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Abstract

Microbial cellulases are the enzymes widely studied due to their enormous applications in biochemical industry.
Among 12 fungal isolates isolated from mangrove plant debris and soil sample collected from Valanthakad
Mangroves, Kerala, India, 3 of them were found to exhibit cellulolytic activity. Among them, the most potent isolate
which exhibited maximum cellulolytic activity was identified as Trichoderma viride VKF3 [Gene bank accession
number- JX683684.1] based on colony morphology, microscopic observation and molecular characterization using
D1/D2 region amplification. The isolate T. viride VKF3 was found to be non-phytopathogenic against the selected
plants. Neighbour joining tree depicted its least divergence rate from the root taxon HM466686.1. T. viride VKF3 was
grown under dynamic carbon, nitrogen sources, pH and temperature of the medium to draw out the optimum
conditions for cellulase production. Protein stability kinetics and biomass production was also studied upto 11th day
of incubation. It was evident from the study, that dextrose and beef extract could be used as major carbon and
nitrogen sources in submerged fermentation at pH 9.0 and incubation temperature of 25°C to get maximum
CMCase yield. Optimum enzyme recovery period was identified between 5th to 9th days of incubation beyond
which the enzyme activity was reduced. By comparing two fermentation methods, submerged fermentation was
found to be the best for maximum enzyme production. But utilization of substrates like sugarcane bagasse and
cassava starch waste in the SSF offers a better scope in biodegradation of solid waste contributing to solid
waste management.
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Background
Fungi isolated from mangrove habitats are known to be
potential candidates for production of various industrially
important enzymes and bio-active secondary metabolites.
These enzymes are mostly ligno-cellulolytic in nature to
attain their energy sources. There are many reports on the
commercial applications of ligno-cellulolytic enzymes
especially cellulase. Trichoderma spp. and Aspergillus
spp. are two potential cellulase producers (Lynd et al.
2002). T. viride and T. reesei are two fungal strains
extensively studied for their cellulase producing
capability (Domigues et al. 2000, Gadgil et al. 1995).
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Cellulase is a complex of three types of enzymatic com-
plexes namely endoglucanase also called carboxymethyl
cellulase, exoglucanase and β-glucosidase (Iqbal et al.
2011). It is a major enzyme used in the saccharification of
many natural substrates for production of bio-fuels. In
addition to that, it is widely used for beneficial adultera-
tions of pulp and paper characteristics (Kibbelwhite and
Clark 1996). Other avenues for its application include cot-
ton processing, paper recycling and as animal feed addi-
tives (Yano et al. 2012). The fungal cellulase is used for
deinking of fiber surfaces in paper industries and to en-
hance the pulp drainage in textile industries (Penttila et al.
2004). There are many microbes capable of producing cel-
lulase enzyme but a few of them only produces significant
quantities of enzyme (Kumara et al. 2012). Apart from
this, many cellulase producers are pathogenic either to
plants or animals. The use of enzymes produced by these
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g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:meranildc@gmail.com
http://creativecommons.org/licenses/by/2.0


Nathan et al. SpringerPlus 2014, 3:92 Page 2 of 12
http://www.springerplus.com/content/3/1/92
isolates might have some negative effects. Production of
cellulases by the fungal isolates requires optimal condi-
tions for their growth which leads to the release of extra-
cellular enzymes. The growth conditions as well as
extracellular enzyme production conditions is likely to
vary among isolates. The major components of pro-
duction medium like carbon and nitrogen sources and
physical parameters like temperature, pH and incuba-
tion time were found to be critically affecting the cel-
lulase production hence need to be optimized for every
isolate (Kathiresan and Manivannan 2006, Polyanna
et al. 2011). T. viride is a potential cellulolytic organ-
ism and widely distributed fungal species having ability
to produce bio-control agents and plant growth pro-
moting factors. The present study focuses on the
optimization of various parameters for cellulase en-
zyme production using T. viride VKF3, a mangrove
isolate under submerged fermentation. It would be ad-
vantageous to optimize the medium conditions for cel-
lulase production under submerged fermentation when
considering the ease in scaling up of the process for in-
dustrial applications. Meanwhile solid state fermenta-
tion offers a cost-effective production methodology for
enzyme production especially using fungal systems. Di-
verse natural substrates are widely used with fungal
strains for production of various metabolites. Most
agro- wastes could be utilized as substrates for solid
state fermentation. In spite of extensive study on agro-
residues as solid substrates, there was no concern
regarding the amount of solid waste produced after en-
zyme production. This also extends its application to
convert solid waste into useful bio-products for com-
mercial application thereby contributing towards solid
waste management strategies.

