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Abstract

Fanconi anemia (FA) is a genetically heterogeneous syndrome associated with increased cancer predisposition. The
underlying genes govern the FA pathway which functions to protect the genome during the S-phase of the cell cycle.
While upregulation of FA genes has been linked to chemotherapy resistance, little is known about their regulation in
response to proliferative stimuli. The purpose of this study was to examine how FA genes are regulated, especially in
relation to the cell cycle, in order to reveal their possible participation in biochemical networks. Expression of 14 FA
genes was monitored in two human cell-cycle models and in two RB1/E2F pathway-associated primary cancers,
retinoblastoma and basal breast cancer. In silico studies were performed to further evaluate coregulation and identify
connected networks and diseases. Only FANCA was consistently induced over 2-fold; FANCF failed to exhibit any
regulatory fluctuations. Two tools exploiting public data sets indicated coregulation of FANCA with BRCA1. Upregulation
of FANCA and BRCA1 correlated with upregulation of E2F3. Genes coregulated with both FANCA and BRCA1 were
enriched for MeSH-Term id(s) genomic instability, microcephaly, and Bloom syndrome, and enriched for the cellular
component centrosome. The regulation of FA genes appears highly divergent. In RB1-linked tumors, upregulation
of FA network genes was associated with reduced expression of FANCF. FANCA and BRCA1 may jointly act in
a subnetwork - supporting vital function(s) at the subcellular level (centrosome) as well as at the level of embryonic
development (mechanisms controlling head circumference).
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1 Background
Fanconi anemia (FA) is a rare, recessive, genetically hetero-
geneous, chromosomal instability disorder, characterized
by developmental abnormalities, retarded growth, bone
marrow failure, and a high risk for the development of can-
cer (Auerbach et al. 2001; Alter 2003; Rosenberg et al.
2003; Kutler et al. 2003). Fanconi anemia patient-derived
cells are extremely sensitive to bifunctional alkylating or
DNA interstrand cross-linking agents, such as mitomycin
C and cisplatin (Ishida and Buchwald 1982; Wang 2007).
Currently, sixteen FA genes have been identified, each

corresponding to a distinct ‘complementation group’:
FA-A, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O,
-P, and -Q (Strathdee et al. 1992; Pronk et al. 1995;
Apostolou et al. 1996; Lo Ten Foe et al. 1996; de Winter
et al. 1998, 2000a, b; Waisfisz et al. 1999; Timmers et al.
2001; Howlett et al. 2002; Meetei et al. 2003, 2004, 2005;
* Correspondence: jc.dorsman@vumc.nl
†Equal contributors
ˆDecease
Department of Clinical Genetics, Section Oncogenetics, VU University Medical
Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands

© 2014 Haitjema et al.; licensee Springer. This i
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
Levitus et al. 2005; Levran et al. 2005a; Dorsman et al.
2007; Xia et al. 2007; Smogorzewska et al. 2007; Sims et al.
2007; Vaz et al. 2010; Kim et al. 2011; Stoepker et al. 2011;
Bogliolo et al. 2013); the most common groups being
FA-A, -C, and -G, together accounting for 85% of all FA
patients (Levran et al. 2005b; de Winter and Joenje 2009).
To maintain genome integrity, the FA proteins function

together in the so-called FA/BRCA-pathway to repair DNA
damage, such as double strands breaks (DSBs). The FA/
BRCA-pathway is divided into an upstream and a down-
stream branch in relation to the monoubiquitination of
FANCD2 and FANCI, which is considered a central activat-
ing reaction. This reaction is catalyzed by the so-called core
complex, which is thought to be assembled via subcom-
plexes. These complexes are FANC-A and -G; FANC-B
and -L; FANC-E, -C, and -F. Together with FANCM these
proteins constitute the core complex (Medhurst et al.
2006). The activation of FANCD2 and FANCI coordinates
the activities of FA proteins that act downstream in the
pathway leading to DNA repair: FANCD1/BRCA2, FANCJ/
BRIP1, FANCN/PALB2, FANCO/RAD51C, FANCP/SLX4,
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FANCQ/ERCC4/XPF and XRCC2. Homozygous germ line
mutations in BRCA1 can result in a Fanconi anemia-like
phenotype (Domchek et al. 2013; D’Andrea 2013), BRCA1
may thus be considered an FA-like gene whose action may
thus be closely connected to the FA pathway.
In addition to their involvement in the canonical FA/

BRCA-pathway acting either in the upstream, central, or
downstream part, additional protein complexes of FA
proteins have been described that may serve distinct or
related functions, such as FANCD1/BRCA2-FANCD2-
FANCG-XRCC3 (Wilson et al. 2008), and FANCA-
BRCA1 (Folias et al. 2002). Moreover, some FA proteins
appear to function in additional, seemingly unrelated,
processes such as oxidative metabolism, cell cycle pro-
gression, apoptosis, and transcriptional regulation, which
may be relevant for some of the pathological features of
FA (Kaddar and Carreau 2012).
Biallelic mutations in the genes underlying the FA/

BRCA-pathway cause predisposition to malignancies in
FA patients. On the other hand, there is evidence that a
proportion of cancers arising in the (non-FA) general
populations (‘sporadic cancers’) may possess a disrupted
FA/BRCA pathway (Stecklein and Jensen 2012). The sta-
tus of this pathway appears to be relevant for cancer treat-
ment response. Repression has been associated with a
favorable response against cross-linking drugs (Chen et al.
2005; Stecklein and Jensen 2012), whereas hyperactivation
might be responsible for resistance to such drugs.
Upregulation of several FA genes, especially during S

