4b cannot be the maper of MCid technique.
To determine max

{

X̄3; X̄4

}

 from Eqs.  (57), (82) and (25), let us consider three 
subcases: 
Case d1 B ≥ 2L/3

Here, since r(3B/2) > r(B), from Eq. (26), and r(B) >
√
B2 + L2 − ε, from Eq. (27), it 

follows:

Case d2 2L/3 > B ≥ L/4

Case d3 B < L/4

X̄3 − X̄4a = −4
B+

√

(r + ε)2 − L2 +
√

(r − ε)2 − L2

(

X̄3 + X̄4a

)

(

2B+
√

(r + ε)2 − L2 −
√

(r − ε)2 − L2
)

×
(

B2 − rε − B
√

(r − ε)2 − L2
)

(82)
(

X̄3 − X̄4a

)

θ = B2 − rε − B
√

(r − ε)2 − L2, θ < 0

(83)X̄3 − X̄4b =
−2B

X̄3 + X̄4b

(

B−
√

(r + ε)2 − L2
)

r ≥
√

B2 + L2 − ε

(84)B ≥ 2L/3 and ε < B/2 ⇒ �MCid =
{

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(85)

2L/3 > B ≥ L/4 and ε <

(
√

4B2 + L2 − L
)

/2 ⇒

�MCid =
{

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(86)
2L/3 > B ≥ L/4 and

(
√

4B2 + L2 − L
)

/2 ≤ ε < B/2 ⇒

�MCid = X̄3, if r ≥
√

B2 + L2 − ε

(87)
B < L/4 and

(
√

9B2 + L2 − L

)

/2 ≤ ε < B/2 ⇒ �MCid = X̄3,

if r ≥
√

B2 + L2 − ε

(88)
B < L/4 and

(
√

4B2 + L2 − L
)

/2 ≤ ε <

(
√

9B2 + L2 − L
)

/2 ⇒

�MCid = X̄3, if r ≥
√

B2 + L2 − ε
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From Eqs. (84–89), the maper of Case d is finally achieved:

 
From Eqs. (65, 66, 77, 78, 90, 91) and (92) the uncertainty of MCid in the light of the 

maper concept is achieved.

(89)

B < L/4 and ε <

(
√

4B2 + L2 − L

)

/2 ⇒

�MCid =
{

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(90)B ≥ 2L/3 and ε < B/2 ⇒ �MCid =
{

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(91)

B < 2L/3 and ε <

(
√

4B2 + L2 − L

)

/2 ⇒

�MCid =
{

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(92)
B < 2L/3 and

(
√

4B2 + L2 − L

)

/2 ≤ ε < B/2 ⇒

�MCid =
{

X̄3, if r ≥
√
B2 + L2 − ε

(93)

ε ≤
√
B2 + L2 −

�

(B/2)2 + L2

2
⇒

�MCid =















































X̄1a, if L+ ε ≤ r < r(B2 )

X̄2, if r(B2 ) ≤ r < min
�√

B2 + L2 − ε;
�

(B/2)2 + L2 + ε

�

X̄1a, if

�

�

B
2

�2
+ L2 + ε ≤ r ≤ r

�

3B
4

�

X̄3, if r
�

3B
4

�

≤ r <
√
B2 + L2 − ε

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(94)

√
B2 + L2 − L

2
> ε >

√
B2 + L2 −

�

(B/2)2 + L2

2
⇒

�MCid =







































X̄1a, if L+ ε ≤ r < r
�

B
2

�

X̄2, if r
�

B
2

�

≤ r < min
�√

B2 + L2 − ε;
�

(B/2)2 + L2 + ε

�

X̄3, if

�

�

B
2

�2
+ L2 + ε ≤ r <

√
B2 + L2 − ε

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)
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where X̄1a and X̄2 are given by Eqs. (48–50) with ρ = ε and l = L; X̄3 is given by Eq. (61); 
X̄4a is given by Eqs. (57–59) ρ = ε and l = L; r =

√
R2 − h2.

Last, the aforementioned expressions can be simplified by the following inequalities:

Applying Eq. (98) to Eqs. (93, 94), Eq. (99) to Eqs. (95, 96), and Eq. (100) to Eq. (97); the 
final direct formulae for the maper of MCid technique are obtained which are given by 
Eqs. (8–12).