Results and discussion
Screening and molecular identification of cellulolytic
fungi
Pure fungal colonies from mangrove soil debris were
screened on CMC agar plates supplemented with congo
red. Zone of clearance was observed for 3 fungal isolates
among 12 isolates tested. The positive isolates were picked
up and inoculated into fungal basal medium and incubated
at 120 rpm at 28 ± 2°C for 3 to 5 days. Following the fifth
incubation day, CMCase and FPase assay was performed
for the same and VKF3 isolate was found to be a cellulo-
lytic fungus with maximum activity. Based on the colony
morphology and microscopic observation, it was identified
as Trichoderma sp.. Further confirmation was done by mo-
lecular methods. DNA was isolated and PCR amplification
of D1/D2 region was performed as suggested by Kurtzman
and Robnett (1997). A 540 bp PCR amplicon was obtained
after amplification and sequencing was done. Following the
analysis of sequence chromatogram, BLASTN analysis was
performed which confirmed VKF3 isolate as Trichoderma
viride and the sequence was submitted in GenBank
[Accession number- JX683684.1]. T. viride is a well
known cellulolytic fungi and present isolate is from
mangrove ecosystem. The cellulolytic activity of Tri-
choderma sp. was supported even by computational
methods also. T. longibrachiatum was found to be a
better cellulase producer comparing to Clostridium
thermocellum based on its high number of active sites
through computational methods (Vinod et al. 2012).
Ten similar sequences were retrieved and a phylogen-
etic tree was constructed using neighbour joining
method. The isolate was grouped among minor clade
which showed the least divergence from the root taxon
[Accession number- HM466686.1]. The least rate of
divergence was also supported by its bootstrap value 1
(Figure 1). There are many applications reported for
cellulase enzyme. Cellulase obtained from Trichoderma
viride was used for saccharification of waste paper
materials resulting in sugar end-products (Van Wyk
and Mamabolo 2013). The cellulase produced from
the T. viride VKF3 isolate could be used in paper
based industries in waste management and for deink-
ing process also.

Phyto-pathogenecity of fungal isolate
Phyto-pathogenecity test of the three best cellulolytic
fungal isolates was done. All isolates were avirulent as
there were no necrotic symptoms observed following the
infection. There was no significant reduction in fresh
weight and dry weight of infected plant compared to
control. T. viride VKF3 showed least negative effect
compared to other two strains (Table 1). It was found
from earlier studies that T. viride was used as a bio-control
agent which also promoted the growth of certain plants.
Shamalie et al. (2011) reported that T. viride possess
growth promoting efficacy when tested on Centella asia-
tica under field trials and moreover, it had bio-control po-
tency against nematode parasites forming root galls.
Similar antagonistic potential of Trichoderma viride
against various pathogenic fungi of Vigna radiata was also
reported (Mishra et al. 2011). When the enzyme is pro-
duced by exploiting such avirulent microbes, it is benefi-
cial for its safe application in saccharification of animal
fodders, in pulp modification in paper industries or even
in any food processing or detergent formulations. En-
zymes when used in its crude form are likely to contain
fungal spores, and their release into the environment has
much less negative impact when compared to enzymes
derived from any pathogenic strain.

Zymogram analysis
Zymogram analysis using gel with CMC as substrate
stained with congo red was widely used for confirmation



Figure 1 Phylogenetic relation among T. viride and other fungal sequences obtained after BLASTN.
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of cellulolytic activity and to identify the fraction posses-
sing the activity. From the analysis, two distinct zone of
clearance was observed between 20.1-29.0 KDa and 14.3
KDa (Figure 2). In a similar study, three distinct bands
were observed for cellulase enzyme on zymogram of
thermophilic consortium with molecular masses 60, 35
and 27 KDa (Vasudeo et al. 2011).

