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Abstract

Motivated essentially by recent works by several authors (see, for example, Bin-Saad [Math J Okayama Univ 49:37–52,
2007] and Katsurada [Publ Inst Math (Beograd) (Nouvelle Ser) 62(76):13–25, 1997], the main objective in this paper is to
present a systematic investigation of numerous interesting properties of some families of generating functions and
their partial sums which are associated with various classes of the extended Hurwitz-Lerch Zeta functions. Our main
results would generalize and extend the aforementioned recent work by Bin-Saad [Math J Okayama Univ 49:37–52,
2007] (see also Katsurada [Publ Inst Math (Beograd) (Nouvelle Ser) 62(76):13–25, 1997]). We also show the hitherto
unnoticed fact that the so-called τ -generalized Riemann Zeta function, which happens to be the main subject of
investigation by Gupta and Kumari [Jñānābha 41:63–68, 2011]) and Saxena et al. [J Indian AcadMath 33:309–320, 2011],
is simply a seemingly trivial notational variation of the familiar general Hurwitz-Lerch Zeta function �(z, s, a). Finally,
we present a sum-integral representation formula for the general family of the extended Hurwitz-Lerch Zeta functions.
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Introduction and preliminaries
Throughout our present investigation, we use the follow-
ing standard notations:

N := {1, 2, 3, · · · }, N0 := {0, 1, 2, 3, · · · } = N ∪ {0}
and

Z
− := {−1,−2,−3, · · · } = Z

−
0 \ {0}.

Here, as usual, Z denotes the set of integers, R denotes
the set of real numbers, R+ denotes the set of positive real
numbers and C denotes the set of complex numbers.
The familiar general Hurwitz-Lerch Zeta function

�(z, s, a) defined by (see, for example, (Erdélyi et al. 1953,
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p. 27. Eq. 1.11 (1)); see also Srivastava and Choi ((2001, p.
121 et seq.) and (Srivastava and Choi 2012), p. 194 et seq.)

�(z, s, a) :=
∞∑
n=0

zn

(n + a)s
(1.1)

(
a ∈ C \ Z−

0 ; s ∈ C when |z| < 1; �(s) > 1 when |z| = 1
)

contains, as its special cases, not only the Riemann Zeta
function ζ(s), the Hurwitz (or generalized) Zeta function
ζ(s, a) and the Lerch Zeta function �s(ξ) defined by (see,
for details, (Erdélyi et al. 1953, Chapter I) and Srivastava
and Choi ((2001), Chapter 2)

ζ(s) :=
∞∑
n=0

1
(n + 1)s

= �(1, s, 1) = ζ(s, 1)
(�(s) > 1

)
,

(1.2)
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in any medium, provided the original work is properly cited.



Srivastava SpringerPlus 2013, 2:67 Page 2 of 14
http://www.springerplus.com/content/2/1/67

ζ(s, a) :=
∞∑
n=0

1
(n + a)s

= �(1, s, a)
(�(s) > 1; a ∈ C \ Z−

0
)

(1.3)

and

�s(ξ) :=
∞∑
n=0

e2nπ iξ

(n + 1)s
= �

(
e2π iξ , s, 1

) (�(s) > 1; ξ ∈ R
)
,

(1.4)

respectively, but also such other important functions of
Analytic Number Theory as the Polylogarithmic function
(or de Jonquière’s function) Lis(z):

Lis(z) :=
∞∑
n=1

zn

ns
= z�(z, s, 1) (1.5)

(
s ∈ C when |z| < 1; �(s) > 1 when |z| = 1

)
and the Lipschitz-Lerch Zeta function φ(ξ , a, s) (see
Srivastava and Choi ((2001), p. 122, Equation 2.5 (11))):

φ(ξ , s, a) :=
∞∑
n=0

e2nπ iξ

(n + a)s
= �

(
e2π iξ , s, a

)
(1.6)

(
a ∈ C \ Z−

0 ; �(s) > 0 when ξ ∈ R \ Z; �(s) > 1
when ξ ∈ Z

)
,

which was first studied by Rudolf Lipschitz (1832-
1903) and Matyáš Lerch (1860-1922) in connection with
Dirichlet’s famous theorem on primes in arithmetic pro-
gressions (see also (Srivastava 2011), Section 5). Indeed,
just as its aforementioned special cases ζ(s) and ζ(s, a),
the Hurwitz-Lerch Zeta function �(z, s, a) defined by
(1.1) can be continuedmeromorphically to the whole com-
plex s-plane, except for a simple pole at s = 1 with its
residue 1. It is also known that (Erdélyi et al. 1953, p. 27,
Equation 1.11 (3))