phase, has been linked to the RB1/E2F pathway (Tategu
et al. 2007; Hoskins et al. 2008; Kim and D’Andrea 2012),
which is known to control cell cycle progression (Nevins
2001; Chen et al. 2009; Knudsen and Wang 2010). This
pathway plays an important role in transcriptional regula-
tion during the cell cycle. Proteins of the RB1 family, pRb,
p107 and p130 work together with the sequence-specific
DNA-binding factors of the E2F family which consists of
the activators E2F1-E2F3 and repressors E2F4-E2F8 (Chen
et al. 2009; Di Fiore et al. 2013). During growth arrest,
E2F activity can be repressed by the RB1 protein family
via protein-protein interactions, while during progression
to the cell cycle from G1 to S phase phosphorylation of
the RB1 family members results into E2F activation
(Henley and Dick 2012). Since disruption of the RB1/
E2F pathway and upregulation of E2F target genes is
frequently observed in human cancers (Nevins 2001;
Chen et al. 2009; Knudsen and Wang 2010) upregula-
tion of (a subset) of FA genes may be a common fea-
ture for tumors with a disrupted RB1 pathway.
In this study we monitored expression of 14 FA genes

during the cell cycle and in cancers with a disrupted
RB1/E2F pathway, in an attempt to identify gene expres-
sion patterns that characterize two important intercon-
nected pathways, i.e. the FA and RB1/E2F pathways.
2 Results
2.1 Upregulation of the FA mRNA level upon progression
through the cell cycle in two cell models
To study the expression of FA genes during the cell cycle,
we used the established human cell-cycle model T98G de-
rived from glioblastoma cells (Stein 1979). T98G cells can
be efficiently arrested via serum deprivation, while after
serum stimulation a synchronized progression through
the cell cycle can be observed. T98G cells express abun-
dant levels of E2F activity and possess a functional RB
pathway (Takahashi et al. 2000). Fluorescent Activated
Cell Sorting (FACS) analysis and CCNE2 expression con-
firmed the proper synchronization of the cells (Figure 1a -
left and right panel).
The mRNA expression levels of the following endogen-

ous FA genes (FANC-A, -B, -C, -E, -F, -G, -L, -M, -D2, -I,
-D1, -N, -J, and BRCA1) were analyzed with RT-qPCR.
Changes in mRNA levels were subsequently calculated
relative to time point zero. Several of the FA genes turned
out to be prominently induced during the cell cycle pro-
gression (Figure 1b-g), e.g. FANCA (Figure 1b) while other
FA genes, like FANCL (Figure 1c) and FANCF (Figure 1d)
showed a relatively constitutive expression pattern during
the cell cycle.
We also compared the expression of endogenous FA

genes during the cell cycle in human diploid fibroblasts
(EVA-F) via serum deprivation (Additional file 1: Figure S1).
FACS analysis (Additional file 1: Figure S1a - left panel)
and expression analysis of CCNE2 confirmed the proper
synchronization of the cells (Additional file 1: Figure S1a -
right panel). In this instance, also a subset of the FA genes
turned out to be prominently upregulated during the cell
cycle relative to time point zero, again FANCA (Additional
file 1: Figure S1b), but also FANCD2 (Additional file 1:
Figure S1f) and BRIP1 (Additional file 1: Figure S1g);
while other FA genes, like again FANCL (Additional file 1:
Figure S1c) and FANCF (Additional file 1: Figure S1d),
were less affected during the cell cycle progression.

2.2 Upregulation of FA gene expression in cancers
associated with disrupted RB1/E2F pathway
To study the upregulation of the FA/BRCA-pathway in
cancers with a disrupted RB1/E2F pathway, two different
primary human tumors, retinoblastoma (Rb) and basal
breast cancer were studied. The vast majority of retino-
blastomas harbors mutations in RB1 (Dunn et al. 1988),
while it has been recently recognized that functional loss
of RB1 is a common event in basal like breast tumors
(Herschkowitz et al. 2008). To discriminate between up-
regulation caused by altered regulation of expression or
by DNA copy number alteration (CNA), we determined
the correlation between CNA and mRNA expression of
FA/BRCA genes (Henrichsen et al. 2009; Dear 2009;
Kuiper et al. 2010).



Figure 1 Differential cell cycle regulation of FA genes in human T98G cells. (a-left panel) FACS analysis of synchronized cells, the 0, 8, 12,
16, 18, 20, 22, 24, 28, and 32 hr time points are shown; S phase is most pronounced between 18–22 hrs. Data of FACS represents one
representative synchronization (a-right panel) Control experiment: The mRNA levels of CCNE2 during the cell cycle are shown. Quantitative RT-PCR
was performed on total RNA samples from different time points and mean fold changes (MFC) were calculated relative to time point zero. Data
represents the average mean fold change of 2–3 independent synchronization each in duplicate qPCR measurement (except for time points:
28 and 32) (b-g) Relative gene expression during the cell cycle for genes encoding in the FA/BRCA-pathway.
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2.2.1 Upregulation of FA genes in RB1-mutated
retinoblastoma versus fetal retina
We analyzed the gene expression in a cohort of primary
retinoblastoma tumors and compared that to healthy
fetal retina samples. We found a significant upregula-
tion in retinoblastoma tumors (most significant Fold
Changes [FCs] indicated, for all probes and corresponding
FCs see Table 1), for the core complex members: FANCA
(FC = 3.54, P = 2.32E-06), FANCC (FC = 1.48, P = 3.25E-
03), FANCE (FC = 1.93, P = 2.07E-02), FANCG (FC = 4.00,
P = 1.52E-07), FANCL (FC = 2.65, P = 4.95E-09), FANCM
(FC = 1.51, P = 2.08E-02); central players: FANCD2 (FC =
1.95, P = 4.68E-03) and FANCI (FC = 2.69, P = 1.55E-03);
and for the downstream branch: FANCD1/BRCA2 (FC =
2.90, P = 4.65E-04), FANCN/PALB2 (FC = 2.18, P = 8.70E-
09), and BRCA1 (FC = 2.05, P = 2.13E-04) compared to
healthy fetal retina. For the core complex member FANCF
we found a significant downregulation (FC = -1.81, P =
1.30E-04). For the core complex member FANCB and
downstream branch member FANCJ/BRIP1 no significant
differences were detected compared to healthy fetal retina.
The upregulation of FANCE was driven by CNA since a
linear statistical significant correlation was found between
CNA and mRNA expression (FDR P-value cut-off 5.00E-
02; Table 2).
Interestingly, in MYCN-amplified (without RB1 muta-