Carbon and nitrogen source optimization
During optimization studies, the enzyme activity was
analysed only after 3rd day of incubation to allow the op-
timal fungal growth to be achieved. It was reported earl-
ier that the enzyme production by the fungi started after
a lag period of 24 hr or more, and the activities reached
to maximal levels within 5–7 days of incubation (Gomes
et al. 2006). From this study, it was concluded that for
CMCase production under submerged fermentation,
dextrose as the best carbon source whereas for FPase, car-
boxymethyl cellulose (CMC) gave better activity (Figure 3).
However, CMCase production was found to be high be-
yond 7 days of incubation in all four carbon sources tested.
Maximum FPase activity was achieved by utilizing CMC as
carbon source following 7 days of incubation. But there
was a decline in enzyme activity following the 7th day in
case of both CMCase and FPase. The decline trend of en-
zyme activity is likely to be due to the protease production
into the medium. Ouyang et al. (2009) observed similar de-
cline of CMCase activity from 1.01 U/ml beyond 96 hrs of
incubation. However, the dextrose as best carbon source
Table 1 Phyto pathogenecity test for fungal isolates

Isolates Shoot length (cm) Root length (cm) Fres

Control 12.30 ± 0.264 5.23 ± 0.152 2

VKF3 11.56 ± 0.709 3.83 ± 0.351 1
was contradicting earlier reports. Gashe (1992) achieved
highest CMCase activity of 167 U/ml by Trichoderma sp.
using CMC as carbon source. In other study on T. reesei
C5, maximum growth and cellulase enzyme production
was obtained with lactose as sole carbon source
(Muthuvelayudham and Viruthagiri 2004). In nitrogen
source optimization, peptone was found to be the best
for FPase showing highest activity on 7th day and
a decline trend was observed on further incubation
(Figure 4). Addition of nitrogen source like peptone was
found to enhance growth and cellulase production but it
was not cost effective (Chandra et al. 2009). When beef ex-
tract was used as nitrogen source,T. virideVKF3 produced
highest CMCase activity in 3rd day of incubation. But bio-
mass production was least in beef extract in the present
study which was contradicting the earlier reports. CMCase
activity tends to decline after 3rd day of incubation when
beef extract was supplemented as nitrogen source.
CMCase activity was high during incubation at 25°C on 9th

day whereas FPase had highest activity at 55°C on 5th day
of incubation (Figure 5). At neutral pH 7, CMCase exhib-
ited highest activity on 3rd to 5th day of incubation followed
by a rapid decline (Figure 6). FPase showed maximum ac-
tivity at pH 7 on 5th day of incubation. It was concluded
that under submerged fermentation, a medium with CMC
as carbon source and beef extract as nitrogen source at
pH 7 incubated at 55°C was suitable for FPase enzyme pro-
duction following 5th day of incubation. Similarly medium
supplemented with dextrose and peptone as carbon source
h weight (g) Dry weight (g) Necrosis at infection site

.43 ± 0.096 0.63 ± 0.328 No

.54 ± 0.280 0.40 ± 0.041 No



Figure 2 Zymogram validating cellulolytic activity on 1% CMC supplemented gel stained with 0.1% (w/v) congo red after destaining
with IM NaCl.
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and nitrogen source respectively with pH 9 incubated at
25°C achieved maximum CMCase activity beyond 5th day
of incubation. However, the T. viride VKF3 was able to
produce cellulase in a better pH range from pH 3 to 9.
This is beneficial for this strain to be utilized for many in-
dustrial applications. CMCase activity was high on 7th day
Figure 3 CMCase and FPase production optimization using various ca
of incubation and enzyme recovery was optimal during this
period beyond which there was a decline in its activity.
Likewise, when medium was supplemented with CMC as
carbon source and beef extract as nitrogen source with
pH 7 incubated at 55°C, FPase activity was maximum on
5th day of incubation and enzyme recovery was also
rbon sources a) Dextrose b) Sucrose c) Xylose and d) CMC.