Appendix 4: Proof of the orange formulae
The oranges for Cid and MCid techniques are a natural consequence of the analytic 
maper formulae. They follow from the behavior of function F(B, r, ε, L) with respect 
to the variable r, which is ruled by Eq.  (32), letting ρ = ε and l = L in it. Given that 

(95)

B ≥ 2

3
L and

B

2
> ε >

√
B2 + L2 − L

2
⇒

�MCid =



























X̄2, if L+ ε ≤ r < min
�√

B2 + L2 − ε;
�

(B/2)2 + L2 + ε

�

X̄3, if

�

�

B
2

�2
+ L2 + ε ≤ r <

√
B2 + L2 − ε

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(96)

B <
2

3
L and

√
4B2 + L2 − L

2
> ε >

√
B2 + L2 − L

2
⇒

�MCid =



























X̄2, if L+ ε ≤ r < min
�√

B2 + L2 − ε;
�

(B/2)2 + L2 + ε

�

X̄3, if

�

�

B
2

�2
+ L2 + ε ≤ r <

√
B2 + L2 − ε

X̄4a, if
√
B2 + L2 − ε ≤ r < r(B)

X̄3, if r ≥ r(B)

(97)

B <
2

3
L and

B

2
> ε >

√
4B2 + L2 − L

2
⇒

�MCid =











X̄2, if L+ ε ≤ r < min
�√

B2 + L2 − ε;
�

(B/2)2 + L2 + ε

�

X̄3, if r ≥
�

�

B
2

�2
+ L2 + ε

(98)ε >

√
B2 + L2 −

√

(B/2)2 + L2

2
⇒

√

(B/2)2 + L2 + ε >
√

B2 + L2 − ε

(99)min

{

B

2
;
√
4B2 + L2 − L

2

}

> ε >

√
B2 + L2 − L

2
⇒ L+ ε >

√

B2 + L2 − ε

(100)
B

2
> ε >

√
4B2 + L2 − L

2
⇒ L+ ε >

√

4B2 + L2 − ε >
√

B2 + L2 − ε
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X̄1a = F(B, r,−ε, L), X̄1a is monotonic decreasing if r <
√
B2 + L2 − ε and increasing 

otherwise. Equivalently: X̄3 = F(B/2, r,−ε, L) implies that X̄3 is monotonic increasing if 
r >

√

(B/2)2 + L2 − ε; X̄4a = F(3B/2, r,−ε, L) implies that X̄4a is monotonic decreasing 
if

and increasing otherwise. For X̄2 it is evident that it is always monotonic increasing since 
X̄2 = r + ε.

The orange formulae  are determined by analyzing the local behavior of the maper 
functions �Cid and �MCid for each interval of uncertainty ε in particular. From the r for 
which the maper reaches its minimal, the orange R of the technique in consideration fol-
lows, as R =

√
r2 + h2. The orange determination is self-evident except for rMCid in the 

specific case when

In this situation, the analysis of the function �MCid’s behavior in regard to r leads us 
towards two possibilities for rMCid: r(B/2) and r(B). Let us show that rMCid in this case 
is r(B). For this purpose, we have to prove that X̄4a(r = r(B)) < X̄1a(r = r(B/2)). Given 
that X̄4a(r = r(B)) = X̄3(r = r(B)) and X̄1a(r = r(B/2)) = X̄2(r = r(B/2)), this is equiv-
alent to prove that X̄3(r = r(B)) < X̄2(r = r(B/2)). 

To do so, let us determine the sign of X̄2(r = r(B/2))− X̄3(r = r(B)). From Eqs. (38) 
to (55), with ρ = ε and l = L, it follows for X̄2(r = r(B/2)) and X̄3(r = r(B)):

But the right side of the inequality above can be factorized as follows:

once the previous equation’s right side is positive, Eq. (101) implies 
X̄3(r = r(B)) < X̄2(r = r(B/2)).

r <

√

(3B/2)2 + L2 − ε

(
√

B2 + L2 − L
)

/2 > ε >

(

√

B2 + L2 −
√

(B/2)2 + L2
)

/2







�

�

X̄2(r = r(B/2))
�2 − L2 =

�

(r(B/2)+ ε)2 − L2

−
�

�

X̄3(r = r(B))
�2 − L2 = B/2−

�

(r(B)+ ε)2 − L2
⇒

(101)

√

[

X̄2(r = r(B/2))
]2 − L2 −

√

[

X̄3(r = r(B))
]2 − L2 =

B

2
+

√

(r(B/2)+ ε)2 − L2 −
√

(r(B)+ ε)2 − L2

(

B

2
+

√

(r(B/2)+ ε)2 − L2 +
√

(r(B)+ ε)2 − L2
)

×
(

B

2
+

√

(r(B/2)+ ε)2 − L2 −
√

(r(B)+ ε)2 − L2
)

=
B2

4
+ (r(B/2)+ ε)2 + B

√

(r(B/2)+ ε)2 − L2 − (r(B)+ ε)
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This way, when

the Orange is rMCid = r(B).
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