�(z, s, a) = 1

(s)

∫ ∞

0

ts−1 e−at

1 − ze−t dt

= 1

(s)

∫ ∞

0

ts−1 e−(a−1)t

et − z
dt (1.7)(�(a) > 0; �(s) > 0 when |z| � 1 (z �= 1); �(s) > 1

when z = 1
)
.

Making use of the Pochhammer symbol (or the shifted
factorial) (λ)ν (λ, ν ∈ C) defined, in terms of the familiar
Gamma function, by

(λ)ν : = 
(λ + ν)


(λ)

=
{
1 (ν = 0; λ ∈ C \ {0})
λ(λ + 1) · · · (λ + n − 1) (ν = n ∈ N; λ ∈ C),

(1.8)

it being understood conventionally that (0)0 := 1 and
assumed tacitly that the Gamma quotient exists, we
recall each of the following well-known expansion
formulas:

ζ(s, a− t) =
∞∑
n=0

(s)n
n!

ζ(s+n, a)tn (|t| < |a|) (1.9)

and

�(z, s, a− t) =
∞∑
n=0

(s)n
n!

�(z, s+n, a)tn (|t| < |a|).

(1.10)

More generally, it is not difficult to show similarly that

∞∑
n=0

(λ)n
n!

�(z, s + n, a)tn =
∞∑
k=0

zk

(k + a)s−λ(k + a − t)λ

=: ϑλ(z, t; s, a) (|t| < |a|),
(1.11)

which would reduce immediately to the expansion for-
mula (1.10) in its special case when λ = s. Moreover, in
the limit case when

t �→ t
λ

and |λ| → ∞,

this last result (1.11) yields

∞∑
n=0

�(z, s + n, a)
tn

n!
=

∞∑
k=0

zk

(k + a)s
exp

(
t

k + a

)

=: ϕ(z, t; s, a) (|t| < ∞).

(1.12)

Wilton (1922/1923) applied the expansion formula (1.9)
in order to rederive Burnside’s formula (Erdélyi et al. 1953,
p. 48, Equation 1.18 (11)) for the sum of a series involv-
ing the Hurwitz (or generalized) Zeta function ζ(s, a).
Srivastava (see, for details, Srivastava (1988a;1988b)), on
the other hand, made use of such expansion formulas as
(1.9) and (1.10) as well as the obvious special case of (1.9)
when a = 1 for finding the sums of various classes of
series involving the Riemann Zeta function ζ(s) and the
Hurwitz (or generalized) Zeta function ζ(s, a) (see also
Srivastava and Choi ((2001), Chapter 3) and (Srivastava
and Choi 2012), Chapter 3).
Various results for the generating functions ϑλ(z, t; s, a)

and ϕ(z, t; s, a), which are defined by (1.11) and (1.12),
respectively, were given recently by Bin-Saad (2007, p. 46,
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Equations (5.1) to (5.4)) who also considered each of the
following truncated forms of these generating functions:

ϑ
(0,r)
λ (z, t; s, a) :=

r∑
k=0

zk

(k + a)s−λ(k + a − t)λ
(r ∈ N0),

(1.13)

ϑ
(r+1,∞)
λ (z, t; s, a) :=

∞∑
k=r+1

zk

(k + a)s−λ(k + a − t)λ
(r ∈ N0),

(1.14)

ϕ(0,r)(z, t; s, a) :=
r∑

k=0

zk

(k + a)s
exp

(
t

k + a

)
(r ∈ N0)

(1.15)

and

ϕ(r+1,∞)(z, t; s, a) :=
∞∑

k=r+1

zk

(k + a)s
exp

(
t

k + a

)
(r ∈ N0),

(1.16)

so that, obviously, we have

ϑ
(0,r)
λ (z, t; s, a) + ϑ

(r+1,∞)
λ (z, t; s, a) = ϑλ(z, t; s, a)

(1.17)

and

ϕ(0,r)(z, t; s, a)+ϕ(r+1,∞)(z, t; s, a) = ϕ(z, t; s, a). (1.18)