Figure 4 CMCase and FPase production optimization using various nitrogen sources a) Peptone b) Beef extract c) Sodium nitrate and
d) Ammonium nitrate.
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recommended during this period beyond which there was
a decline in its activity. In a similar study, maximum FPase
(0.38 U/ml) and CMCase (0.52 U/ml) were produced by
T. reesei after 7 days of incubation. The enzyme activ-
ities decrease by further incubation. T. reesei produced
highest level of FPase (0.48 U/ml) and CMCase (0.58
U/ml) after 9 days of incubation using wheat bran as
substrate (Gomes et al. 2006).
Figure 5 CMCase and FPase production optimization at different incu
Protein production kinetics
Protein production kinetics was studied by estimating
protein content in the fermentation medium from 3rd

day to 11th day of incubation by Lowry et al. (1951)
method (Figure 7). In carbon source optimization, a gen-
eral trend of decline in protein content was observed
from 3rd day onwards. Whereas in nitrogen source
optimization, the protein content was quite high for
bation temperature a) 25°C b) 35°C c) 45°C and d) 55°C.



Figure 6 CMCase and FPase production optimization at different medium pH a) pH 3 b) pH 5 c) pH 7 and d) pH 9.

(a) (b)

(c) (d)

Figure 7 Protein stability kinetics for various enzyme production parameters a) Carbon sources b) Nitrogen sources c) Temperature
and d) pH.
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medium supplemented with beef extract as nitrogen
source followed by peptone. There was an increase in
protein production in case of all nitrogen sources tested,
and a decline was observed for incubation beyond 7th

day. Incubation period of 6 days was reported as
optimum time period to achieve peak cellulase activity
by Trichoderma sp. in a similar work (Sun et al. 1999).
High protein production was achieved in medium incu-
bated at 35°C following 7 days of incubation beyond
which a sharp decline of protein content was observed.
Though the protein production was low, there was a lin-
ear protein production kinetics observed in medium at
55°C upto 11th day of incubation. Similarly, when pH
was adjusted in the range of 3 and 9, protein production
was higher. However, the high protein content was
achieved after 7th day of incubation in all pH tested.

Biomass production
Estimation of biomass produced at each optimized pa-
rameters was done by weighing the fresh weight of fun-
gal biomass after the 11th day of incubation. High
biomass of 8.025 g per 100 ml of medium was obtained
when dextrose was used a carbon source (Figure 8). It
was followed by sucrose, xylose and CMC. Though least
biomass production was observed in case of CMC as
carbon source, the FPase production was at its max-
imum. CMCase activity was more or less same in all
other carbon sources tested. When considering the biomass
production in nitrogen source optimization, ammonium
Figure 8 Biomass production under various optimized conditions a) C
nitrate showed the highest value and beef extract the least.
But, the highest CMCase activity was achieved in beef ex-
tract and FPase activity in medium with peptone as nitrogen
sources. This showed that there was no significant re-
lation among biomass and enzyme production. Incuba-
tion temperature of 35°C gave maximum biomass yield
whereas pH 7 gave the high biomass content in pH
optimization. It was noted that FPase activity was
showing an inverse relationship with the biomass pro-
duction. Further, pH 7 was suitable for optimal growth
as well as for enzyme production. Lower incubation
temperature favoured CMCase production and high
incubation temperature favoured FPase production but
biomass production was highest at 35°C which was
supporting its thermophilic ability.

Solid state fermentation
Solid state fermentation was performed using six different
substrates and CMCase and FPase activity was quantified
following 7 days of incubation (Table 2). Compared to
the enzyme activity in the submerged fermentation, there
was low activity observed in all substrates tested. However
when concerning of the cost-effective production methods
and its strategy of utilization of solid waste material, SSF is
considered superior. In the present study, coconut oil cake
was found to be a reliable substrate for CMCase produc-
tion which was evident from its higher activity even at low
moisture content of 20% tested. Similarly when rice bran
was used as a substrate, at high moisture of 50%, it
arbon sources b) nitrogen sources c) pH and d) temperature.



Table 2 CMCase and FPase activity of enzymes produced
from Solid State fermentation

Substrates Moisture
%

CMCase
activity

FPase
activity

Protein
concentration

(U/ml) (U/ml) (μg/ml)

Coconut Oil Cake (COC) 20 2.841 0.410 204.6 ± 0.321

30 2.883 0.218 197.3 ± 0.115

50 3.514 0.659 284.8 ± 0.175

Groundnut Oil Cake
(GOC)