tions) retinoblastoma (Rushlow et al. 2013) compared to
RB1-mutated retinoblastomas, we found a significant
downregulation of the core complex members: FANCA
(FC = -3.99, P = 3.69E-03), FANCC (FC = -1.91, P = 1.46E-
02), FANCL (FC = -2.56, P = 2.72E-06), FANCM (FC = -2.07,
P = 2.16E-02); central player: FANCI (FC = -3.74, P = 1.56E-
02); and downstream branch member BRCA1 (FC = -2.36,
P = 8.85E-03; Additional file 2: Table S1) compared to classic
retinoblastoma (with RB1 mutations). This provided add-
itional evidence that the disrupted RB1/E2F-pathway in
the RB1-mutated retinoblastoma tumors may play a role
in upregulation of the FA/BRCA-pathway members.

2.2.2 Upregulation of FA genes in basal versus not-basal
breast tumors
We compared 41 basal breast tumors (27 BRCA1-mu-
tated) and 79 not-basal breast tumors (8 BRCA1 mutated)
for FA gene expression (Table 3). A significant upregula-
tion in basal breast tumors compared to not-basal tumors
was found for the core complex members: FANCA (FC =



Table 1 Gene expression in Retinoblastoma tumors
versus fetal retina

Part Gene
symbol

Probe ID Fold
change

P-value*

Core complex FANCA 203805_PM_s_at 2.20 6.06E-03

FANCA 203806_PM_s_at 3.54 2.32E-06

FANCA 236976_PM_at 4.00 2.68E-06

FANCC 242654_PM_at 1.48 3.25E-03

FANCC 205189_PM_s_at 1.49 2.77E-02

FANCC 1559513_PM_a_at 1.52 6.28E-03

FANCE 220255_PM_at 1.93 2.07E-02

FANCF 218689_PM_at -1.81 1.30E-04

FANCF 222713_PM_s_at -1.37 2.65E-02

FANCG 203564_PM_at 4.00 1.52E-07

FANCL 218397_PM_at 2.65 4.95E-09

FANCM 234733_PM_s_at 1.51 2.08E-02

FANCM 242711_PM_x_at 1.56 2.27E-02

Central players FANCD2 242560_PM_at 1.95 4.68E-03

FANCI 223785_PM_at 1.69 2.47E-02

FANCI 213008_PM_at 2.55 3.08E-03

FANCI 213007_PM_at 2.69 1.55E-03

Downstrem branch BRCA2 214727_PM_at 2.31 5.87E-03

BRCA2 208368_PM_s_at 2.90 4.65E-04

PALB2 219530_PM_at 2.18 8.70E-09

BRCA1 204531_PM_s_at 2.05 2.13E-04

Acitvating E2Fs E2F1 204947_PM_at 1.61 5.47E-03

E2F1 2028_PM_s_at 1.86 2.56E-03

E2F2 228361_PM_at 2.84 2.31E-04

E2F3 203692_PM_s_at 3.50 1.94E-08

E2F3 203693_PM_s_at 3.72 2.18E-10

Control CCNE2 211814_PM_s_at 7.77 3.13E-10

CCNE2 205034_PM_at 8.88 1.22E-11
*Cutoff P-value < 0.05.

Table 3 Gene expression in basal breast tumors versus
not-basal

Part Gene
symbol

Probe ID Fold
change

P-value*

Core complex FANCA 215530_at 1.51 6.41E-03

FANCA 236976_at 2.07 7.57E-04

FANCA 203806_s_at 3.06 2.74E-12

FANCA 203805_s_at 3.40 1.93E-13

FANCB 243597_at 1.95 5.10E-05

FANCB 1553244_at 2.38 1.26E-05

FANCB 1557217_a_at 3.06 3.02E-07

FANCB 1557218_s_at 4.73 5.18E-12

FANCC 205189_s_at 1.38 3.38E-04

FANCE 220255_at 1.62 2.80E-08

FANCF 218689_at -1.29 2.60E-03

FANCG 203564_at 1.39 1.52E-06

FANCL 218397_at 1.52 3.79E-06

FANCM 242711_x_at -1.28 1.26E-02

Central players FANCD2 242560_at 1.66 4.57E-06

FANCD2 223545_at 1.74 2.22E-05

FANCI 223785_at 1.60 1.17E-05

FANCI 213007_at 1.80 1.53E-06

FANCI 213008_at 1.98 1.46E-06

Downstrem branch BRCA2 208368_s_at 1.96 3.45E-09

BRCA2 214727_at 1.76 6.74E-08

BRIP1 221703_at 2.04 1.28E-03

BRIP1 221703_at 2.04 1.28E-03

BRIP1 221703_at 2.04 1.28E-03

BRIP1 235609_at 1.96 5.75E-05

Acitvating E2Fs E2F1 2028_s_at 1.63 1.89E-05

E2F1 204947_at 2.01 8.72E-06

E2F2 235582_at 1.55 2.28E-02

E2F2 228361_at 1.98 2.97E-07

E2F3 203692_s_at 1.95 8.13E-17

E2F3 203693_s_at 2.21 1.12E-12
*Cutoff P-value < 0.05.
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3.40, P = 1.93E-13), FANCB (FC = 4.73, P = 5.18E-12),
FANCC (FC = 1.38, P = 3.38E-04), FANCE (FC = 1.62, P =
2.80E-08), FANCG (FC = 1.39, P = 1.52E-06), FANCL
(FC = 1.52, P = 3.79E-06); central players: FANCD2
(FC = 1.66, P = 4.57E-06) and FANCI (FC = 1.98, P =
1.46E-06); and for the downstream branch: FANCD1/
BRCA2 (FC = 1.96, P = 3.45E-09), and FANCJ/BRIP1
Table 2 Significant correlation copy number variation
and mRNA in retinoblastoma