For the Riemann Zeta function ζ(s), the special case
of each of the generating functions ϑλ(z, t; s, a) and
ϕ(z, t; s, a) in (1.11) and (1.12) when z = a = 1
was investigated by Katsurada (1997). Subsequently, vari-
ous results involving the generating functions ϑλ(z, t; s, a)
and ϕ(z, t; s, a) defined by (1.11) and (1.12), respectively,
together with their such partial sums as those given by
(1.13) to (1.16), were derived by Bin-Saad (2007) (see
also the more recent sequels to (Bin-Saad 2007) and
(Katsurada 1997) by Gupta and Kumari (2011) and by
Saxena et al. (2011a).
Our main objective in this paper is to investigate, in

a rather systematic manner, much more general families
of generating functions and their partial sums than those
associated with the generating functions ϑλ(z, t; s, a) and
ϕ(z, t; s, a) defined by (1.11) and (1.12), respectively. We
also show the hitherto unnoticed fact that the so-called
τ -generalized Riemann Zeta function, which happens to
be the main subject of investigation by Gupta and Kumari
(2011) and by Saxena et al. (2011a), is simply a seem-
ingly trivial notational variation of the familiar general

Hurwitz-Lerch Zeta function �(z, s, a) defined by (1.1).
Finally, we present a sum-integral representation formula
for the general family of the extended Hurwitz-Lerch Zeta
functions.

Families of the extended Hurwitz-Lerch Zeta
functions and related special functions
We begin this section by recalling the following sum-
integral representation given by Yen et al. ((2002), p. 100,
Theorem) for the Hurwitz (or generalized) Zeta function
ζ(s, a) defined by (1.3):

ζ(s, a) = 1

(s)

k−1∑
j=0

∫ ∞

0

ts−1 e−(a+j)t

1 − e−kt dt

(
k ∈ N; �(s) > 1; �(a) > 0

)
,

(2.1)

which, for k = 2, was derived earlier by Nishimoto et al.
((2002), p. 94, Theorem 4). The following straightfor-
ward generalization of the sum-integral representation
(2.1) involving the familiar general Hurwitz-Lerch Zeta
function �(z, s, a) defined by (1.1) was given by Lin and
Srivastava (2004, p. 727, Equation (7)):

�(z, s, a) = 1

(s)

k−1∑
j=0

zj
∫ ∞

0

ts−1 e−(a+j)t

1 − zke−kt dt (2.2)

(
k ∈ N; �(a) > 0; �(s) > 0 when
|z| � 1 (z �= 1); �(s) > 1 when z = 1

)
.

The sum-integral representations (2.1) and (1.2) led Lin
and Srivastava (2004) to the introduction and investiga-
tion of an interesting generalization of the Hurwitz-Lerch
Zeta function �(z, s, a) in the following form given by Lin
and Srivastava ((2004), p. 727, Equation (8)):

�(ρ,σ)
μ,ν (z, s, a) :=

∞∑
n=0

(μ)ρn
(ν)σn

zn

(n + a)s
(2.3)

(
μ ∈ C; a, ν ∈ C \ Z−

0 ; ρ, σ ∈ R
+; ρ < σ when

s, z ∈ C; ρ = σ and s ∈ C when |z| < δ := ρ−ρ σσ ;
ρ = σ and �(s − μ + ν) > 1 when |z| = δ

)
,

where (λ)ν denotes the Pochhammer symbol defined, in
terms of the familiar Gamma function, by (1.8). Clearly,
we find from the definition (2.3) that

�(σ ,σ)
ν,ν (z, s, a) = �(0,0)

μ,ν (z, s, a) = �(z, s, a) (2.4)

and

�
(1,1)
μ,1 (z, s, a) = �∗

μ(z, s, a) :=
∞∑
n=0

(μ)n
n!

zn

(n + a)s
(2.5)

(
μ ∈ C; a ∈ C \ Z−

0 ; s ∈ C when |z| < 1;
�(s − μ) > 1 when |z| = 1

)
,
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where, as already pointed out by Lin and Srivastava (2004),
�∗

μ(z, s, a) is a generalization of the Hurwitz-Lerch Zeta
function considered by Goyal and Laddha ((1997), p.
100, Equation (1.5)). For further results involving these
classes of generalized Hurwitz-Lerch Zeta functions, see
the recent works by Garg et al. (2006) and Lin et al. (2006).
A generalization of the above-defined Hurwitz-Lerch

Zeta functions�(z, s, a) and�∗
μ(z, s, a)was studied, in the

following form, by Garg et al. ((2008), p. 313, Equation
(1.7)):

�λ,μ;ν(z, s, a) :=
∞∑
n=0

(λ)n(μ)n
(ν)n · n!

zn

(n + a)s
(2.6)

(
λ,μ ∈ C; ν, a ∈ C \ Z−

0 ; s ∈ C when |z| < 1;
�(s + ν − λ − μ) > 1 when |z| = 1

)
.