20 0.294 0.110 105.4 ± 0.121

30 0.783 0.237 213.8 ± 0.203

50 1.009 0.455 193.7 ± 0.321

Neem Oil Cake (NOC) 20 0.625 0.101 109.3 ± 0.112

30 1.228 0.723 189.0 ± 0.321

50 1.289 0.812 197.0 ± 0.127

Rice Bran (RB) 20 1.136 0.562 111.2 ± 0.184

30 1.328 0.880 171.4 ± 0.061

50 2.872 0.982 198.7 ± 0.117

Cassava Starch (CSW) 20 1.329 0.231 233.1 ± 0.199

30 1.340 0.881 309.2 ± 0.098

50 1.344 0.892 314.8 ± 0.067

Sugarcane Bagasse (SB) 20 0.922 0.344 122.3 ±0.078

30 1.382 0.873 249.0 ±0.129

50 3.229 1.009 272.6 ±0.011
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resulted in a better CMCase activity of 2.872 U/ml. Cas-
sava starch waste yielded enzyme activity of 1.340 U/ml at
50% moisture and had maximum mass loss of 99.22%.
Sugarcane bagasse when used as substrate for enzyme
production using T. viride resulted in maximum enzyme
activity of 3.229 U/ml CMCase and 1.009 U/ml FPase at
higher moisture content. However the enzyme production
was increasing in relation to moisture content in all the
substrates tested. Gautam et al. (2011) achieved a max-
imum of 1.77 U/ml of exoglucanase and 1.95 U/ml of
Figure 9 Enzyme yield (%) of substrates used in SSF for cellulase pro
endoglucanase using Trichoderma sp. utilizing municipal
solid waste. In another study, maximum of 0.46 and
0.26 IU/ml of CMCase and FPase respectively was obtained
using Rhizopus stolonifer grown on cassava waste in SSF
condition after 10 days of incubation (Pothiraj et al. 2006).
Enzyme yield was higher for CSW followed by SB
(Figure 9).

Substrate utilization rate
When SSF is concerned, it plays an important role in
solid waste management where solid substrates used are
usually agro-wastes. Hence, the utilization or degrad-
ation of the solid matter is very important in this
process. In spite of many researches focused on enzyme
production utilizing solid waste through SSF, there was
no much concern on the resultant solid residue after en-
zyme production. During SSF, fungal biomass utilizes
solid waste for growth and further as an energy source
for enzyme production. Substrate utilization was expressed
in terms of mass loss (%) after the fermentation. Figure 10
shows the mass loss in various substrates after the SSF for
cellulase production using T. viride VKF3. Highest degree
of mass loss was observed in CSW followed by SB at 50%
moisture content (w/v). There was an increase in mass loss
percentage as the moisture was increased. In SSF, in spite
of lower mass loss observed in COC when compared to
SB, it gave maximal CMCase activity. In the aspect of solid
waste management, agro-residues like sugarcane bagasse
and coconut oil cake can be utilized for enzyme production
using the present T. viride VKF3 isolate. However other
available substrates could be used for enzyme production
and the resultant solid sludge could be used for manuring
as it possesses bio-control and growth promoting activity.

Conclusion
It may be concluded from this work that under sub-
merged fermentation, medium should be supplemented
duction using T. viride VKF3.



Figure 10 Mass loss (%) of various substrates used in SSF for cellulase production using T. viride VKF3.
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with dextrose and beef extract as carbon and nitrogen
sources respectively for CMCase production. Maximum
CMCase production was achieved at 25°C incubation
and at pH 9. FPase production was favoured by CMC as
carbon source and peptone as nitrogen source with
medium pH 7 incubated at 55°C. Enzyme recovery is
crucial between 5th to 9th days of incubation as there
was a decline trend observed in general. However, T. vir-
ide VKF3 could be used for enzyme production and solid
waste management of sugarcane and rice based indus-
tries from the evidence of better mass loss than coconut
oil cake.

Methods
Isolation of fungal isolate
Mangrove plant debris and soil was collected from
Valanthakad mangrove ecosystem, Cochin, India. The
soil samples were serially diluted upto 10-6 dilutions and
cultured on Potato Dextrose Agar (PDA) plates using
spread plate method and incubated at 28 ± 2°C. Plant
debris were cut into smaller pieces of length 1 cm and
placed on PDA and incubated under same condition as
above for 3–5 days. Distinct isolates were picked up and
inoculated on the surface of fresh PDA plates for purifi-
cation and further stored on PDA slants.