Gene
symbol

Probe ID Linear
correlation

P-value FDR P-value*

FANCE 220255_PM_at 2.25 2.03E-07 3.24E-05

E2F3 203692_PM_s_at 1.65 1.99E-08 5.78E-06

E2F3 203693_PM_s_at 1.50 1.81E-08 5.34E-06
*Cutoff FDR P-value < 0.05.
(FC = 1.96, P = 5.75E-05). A significant downregulation
was found for the core complex members FANCF
(FC = -1.29, P = 2.60E-03), and FANCM (FC = -1.28, P =
1.26E-02). No significant differences were detected for the
downstream branch member: FANCN/PALB2. The ex-
pression status of BRCA1 is influenced by mutation status
therefore we consider it unknown.
The correlation between CNA and mRNA expression

of FA/BRCA genes was determined in the basal breast
tumors (n = 41; Table 4). Statistical significant linear cor-
relation (FDR P-value cut-off 5.00E-02) was found for
FANCI and FANCF showing a strong linear correlation



Table 4 Significant correlation copy number variation
and mRNA in basal-like tumors

Gene
symbol

Probe ID Linear
correlation*

P-value FDR P-value**

FANCI 213007_at 0.77 3.23E-09 1.61E-07

FANCF 222713_s_at 0.73 4.93E-08 1.23E-06

FANCI 213008_at 0.72 9.63E-08 1.61E-06

E2F3 203693_s_at 0.70 4.05E-07 5.06E-06

FANCF 218689_at 0.68 1.19E-06 1.19E-05

E2F3 203693_s_at 0.66 3.04E-06 2.54E-05

E2F3 203692_s_at 0.60 3.75E-05 2.68E-04
*Cutoff > 0.60; **Cutoff FDR P-value < 0.05.
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(> 0.60), suggesting that differences in gene expression
are driven by CNAs.

2.3 E2F involvement
To determine which E2F transcription factors could be
associated with upregulation of FA genes, we studied
also the mRNA expression levels of activating E2F genes
(E2F1, E2F2, E2F3) in RB1-mutated retinoblastoma and
in basal breast tumors.
In RB1-mutated retinoblastoma, all three activating

E2Fs were significantly upregulated: E2F1 (FC = 1.86,
P = 2.56E-03), E2F2 (FC = 2.84, P = 2.31E-04), and E2F3
(FC = 3.72, P = 2.18E-10; Table 1). Upregulation of the
activating E2F genes was also found in basal versus not-
basal breast cancer: E2F1 (FC = 2.01, P = 8.72E-06), E2F2
(FC = 1.98, P = 2.97E-07), and E2F3 (FC = 1.95, P = 8.13E-
17; Table 3). Importantly, E2F3 upregulation was in both
cases (retinoblastoma and basal breast cancer) driven by a
CNA, since a strong correlation was found between CNA
and mRNA expression (FDR P-value cut-off 5.00E-02;
Tables 2 and 4).

2.4 Differential regulation of FA/BRCA genes
Established cell-cycle and E2F target genes, such as
CCNE2 are commonly robustly regulated by proliferative
stimuli (see also Figure 1 and Additional file 1: Figure S1).
To further group FA/BRCA genes in relation to cell cycle
regulation and induction by proliferative stimuli we used
two decision trees (Figure 2). For each criterion in the de-
cision trees, genes received points which are summarized
in Table 5.
In the first approach, cell cycle regulated genes were

selected based on their behaviour in the human cell
models. In the T98G model the average value of time
point 12–16 should have a MFC > 2.0, while in the dip-
loid fibroblasts time point 18 should have a MFC > 2.0
(Figure 2a). This approach allows to interrogate induc-
tion prior to entry of S phase; the usual pattern for regu-
lation at the mRNA level for genes playing a role in S
phase. Based on these criteria, “regulated” genes turned
out to be the core complex members: FANCA, FANCB,
FANCG, and FANCM; central players: FANCD2 and
FANCI; and for the downstream branch: FANCD1/
BRCA2, FANCN/PALB2, FANCJ/BRIP1, and BRCA1
(Additional file 2: Table S2). The core complex member
FANCE was only considered regulated in the T98G cell
line, whereas FANCC and FANCL only in the EVA-F fi-
broblasts. The core complex member FANCF was in
both cell types considered not regulated.
In the second approach, to select for proliferation stimu-

lated genes, we used the criterion ‘fold change > 2’ in com-
bination with significant P-values (Figure 2b) based on their
behaviour in RB1-linked cancers. Upregulation of FA genes
was found in both the retinoblastoma as well as in basal
breast tumors. Only a few expression differences were
possibly driven by CNA (FANCE, FANCF, and FANCI).
The only gene that was consistently upregulated in both
retinoblastoma as well as in basal breast tumors was
FANCA (Additional file 2: Table S3).
The results of the combined scoring (Figure 2) are sum-

marized in Table 5; a gene can have maximal 4 points,
reflecting induction in all 4 contexts. Only FANCA turned
out to have 4 points. The following genes obtained all 3
points: FANCB, FANCG, FANCI, FANCD1/BRCA2,
FANCN/PALB2, BRCA1, and FANCJ/BRIP1. FANCF
turned out not to be upregulated in both cell models and
in the primary tumors its expression was also low which
was correlated with CNA. The results indicate differential
regulation of FA genes in response to proliferative stimuli,
with FANCA the most regulated.