Various integral representations and two-sided bound-
ing inequalities for�λ,μ;ν(z, s, a) can be found in the works
by Garg et al. (2008) and [Jankov et al. (2011)], respec-
tively. These latter authors [Jankov et al. (2011)] also
considered the function �λ,μ;ν(z, s, a) as a special kind of
Mathieu type (a,λ)-series.
If we compare the definitions (2.3) and (2.6), we can

easily observe that the function �λ,μ;ν(z, s, a) studied by
Garg et al. (2008) does not provide a generalization of
the function�

(ρ,σ)
μ,ν (z, s, a)which was introduced earlier by

Lin and Srivastava (2004). Indeed, for λ = 1, the function
�λ,μ;ν(z, s, a) coincides with a special case of the function
�

(ρ,σ)
μ,ν (z, s, a) when ρ = σ = 1, that is,

�1,μ;ν(z, s, a) = �(1,1)
μ,ν (z, s, a).

Next, for the Riemann-Liouville fractional derivative
operator Dμ

z defined by (see, for example, Erdélyi et al.
((1954), p. 181), Samko et al. (1993) and (Kilbas et al. 2006,
p. 70 et seq.))

Dμ
z
{
f (z)

}

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

 (−μ)

∫ z

0
(z − t)−μ−1 f (t) dt

(� (μ) < 0
)

dm

dzm
{
Dμ−m

z
{
f (z)

}} (
m − 1 � � (μ) < m (m ∈ N)

)
,

(2.7)

the following formula is well-known:

Dμ
z
{
zλ
} = 
 (λ + 1)


 (λ − μ + 1)
zλ−μ

(� (λ) > −1
)
,

(2.8)

which, by virtue of the definitions (1.1) and (2.3), yields the
following fractional derivative formula for the generalized

Hurwitz-Lerch Zeta function �
(ρ,σ)
μ,ν (z, s, a) with ρ = σ

[Lin and Srivastava ((2004), p. 730, Equation (24))]:

Dμ−ν
z

{
zμ−1�

(
zσ , s, a

)} = 
 (μ)


 (ν)
zν−1�(σ ,σ)

μ,ν
(
zσ , s, a

)
(2.9)(� (μ) > 0; σ ∈ R

+) .
In its particular case when ν = σ = 1, the frac-

tional derivative formula (2.9) would reduce at once to the
following form:

�∗
μ (z, s, a) = 1


 (μ)
Dμ−1

z
{
zμ−1� (z, s, a)

}
(�(μ) > 0) ,

(2.10)

which (as already remarked by Lin and Srivastava
(2004), p. 730) exhibits the interesting (and useful) fact
that �∗

μ(z, s, a) is essentially a Riemann-Liouville frac-
tional derivative of the classical Hurwitz-Lerch function
�(z, s, a). Moreover, it is easily deduced from the frac-
tional derivative formula (2.8) that

�λ,μ;ν(z, s, a) = 
(ν)


(λ)
z1−λ Dλ−ν

z
{
zλ−1 �∗

μ(z, s, a)
}

= 
(ν)


(λ)
(μ)
z1−λ Dλ−ν

z

·
{
zλ−1 Dμ−1

z
{
zμ−1 �μ(z, s, a)

} }
,

(2.11)

which (as observed recently by Srivastava et al. (2011), pp.
490–491) exhibits the fact that the function �λ,μ;ν(z, s, a)
studied by Garg et al. (2008) is essentially a consequence
of the classical Hurwitz-Lerch Zeta function �(z, s, a)
when we apply the Riemann-Liouville fractional deriva-
tive operator Dμ

z two times as indicated above in (2.11).
The interested reader may be referred also to many other
explicit representations for �∗