Screening of cellulolytic fungi
All fungal isolates were checked for their ability to produce
cellulase enzyme on PDA media supplemented with 5%
carboxy methyl cellulose (CMC) (Lingappa and Lockwood
1962). Cellulolytic fungi was observed to exhibit a clear
zone around the colony when medium was supplemented
with 0.2% congo red and counterstained with 1 M NaCl
solution after incubation for 3–5 days. Assay of positive
isolates were performed to select the isolate with highest
cellulolytic activity using potato dextrose broth under
similar growth conditions using standard method de-
scribed in the following section.

Molecular characterization of fungal isolate
DNA was isolated from the fungal isolate by using the
method reported earlier (Melo et al. 2006). Quality of
the DNA was evaluated by spectrometric analysis as well
as by performing electrophoresis on 0.8% agarose gel.
DNA was further amplified using DR [5'-GGTCCGT
GTTTCAAGACGG-3'] and DF [5'-ACCCGCTGAACT
TAAGC-3'] universal primers for amplification of LSU
28S rDNA (Kurtzman and Robnett 1997). The PCR re-
action mixture consisted of 18.7 μl deionized water,
2.5 mM Taq buffer with MgCl2, 0.5 μM forward primer
and reverse primers followed by 0.5 mM of dNTPs. Fi-
nally 1.2 U of Taq polymerase and 2 μl of 2 ng/ml tem-
plate DNA was added and made upto 25 μl. Initial
denaturation was performed at 95°C for 5 min followed
by denaturation at 94°C for 30 sec. Annealing and exten-
sion was done at 55°C and 72°C respectively for 30 sec.
Final elongation was done at 72°C for 10 min. Resultant
PCR amplicon was purified and sequenced using auto-
mated DNA sequencing on ABI 3730xl DNA analyzer
(Applied Biosystems, USA). The sequencing chromato-
gram was analyzed to extract the sequence and used for
BLASTN analysis against non-redundant NCBI database
which resulted in the identification of ten similar sequences.
Clustal W multiple sequence alignment (Hompson et al.
1994) was performed using BioEdit 5.0 and phylogenetic
tree was constructed for the aligned sequences in MEGA
5.0 (Tamura et al. 2011) based on neighbour joining method
(Saitou and Nei 1987).

Phyto-pathogenecity of fungal isolates
Vigna radiata (L.) R. Wilczek was grown in sterile soil
upto 4–5 leaves stage. Incisions were made using sterile
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scalpel and spore suspension (108 spores/ ml) was inocu-
lated. The inoculated plantlets were incubated under
moist condition for two days to develop fungal infection.
Control plants were treated with sterile distilled water at
incision site (Aneja 2003). After a week’s incubation
under controlled conditions shoot length, root length,
fresh weight and dry weight of test plants were com-
pared with the control plant. Appearance of any visible
necrosis development at site of inoculation was also
noted.

Zymogram analysis
PAGE was performed under denaturing condition. Gel
electrophoresis was done on 1% (w/v) CMC and stained
with 0.1% (w/v) congo red solution at room temperature
for 30 min. The cellulase activity band was observed as a
clear colourless area depleted of CMC, against a red
background when destained in 1 M NaCl solution (Holt
and Hartman 1994).

Production medium preparation
Optimizing of conditions was performed to attain the
maximum cellulase enzyme activity with the fungal iso-
late T. viride VKF3. Culture inoculum was prepared in
fungal production medium with the pH of 6.5 (Jayant
et al. 2011). The sterilized production medium was inocu-
lated with T. viride VKF3 (108 spores/ml) and incubated
on a rotatory shaker at 150 rpm at room temperature for
3 days.

Optimization of fermentation conditions
Fungal basal medium [2.0 g KH2PO4, 0.3 g urea, 0.3 g
MgSO4.7 H2O, 0.3 g CaCl2, 5 mg FeSO4. 7 H2O, 1.6 mg
MnSO4.H2O, 1.4 mg ZnSO4.7 H2O and 1.5 mg CoCl2.6
H2O in 1000 ml distilled water] was supplemented with
four different carbon sources namely dextrose, sucrose,
xylose and CMC. Peptone was also included as a nitro-
gen source and fungal inoculum of 3% was added into
the sterilized medium and incubated on a rotatory
shaker at 150 rpm at room temperature for 3 days. Cel-
lulase activity was quantified from 3rd day to 11th day to
understand the enzyme production kinetics. Similar
protocol was followed for nitrogen source optimization
with any one of the following nitrogen sources like pep-
tone, beef extract, sodium nitrate or ammonium nitrate
supplemented into basal medium. Cellulolytic activity
was quantified by the method described in the following
section. The identified best carbon source was further
used for nitrogen source optimization. Four different pH
and incubation temperature were tested and evaluated
for optimum cellulase production. Medium pH was fixed
at 3, 5, 7, 9 and incubated at temperatures 25°C, 35°C,
45°C and 55°C (best pH with best temperature). Like-
wise, the medium was inoculated with 3% fungal inocula
and kept on a rotatory shaker. Cellulase activity was ana-
lysed from 3rd to 11th day of incubation.