2.4.1 In silico analysis to determine coregulation of
FA/BRCA genes
To further study coregulation, we performed in silico
studies using the most regulated gene, i.e. FANCA, as
the starting point. Firstly, we analyzed the correlation of
FANCA with other genes with help of two online anno-
tation tools, BioGPS (Wu et al. 2009) and GeneFriends
(http://genefriends.org/microArray/) (van Dam et al.
2012). With the first tool BioGPS the dataset GeneAtlas
U133A, gcrma was analyzed (Su et al. 2004). This
allowed us to interrogate the overall gene expression
profile of a panel of 79 different human tissues, includ-
ing several cell lines from the NCI-60 cancer cell panel.
The analysis of the gene expression pattern of FANCA
indicated a strong correlation (> 0.7) with BRCA1
(0.7851), and FANCE (0.7402; Table 6).
The second tool GeneFriends identifies co-expressed

genes in a genome wide co-expression map over 4,000 hu-
man microarray datasets. The underlying datasets were
derived from a variety of conditions. Searching Gene-
Friends with FANCA returns in the top list FANCA itself
with a co-expressed value of 1.0 as expected. Intriguingly,
only co-expression of FANCA with BRCA1 was found and

http://genefriends.org/microArray/


Figure 2 Decision tree(s) to select coregulated genes. (a) Decision tree for selecting FA/BRCA genes that are regulated through the cell cycle.
(b) Decision tree to select FA/BRCA genes in RB1/E2F disturbed cells. Two cell models: retinoblastoma and breast cancer cells are screened. In
both models a selection is made for “Regulated” or “Non-Regulated”. In case of “Regulated” a selection is made on the possible influence of
copy number alterations (CNA). Abbreviations: P = P-value; MFC =mean fold change; FC = fold change; LC = linear correlation; CNA = copy
number alteration.
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not with other FA/BRCA genes in the top 50 list. The co-
expression value of FANCA with BRCA1 was 0.708 indi-
cating that FANCA is increased in expression (≥2 fold) in
70.8% of the cases when BRCA1 is increased in expression
(≥2 fold; Additional file 2: Table S4). The strong correl-
ation of FANCA with BRCA1 found with two different ap-
proaches, suggest that these two genes are frequently co-
expressed. With GeneFriends, we further analyzed which
genes are frequently coregulated with both FANCA and
BRCA1 (Additional file 2: Table S5). Enrichment analysis
of this gene set revealed Medical Subject Heading Terms
(MeSH; top 3; Additional file 2: Table S6) genomic instabil-
ity (P-value: 4.42E-04), microcephaly (P-value: 8.33E-04),
and Bloom syndrome (P-value: 3.33E-03) and an enrich-
ment for the cellular component centrosome (GO:0005813;
P-value: 3.55E-08; Additional file 2: Table S7).

2.4.2 Coregulation of FANCA and BRCA1
Combining the results of the studies in the cell models
and the tumors with the in silico data (Figure 2; Table 5;
and Additional file 2: Table S4), reveals a high degree of
coregulation of FANCA and BRCA1, with E2F3 as a pos-
sible important driver for cell-cycle regulated expression.
To evaluate the degree of FANCA-BRCA1 co-expression,
we measured the correlation coefficient of FANCA and
BRCA1 expression in the Rb-tumor cohort (Figure 3). A



Table 5 Scoring scheme regulated expression FA/BRCA genes

Cell cycle model RB1/E2F disturbed cancers

Part Gene symbol T98G EVA-F Retinoblastoma Basal breast tumors Total

Core complex FANCA 1 1 1 1 4

FANCB 1 1 0 1 3

FANCC 0 1 0 0 1

FANCE 1 0 0 0 1

FANCF 0 0 0 0 0

FANCG 1 1 1 0 3

FANCL 0 1 1 0 2

FANCM 1 1 0 0 2

Central players FANCD2 1 1 0 0 2

FANCI 1 1 1 0 3

Downstream branch FANCD1/BRCA2 1 1 1 0 3

FANCN/PALB2 1 1 1 0 3

BRCA1 1 1 1 0 3

FANCJ/BRIP1 1 1 1 0 3

1 point = regulated; 0 = not regulated.
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strong linear correlation was found for co-expression of
FANCA and BRCA1 (Pearson: 0.72). Interestingly, when
adding the E2F3 expression to the FANCA and BRCA1
gene expression correlation, tumor samples with relatively
low expression of FANCA and BRCA1 had also low E2F3
and vice versa (Figure 3). This suggests a possible role for
E2F3 as a key driver for the gene regulation of the studied
genes, and in particularly FANCA and BRCA1. Three
established E2F3 target genes, CCNE1, FEN1, and PCNA,
displayed a similar pattern (results not shown). As noted
above, the Rb samples with MYCN amplifications have
relative low level of expression for both genes.

3 Discussion and conclusion
We found evidence for highly divergent cell cycle regula-
tion of FA pathway genes, with FANCA being the only
gene upregulated ≥ 2-fold in all four assayed conditions.
Cell cycle upregulation is associated with the E2F/RB1
network; inactivation of RB1 due to mutation results in
higher levels of specific FA genes. Importantly, our stud-
ies also indicate that RB1-mutated retinoblastoma are
not characterized by a general upregulation of the ca-
nonical FA pathway, since the important core complex
member FANCF turned out to be lower expressed associ-
ated with low DNA copy numbers; a finding with direct
therapeutic implications. Surprisingly, two tools exploiting
public data sets indicated coregulation of FANCA (acting
in the upstream branch of the FA network) with BRCA1
(acting downstream).
The encoded proteins of coregulated genes often partici-

pate in the same pathway. When we characterized the ex-
pression of genes of the FA/BRCA-pathway, we found
evidence for highly divergent cell type and stimulus-
dependent regulation of mRNA levels for the FA pathway,
which only can become apparent by in parallel compari-
sons as done in this study. Especially, the genes encoding
for proteins which build up the core complex show
strikingly different levels of cell cycle regulation. When
comparing the individual subcomplexes from the core
complex, one member of a subcomplex turned out to be
stronger cell cycle regulated than the other member(s),
e.g. FANCA versus FANCG (Figure 1b). Interestingly,
the more strongly cell cycle regulated gene of each sub-
complex contains Nuclear Localization Signal (NLS)-
encoding sequences, while the other partner(s) lacks a
positive motif score (Haitjema et al. 2013). It could be hy-
pothesized that the FA genes/proteins of the core complex
bearing NLSs constitute the driving forces for nuclear
complex assembly. Overall, in our assays, FANCA turned
out to be most affected by proliferative stimuli. In line with
this, FANCA induction had also been observed employing
two other cell-cycle approaches (Whitfield et al. 2002;
Hoskins et al. 2008). Together, this provides evidence
for strong cell cycle regulation of especially FANCA.
As could be expected, there is an involvement of the