μ(z, s, a) and �
(ρ,σ)
μ,ν (z, s, a),

which were proven by Lin and Srivastava (2004), including
(for example) a potentially useful Eulerian integral rep-
resentation of the first kind [Lin and Srivastava ((2004),
p. 731, Equation (28))].
It should be remarked here that a multiple (or, simply, n-

dimentional) Hurwitz-Lerch Zeta function �n(z, s, a) was
studied recently by Choi et al. ((2008), p. 66, Eq. (6)). On
the other hand, Răducanu and Srivastava (see (Răducanu
and Srivastava 2007), the references cited therein as
well as many sequels thereto) made use of the Hurwitz-
Lerch Zeta function �(z, s, a) in defining a certain lin-
ear convolution operator in their systematic investigation
of various analytic function classes in Geometric Func-
tion Theory in Complex Analysis. Furthermore, Gupta
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et al. (2008) revisited the study of the familiar Hurwitz-
Lerch Zeta distribution by investigating its structural
properties, reliability properties and statistical inference.
These investigations by Gupta et al. (2008) and others
(see, for example, (Srivastava 2000), Srivastava and Choi
(2001) and Srivastava et al. (2010); see also Saxena et al.
(2011b) and Srivastava et al. (2011)), fruitfully using the
Hurwitz-Lerch Zeta function �(z, s, a) and some of its
above-mentioned generalizations, have led eventually to
the following definition a family of the extended (multi-
parameter) Hurwitz-Lerch Zeta functions by Srivastava
et al. (2011).

Definition 1. (Srivastava et al. (2011)). The family
of the extended (multi-parameter) Hurwitz-Lerch Zeta
functions

�
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(z, s, a)

is defined by

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s, a) :=
∞∑
n=0

p∏
j=1

(λj)nρj

n!
q∏

j=1
(μj)nσj

zn

(n + a)s

=:
∞∑
n=0

�n
zn

(n + a)s
(2.12)

(
p, q ∈ N0; λj ∈ C (j=1, · · · , p); a,μj ∈ C \ Z−

0 (j=1, · · · , q);
ρj, σk ∈ R

+ (j = 1, · · · , p; k = 1, · · · , q);� > −1 when
s, z ∈ C; � = −1 and s ∈ C when |z| < ∇∗; � = −1

and �(Ξ) >
1
2

when |z| = ∇∗
)

where the sequence {�n}n∈N0 of the coefficients in the
definition (2.12) is given, for latter convenience, by

�n :=

p∏
j=1

(λj)nρj

n!
q∏

j=1
(μj)nσj

(n ∈ N0), (2.13)

(λ)ν (λ, ν ∈ C) denotes the Pochhammer symbol given
by (1.8) and

� :=
q∑

j=1
σj −

p∑
j=1

ρj,

Ξ := s +
q∑

j=1
μj −

p∑
j=1

λj + p − q
2

(2.14)

and

∇∗ :=
⎛
⎝ p∏

j=1
ρ

−ρj
j

⎞
⎠ ·

⎛
⎝ q∏

j=1
σ

σj
j

⎞
⎠ .

In order to derive direct relationships of the family
of the extended (multi-parameter) Hurwitz-Lerch Zeta
functions

�
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(z, s, a)

defined by (2.12) with several other relatively more famil-
iar special functions, we need each of the following
definitions.

Definition 2. The Fox-Wright function p�q (p, q ∈ N0)
or p�∗

q (p, q ∈ N0), which is a further generaliza-
tion of the familiar generalized hypergeometric function
pFq (p, q ∈ N0), with p numerator parameters a1, · · · , ap
and q denominator parameters b1, · · · , bq such that

aj ∈ C (j = 1, · · · , p)

and

bj ∈ C \ Z−
0 (j = 1, · · · , q),

defined by (see, for details, (Erdélyi et al. 1953, p. 183) and
(Choi et al. 1985, p. 21); see also (Kilbas et al. 2006, p. 56),
(Choi et al. 2010, p. 30) and (Srivastava et al. 1982, p. 19))

p�
∗
q

⎡
⎣ (a1,A1) , · · · , (ap,Ap

)
;

(b1,B1) , · · · , (bq,Bq
)
;
z

⎤
⎦

:=
∞∑
n=0

(a1)A1n · · · (ap)Apn

(b1)B1n · · · (bq)Bqn
zn

n!