Solid state fermentation
Cellulase production was evaluated on abundant solid
substrates to reduce the production cost. Solid state fer-
mentation was performed using natural substrates like
cassava starch waste (CSW), rice bran (RB), coconut oil
cake (COC), groundnut oil cake (GOC), neem oil cake
(NOC) and sugarcane bagasse (SB). The above sub-
strates were moistened with basal fungal medium ex-
cluding the carbon and nitrogen sources. Substrates
were added with 20, 30 and 50% (w/v) of basal medium
and inoculated with 3% fungal inoculum. The solid state
cultures were incubated at 28 ± 2°C for 5–7 days. Differ-
ences in growth rate on solid substrates were visually
evaluated. Enzyme extraction was done by addition of
phosphate buffer [pH 6.8] to the solid substrate followed
by incubation for 3 hours. The medium was filtered
through sterile mesh to obtain crude enzyme. Following
the enzyme extraction, weight of the oven dried (105°C
for overnight) substrates was noted and substrate
utilization was expressed in terms of mass loss in per-
centage (Bucher et al. 2004). All the experiments were
performed in triplicates unless otherwise mentioned and
results were expressed as mean value ± SE. Enzyme yields
were calculated using the following formula: Enzyme
yield = (total amount of enzyme/enzyme activity) × 100.

Enzyme extraction
After 7th day, all solid state fermentation flasks were
flooded with equal amount of sodium phosphate buffer
[pH 6.8] and incubated for 1–3 hours. The solid sub-
strate was filtered through a sterilized sieve to extract
the crude enzyme solution.

Cellulase assay
CMCase (carboxy methyl cellulase) [EC. 3.2.1.4] activity
was assayed using dinitrosalicylic acid (DNS) method
(Mandels and Weber 1969). Supernatant was collected
by centrifuging medium at 10,000 rpm for 10 min at
4°C. 1% of CMC in 0.1 M phosphate buffer (pH 6.8)
was used as the substrate. The reaction mixture had
1 ml of substrate solution and 1 ml of enzyme. The
reaction was carried out at 55°C for 15 min. The
amount of reducing sugar released in the hydrolysis
was measured and 1 unit of CMCase activity was
expressed as 1 μ mol of glucose liberated per ml of
enzyme per minute.

Filter paper-ase (FPase) assay
50 mg of dry Whatmann No. 1 filter paper discs were in-
cubated with 0.5 ml culture filtrate obtained after centri-
fugation similar to the above conditions. 0.5 ml sodium
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citrate buffer was added and incubated for 1 hr at 50°C.
The glucose liberated from the above reaction was mea-
sured by DNS method. One unit of enzyme activity was de-
fined as the amount of enzyme required to release 1 μ mol
reducing sugars per ml under standard assay condition
(Gilna and Khaleel 2011).

Protein estimation
After the incubation, the medium was centrifuged at
10,000 rpm for 10 min at 4°C and the supernatant was
collected. Protein content of the supernatant was esti-
mated as shown by Lowry et al. (1951) with BSA as the
standard. 0.5 ml of the crude enzyme sample was added
with equal amount of distilled water followed by
addition of 5 ml of colour forming reagent and incu-
bated at room temperature for 10 min. 0.5 ml of Folin’s
reagent was added and incubated for 20 min at room
temperature and absorbance was taken at 660 nm. Ab-
sorbance was compared with standard graph obtained
using BSA.

Biomass production
Biomass produced under optimum growth conditions
were estimated by weighing the fresh weight of the fil-
tered fungal biomass through sterilized sieves. Fresh
weight of the biomass produced was expressed in gram
per 100 ml of production medium.
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