RB1/E2F pathway in the regulation of FA genes, as had
already been noted for selected FA genes (Tategu et al.
2007; Hoskins et al. 2008). Here, we focused on the FA/
BRCA gene expression in cancers with disrupted RB1/E2F
pathway, which further underscored the interplay of both
pathways. Moreover, we showed that in MYCN-amplified
retinoblastoma, with an intact RB1/E2F pathway, FANCA
(and also BRCA1) are downregulated compared to RB1-
mutated retinoblastoma. FANCA was also found to be



Table 6 Gene correlation mRNA expression pattern with
FANCA

Symbol Reporter Correlation*

FANCA 203806_S_AT 1.0000

CCDC85A GNF1H07976_AT 0.9214

SUSD3 GNF1H08030_AT 0.8978

NLRP11 GNF1H07113_AT 0.8752

RPAIN 216962_AT 0.8719

WDR43 214662_AT 0.8525

PNPT1 GNF1H09065_S_AT 0.8510

AICDA 219841_AT 0.8462

C3orf37 201678_S_AT 0.8370

PRAMEF24P GNF1H08246_AT 0.8104

E2F5 221586_S_AT 0.8014

BACH2 221234_S_AT 0.7903

RFC1 208021_S_AT 0.7869

MRPL48 GNF1H02267_S_AT 0.7864

217464_AT 0.7853

BRCA1 204531_S_AT 0.7851

BFSP2 207399_AT 0.7657

RMI2 GNF1H08947_AT 0.7636

TCF3 209152_S_AT 0.7603

LRMP 204674_AT 0.7549

GCSAM GNF1H07830_AT 0.7536

GNF1H03417_S_AT 0.7525

ELL3 219518_S_AT 0.7523

SHMT2 214095_AT 0.7442

FANCE 220255_AT 0.7402

ZNF804A 215767_AT 0.7352

ALDH5A1 203608_AT 0.7301

ZNF232 219123_AT 0.7244

LRMP 35974_AT 0.7173

MTHFD1L GNF1H02482_S_AT 0.7126

ISG15 205483_S_AT 0.7115

PRDM15 GNF1H10126_AT 0.7032
*Correlation Cutoff: > 0.7; Bold: Genes of interest.
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upregulated in basal breast tumors compared to not-basal
breast tumors.
We as well show that activating E2F genes are associated

with upregulation of FA genes. Intriguingly, overexpression
of E2F3 strongly correlates with a high expression of
FANCA and BRCA1 in RB1-mutated retinoblastoma, while
in MYCN-amplified retinoblastoma all three genes show
relatively low expression. FANCA and BRCA1 had already
been denoted as E2F3-target genes in two other settings,
while importantly no other FA/BRCA genes were identi-
fied (Polager et al. 2002; Bild et al. 2006). However, also
other E2F genes likely contribute to the activation of FA
genes (Tategu et al. 2007; Hoskins et al. 2008).
In all, no evidence was found for coordinate upregula-

tion of the canonical FA pathway in response to prolifera-
tive stimuli. Due to low levels of the FANCF gene, the FA/
BRCA-pathway may in fact be hypo-activated in full-
blown retinoblastoma. Downregulation of FANCF mRNA
levels in primary RB1-mutated retinoblastoma had been
noted before (Ganguly and Shields 2010). Hyperactivation
of the FA/BRCA-pathway has been associated with resist-
ance against certain drugs including melphalan, while re-
pression of the FA/BRCA-pathway has been linked with
sensitivity. The combination of upregulation of specific FA
genes with low FANCF expression and therefore likely low
FANCF protein might explain the intermediate melphalan
sensitivity observed in retinoblastoma cell lines [unpub-
lished data], and why melphalan treatment can be success-
ful in a subset of retinoblastoma patients (Venturi et al.
2013). Low levels of FANCF gene expression correlated
with low levels of DNA was also found in basal breast
cancer. Downregulation of FANCF due to hypermethyla-
tion of the FANCF promoter has also been reported in
other tumors (Tischkowitz et al. 2003; Narayan et al.
2004; Wreesmann et al. 2007). The inactivation and/or
low levels of FANCF which therefore disrupts the canon-
ical FA pathway might also enhance alternative routes/
functions of FA proteins, such as e.g. a FANCA-BRCA1
subcomplex (Folias et al. 2002).
In retinoblastoma upregulation of FA genes is an early

event, since the first and second hit evolves mutations in
the RB1 gene. In addition, gain in copy numbers of E2F3
have already been found in retinoma, which is currently
regarded as the precursor of retinoblastoma (Sampieri
et al. 2008). It could be hypothesized, that in early stages
FA pathway activation may aid tumorigenesis. The low
FANCF levels observed in full-blown tumors, neverthe-
less, suggest that at later stages there may be a selection
against hyperactivation of the FA pathway. This order is
in accordance with a recent model described for the ac-
tion of the transforming human papillomavirus (HPV)
E7 protein. The FA pathway has been shown to be up-
regulated upon HPV infection (the transforming HPV
protein E7 binds to RB1 releasing E2F to transactivate
its targets), though the same activated FA pathway limits
the accumulation of E7 - and thereby infection or trans-
formation - via an unknown mechanism (Hoskins et al.
2012). Therefore, both in viral and non-viral RB1-linked
cancers, an early general upregulation of the FA network
may be followed by a dampening of the same network
via other mechanisms (Figure 4). Upregulation of FA
genes could be related to prevention of replication stress
in which the FA/BRCA pathway plays a role (Schlacher
et al. 2012). Reduction of replication stress at certain times
of tumorigenesis might reduce DNA-damage induced



Figure 3 FANCA and BRCA1 are coexpressed in Retinoblastoma tumors. Correlation of normalized intensities of the most significant probe
sets of FANCA (x-axis: 203806_PM_s_at, P = 2.32E-06) and BRCA1 (y-axis: 204531_PM_s_at, P = 2.13E-04) demonstrates a strong correlation
(Pearson = 0.72). Retinoblastoma with no RB1 mutations but with high MYCN amplification (orange/red dots) have relatively low expression of
FANCA and BRCA1. Dot sizes indicate levels of E2F3 expression. Retinoblastoma linked to RB1; blue dots: RB1 mutation determined in tumor; grey
dots: RB1 mutation not determined in tumor. FR = Fetal Retina.