= 
 (b1) · · ·
 (bq)

 (a1) · · ·
 (ap) p�q

⎡
⎣ (a1,A1) , · · · , (ap,Ap

)
;

(b1,B1) , · · · , (bq,Bq
)
;
z

⎤
⎦

(2.15)

⎛
⎝Aj > 0

(
j = 1, · · · , p) ;Bj > 0

(
j = 1, · · · , q) ; 1 +

q∑
j=1

Bj −
p∑

j=1
Aj � 0

⎞
⎠ ,

where the equality in the convergence condition holds
true for suitably bounded values of |z| given by

|z| < ∇ :=
⎛
⎝ p∏

j=1
A−Aj
j

⎞
⎠ ·

⎛
⎝ q∏

j=1
BBj
j

⎞
⎠ . (2.16)

In the particular case when

Aj = Bk = 1 (j = 1, · · · , p; k = 1, · · · , q),
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we have the following relationship (see, for details, (Choi
et al. 1985, p. 21)):

p�
∗
q

⎡
⎣ (a1, 1) , · · · , (ap, 1) ;

(b1, 1) , · · · , (bq, 1) ; z
⎤
⎦

= pFq

⎡
⎣ a1, · · · , ap;

b1, · · · , bq;
z

⎤
⎦

= 
 (b1) · · ·
 (bq)

 (a1) · · ·
 (ap) p�q

⎡
⎣ (a1, 1) , · · · , (ap, 1) ;

(b1, 1) , · · · , (bq, 1) ; z
⎤
⎦ ,

(2.17)

in terms of the generalized hypergeometric function
pFq (p, q ∈ N0).

Definition 3. An attempt to derive Feynman integrals in
two different ways, which arise in perturbation calcula-
tions of the equilibrium properties of a magnetic mode
of phase transitions, led naturally to the following gen-
eralization of Fox’s H-function (Inayat-Hussain 1987b,
p. 4126) (see also (Buschman and Srivastava 1990) and
(Inayat-Hussain 1987a)):

H(z) = Hm,n
p,q [ z]

= Hm,n
p,q

⎡
⎣z
∣∣∣∣∣∣
(aj,Aj;αj)

n
j=1, (aj,Aj)

p
j=n+1

bj,Bj)
m
j=1, (bj,Bj;βj)

q
j=m+1

⎤
⎦

:= 1
2π i

∫
L

χ(s)zs ds (2.18)

⎛
⎜⎜⎜⎝z �= 0; i = √−1; χ(s)

:=

m∏
j=1


(bj − Bjs) ·
n∏

j=1

{

(1 − aj + Ajs)

}αj
p∏

j=n+1

(aj − Ajs) ·

q∏
j=m+1

{

(1 − bj + Bjs)

}βj

⎞
⎟⎟⎟⎠ ,

which contains fractional powers of some of the Gamma
functions involved. Here, and in what follows, the
parameters

Aj > 0 (j = 1, · · · , p) and Bj > 0 (j = 1, · · · , q),
the exponents

αj (j = 1, · · · , n) and βj (j = m+1, · · · , q)
can take on noninteger values, andL = L(iτ ;∞) is aMellin-
Barnes type contour starting at the point τ − i∞ and
terminating at the point τ + i∞ (τ ∈ R) with the usual
indentations to separate one set of poles from the other

set of poles. The sufficient condition for the absolute con-
vergence of the contour integral in (2.18) was established
as follows by Buschman and Srivastava ((1990), p. 4708):

� :=
m∑
j=1

Bj +
n∑

j=1
|αj|Aj −

q∑
j=m+1

|βj|Bj −
p∑

j=n+1
Aj > 0,

(2.19)

which provides exponential decay of the integrand in
(2.18) and the region of absolute convergence of the con-
tour integral in (2.18) is given by

| arg(z)| <
1
2

π�, (2.20)

where � is defined by (2.19).