Figure 4 Retinoblastoma and FA/BRCA pathway transformation model. First and second hits in retinoblastoma are the inactivation of the
RB1 alleles. Gain of E2F3 copy numbers aids to the upregulation of specific FA genes. In later stage inactivation of the FA/BRCA-pathway may be
accomplished via low levels of the FANCF DNA/RNA, resulting in melphalan sensitivity.
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apoptosis thereby facilitating tumorigenesis (Hills and
Diffley 2014).
Our analysis suggests also the possible relevance of

subnetworks of the FA pathway in pathology. Two tools
exploiting public data sets indicated coregulation of
FANCA - functioning in the upstream branch of the
classic FA network - with BRCA1 functioning in the
downstream branch. In fact, coregulation of FANCA and
BRCA1 was also observed in studies on the transcription
factor SMAD4 (Bornstein et al. 2009; Meier and Schindler
2011). In our previous published prioritization approach
based on FA protein properties, BRCA1 and FANCA were
number one and three, respectively (Haitjema et al. 2013);
resembling also each other on multiple intrinsic protein
properties.
Additional analysis of genes co-expressed with FANCA

and BRCA1, showed enrichment for the cellular compo-
nent centrosome. In line with this, FANCA and BRCA1,
but also the inducing transcription factor E2F3, have all
three been associated with centrosome function (Saavedra
et al. 2003; Kais et al. 2012; Kim et al. 2013); loss gives
rise to aberrant centrosomes. Importantly, in BRCA1
this function could be separated from its function in
homologous recombination. In accordance with this, in
uterine leiomyomas FANCA and BRCA1 are both lowly
expressed (Cirilo et al. 2013), and these tumors display
centrosome dysfunction (Shan et al. 2012). Intriguingly,
centrosome amplification causes microcephaly (Marthiens
et al. 2013), a MeSH term we find enriched in the co-
expressed genes.
BRCA1 has not been considered an FA gene, until re-

cently, when a female patient diagnosed with ovarian can-
cer appeared to harbour biallelic mutations in BRCA1 and
should be regarded as a FA patient (Domchek et al. 2013).
The affected individual presented with microcephaly and,
as expected, was extremely sensitive to cross-linking
drugs. Since BRCA1 and FANCA have been shown to
interact (Folias et al. 2002), this warrants further study to
explore how precisely FANCA and BRCA1 interact.
In summary, FA genes show a variable level of cell cycle

regulation. Upregulation of a subset of genes of the FA
network may be a common theme in RB1-mutated tu-
mors. There may be a selection, however, against hyperac-
tivation of the classic FA pathway in certain tumors.
Furthermore, this study warrants further molecular stud-
ies of subcomplexes containing specific FA proteins, be-
sides the canonical FA pathway, and their relevance for
pathology, carcinogenesis and therapy response.

4 Methods
4.1 Cell and culture conditions
T98G glioblastoma cells (obtained from ATCC®) were cul-
tured in Dulbecco’s modified Eagle medium (DMEM) con-
taining 1 g/L D-Glucose supplemented with 10% foetal
bovine serum (FBS). EVA-F primary diploid fibroblasts
(obtained from a 23-year old female control; established
and propagated at VUmc) were cultured in DMEM con-
taining 4.5 g/L D-Glucose supplemented with 10% foetal
bovine serum (FBS). To induce growth arrest, subconflu-
ent cells were grown for 72 h in DMEM supplemented
with 0.2% FBS. Cells were harvested at specific time points
after restimulation with 10% FBS. Cell cycle analysis was
performed as described previously (Stoepker et al. 2011).
For EVA-F fibroblast, the karyotype was determined (EVA-
F: 45.18 ± SEM 0.25 chromosomes, n = 40 metaphases).

4.2 RT-PCR and quantitative real-time PCR
Total RNA was extracted (High Pure Isolation Kit; Roche)
and cDNA was prepared (iScriptcDNA Synthesis Kit;
Biorad). The mRNA levels were quantified by real-time
quantitative polymerase chain reactions (SYBR Green re-
action kit; LightCycler 480, Roche). Relative gene expres-
sion, in terms of mean fold changes (MFC), was calculated
via the 2-ΔΔCT method (Livak and Schmittgen 2001). Pri-
mer design was optimized for quantitative mRNA profil-
ing. The primers generated amplicons of ~100 to 250 bp
with a minimum GC content of 40%; forward and reverse
primers were on different exons to avoid genomic prod-
ucts (except for FANCF which has only on exon). As con-
trols, primer sets for the established cell cycle marker
gene CCNE2 and for the housekeeping gene TBP were
used. Specific primer pairs were designed using the Pri-
mer3 program (Primer3 Version 0.4.0; http://bioinfo.ut.ee/
primer3-0.4.0/primer3/) for the genes as follows:
FANCA: 5′-CACACGCTTGGCAGTGTAAT-3′ and 5′-

CGCAAAGCTCCACTCTCTCT-3′;
FANCB: 5′-CGCTGCGTTGAGTTTCATAA-′3 and

5′-TGGGACAATAGGCATCACAA-3′;
FANCC: 5′-ATTCCGGGTTGTTGATGAGA-3′and 5′-

TGCTTGCTTGCTTTCTCCAG-3′;
BRCA2/FANCD1: 5′-ATGGCTCATACCCTCCAATG-3′

and 5′-TTCCATAGCTGCCAGTTTCC-3′;
FANCD2: 5′-TCCGACTTGACCCAAACTTC-3′ and 5′-

GTGATGGCAAAACACAATGC-3′;
FANCE: 5′-TGATCTCAGCCTCAGCAATG-3′ and 5′-

GGAGGTCAGGGCAGTTGTAA-3′;
FANCF: 5′-CTAACTGCCCTGGAGACCTG-3′ and

5′-CGCTGAGACCCAAAACTTGT-3′;
FANCG: 5′-CGCCCTAATTAGTCGTGGAC-3′ and 5′-

TCCCTCCGATCTAGCCTCTT-3′;
FANCI: 5′-AAGCGGGTAAAGCCAAAACT-3′ and 5′-

CGCATAAACTCATTGCTGGA-3′;
BRIP1/FANCJ: 5′-GCTCTCAGAAGTCGGTTTCC-3′

and 5′-AGCAAGCTGTGACGGGTAAG-3′;
FANCL: 5′-GAAATTGATTTTCCAGCTCGTG-3′ and

5′-TGGTACCGTCAAGTTGATAAGC-3′;
FANCM: 5′-CACGAAGGGTTTTACCCAGA-3′ and 5′-

ACCTTCTTCACCCACACAGG-3′;

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
http://bioinfo.ut.ee/primer3-0.4.0/primer3/


Haitjema et al. SpringerPlus 2014, 3:381 Page 11 of 14
http://www.springerplus.com/content/3/1/381
PALB2/FANCN: 5′-CTTGGCCTGACAAAGAGGAG-3′
and 5′-AAGCAGAGCTTCTTGCATCC-3′;
BRCA1: 5′-GAGTGAACCCGAAAATCCTTC-3′ and

5′-ACTGATTTCATCCCTGGTTCC-3′;
CCNE2: 5′-ACTGACTGCTGCTGCCTTGTGC-3′ and

5′-TCGGTGGTGTCATAATGCCTCC-3′;
TBP: 5′-TGCACAGGAGCCAAGAGTGAA-3′and 5′-

CACATCACAGCTCCCCACCA-3′.

4.3 Gene expression profiling
4.3.1 Primary retinoblastoma tumors
Total RNA was isolated from 77 primary retinoblastoma
tumors and 3 healthy fetal retina tissues (including 2 bio-
logical duplicates adding up to 5 control RNA-extracts).
Biotinylated targets were prepared by published methods
(Lipshutz et al. 1999) and hybridized to Affymetrix HT
HG-U133 Plus PM arrays. Resulting raw CEL-files were
normalized by robust multi-array average implementated
by Bioconductor package affy (Gautier et al. 2004). To
identify genes differentially expressed between the retino-
blastoma tumors and healthy fetal retina, empirical Bayes
moderated t-statistics were calculated, implemented by
the limma package (Smyth 2005) and p-values were ad-
justed by Benjamini and Hochberg multiple testing cor-
rection (Benjamini and Hochberg 1995).

4.3.2 Basal and not-basal breast tumors
Total RNA was isolated from 41 basal breast tumors (27
BRCA1mutated) and 79 not-basal breast tumors (8 BRCA1
mutated) and cryostat sections using RNAzol B (Campro
Scientific, Veenendaal, The Netherlands) and RNA quality
and quantity was evaluated on a Agilent Bioanalyzer. Anti-
sense biotinylated RNA was prepared and hybridized to
Affymetrix HGU133_Plus_2.0 GeneChips, according to
the manufacturer’s guidelines (Affymetrix, Santa Clara,
CA, USA). Gene expression signals were calculated using
AffymetrixGeneChip analysis software MAS 5.0. Global
scaling normalization was performed to bring the average
signal intensity of the chips to a target of 100 before data
analysis. The data was imported in Partek Genomics Suite
6.5 and Log2 transformed before analysis. ANOVA was
then used to determine differentially expressed probe-sets.

4.4 Analysis of public data sets and gene set enrichment
analysis
Two online annotation tools were used for in silico core-
gulation analysis: BioGPS (Wu et al. 2009) and Gene-
Friends (http://genefriends.org/microArray/) (van Dam
et al. 2012). With BioGPS the data set GeneAtlas
U133A, gcrma was analyzed, with the cut-off: >0.7 (Su
et al. 2004). The human co-expression network was
screened in GeneFriends. Enrichment analysis was per-
formed with Genomatix GeneRanker (Genomatix Soft-
ware GmbH, version 2013).
4.5 Ethical standards
Retinoblastoma and breast cancer specimens were proc-
essed and analyzed in accordance with local ethics (VUmc).

Additional files

Additional file 1: Figure S1. Differential cell cycle regulation of FA
genes in human EVA-F cells. (a - left panel) Cells were placed on medium
with low serum (0.2% FBS) for 3 days resulting in cell cycle arrest. The
addition of high serum medium (10% FBS) released cells resulting in
synchronous progression through the cell cycle. Sampled cells at different
time points were divided for Fluorescent Activated Cell Sorting (FACS)
analysis. Data represents one representative synchronization experiment.
Quantitative RT-PCR was performed on RNA samples from different time
points and mean fold changes (MFC) were calculated relative to time
point zero. Data represents duplo qPCR measurements of one representative
synchronization experiment, SEM is indicated. (a - right panel) Cell cycle
control CCNE2 (b) FANCA and FANCG (c) FANCB and FANCL (d) FANCE, FANCC,
and FANCF (e) FANCM (f) FANCD2 and FANCI (g) BRCA2, PALB2, BRCA1, and
BRIP1.

Additional file 2: Table S1. Expression in retinoblastoma tumors with
MYCN amplification versus retinoblastoma tumors with RB1 mutations.
Table S2 Summary regulation FA/BRCA-pathway genes cell model.
Table S3 Summary results FA/BRCA-pathway genes “RB1/E2F disturbed
cells”. Table S4 Co-expressed genes with input gene FANCA. Table S5
Co-expressed genes with input gene FANCA and BRCA1. Table S6 Medical
Subject Headings (MeSH) enrichment of 50 genes co-expressed with FANCA
and BRCA1. Table S7 Cellular Components (GO) enrichment of 50 genes
co-expressed with FANCA and BRCA1.
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