Remark 1. If we set

s = 0, p �→ p + 1
(
ρ1 = · · · = ρp = 1; λp+1 = ρp+1 = 1

)
and

q �→ q + 1
(
σ1 = · · · = σq = 1; μq+1 = β ; σq+1 = α

)
,

then (2.12) reduces to the following generalized M-series
which was recently introduced by Sharma and Jain (2009)
(see also an earlier paper by Sharma (2008) for the special
case when β = 1):

α,β
pMq(a1, · · · , ap; b1, · · · , bq; z)

:=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk


(αk + β)

= 1

(β)

p+1�
∗
q+1

⎡
⎣ (a1, 1) , · · · , (ap, 1) , (1, 1);

(b1, 1) , · · · , (bq, 1) , (β ,α);
z

⎤
⎦,

(2.21)

in which the last relationship exhibits the fact that the
so-called generalized M-series is indeed an obvious spe-
cial case of the Fox-Wright function p�∗

q defined by
(2.15) (see also (Saxana 2009)). Similarly, for the gener-
alized Mittag-Leffler function considered by Kilbas et al.
(2002), we have

Eρ

[
(β1, η1) , · · · ,

(
βq, ηq

)
; z
]

:=
∞∑
k=0

(ρ)k
q∏

j=1


(
ηjk + βj

)

= 1

(ρ)

1�q

⎡
⎣ (ρ, 1) ;

(β1, η1) , · · · , (βq, ηq
)
;
z

⎤
⎦ ,

(2.22)
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Remark 2. The following H-function representation can
be applied in order to derive various properties of the
extended Hurwitz-Lerch Zeta function

�
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(z, s, a)

from those of the H-function (see, for details, Srivastava
et al. ((2011), p. 504, Theorem 8)):

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s, a)

=

q∏
j=1



(
μj
)

p∏
j=1



(
λj
) H1,p+1

p+1,q+2

⎡
⎣−z

∣∣∣∣∣∣
(1 − λ1, ρ1; 1), · · · , (1 − λp, ρp; 1), (1 − a, 1; s)

(0, 1), (1 − μ1, σ1; 1), · · · , (1 − μq, σq; 1), (−a, 1; s)

⎤
⎦

=

q∏
j=1



(
μj
)

p∏
j=1



(
λj
) · 1

2π i

∫
L


(−ξ) {
(ξ+a)}s
p∏

j=1


(
λj+ρjξ

)

{
(ξ+a+1)}s
q∏

j=1


(
μj+σjξ

) (−z)ξdξ

(| arg(−z)| < π
)
,

(2.23)

the path of integration L in the last member of (2.23)
being a Mellin-Barnes type contour in the complex ξ-
plane, which starts at the point −i∞ and terminates at the
point i∞ with indentations, if necessary, in such a man-
ner as to separate the poles of 
(−ξ) from the poles of


(
λj + ρjξ

)
(j = 1, · · · , p). Thus, for example, bymaking

use of a known fractional-calculus result due to Srivastava
et al. ((2006), p. 97, Equation (2.4)), we readily obtain the
following extension of such fractional derivative formu-
las as (2.9) and (2.10) [Srivastava et al. ((2011), p. 505,
Equation (6.8))]:

Generating relations associated with the extended
Hurwitz-Lerch Zeta function
In this section, we first introduce the following generating
functions and their partial sums involving the extended
Hurwitz-Lerch Zeta function

�
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(z, s, a)

defined by (2.12). Indeed, as a generalization of the gener-
ating functions (1.9) and (1.10), we have

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s, a − t)

=
∞∑
n=0

(s)n
n!

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s + n, a)tn (|t| < |a|),

(3.1)

which can easily be put in the following more general
form:

∞∑
n=0

(λ)n
n!

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s + n, a)tn

=
∞∑
k=0

�k zk

(k + a)s−λ(k + a − t)λ
=: �λ(z, t; s, a) (|t| < |a|),

(3.2)

where the sequence {�n}n∈N0 of the coefficients in (2.12)
is given by (2.13). This last generating function (3.2) would
reduce immediately to the expansion formula (4.1) in its
special case when λ = s. Furthermore, in its limit case
when

t �→ t
λ

and |λ| → ∞,

the generating function (3.2) yields

∞∑
n=0

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s + n, a)
tn

n!

=
∞∑
k=0

�k zk

(k + a)s
exp

(
t

k + a

)
=: �(z, t; s, a) (|t| < ∞),

(3.3)

Dν−τ
z

{
zν−1 �

(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(zκ , s, a)
}

=

q∏
j=1



(
μj
)

p∏
j=1



(
λj
) zτ−1

· H1,p+2
p+2,q+3

⎡
⎣−zκ

∣∣∣∣∣∣
(1 − λ1, ρ1; 1), · · · , (1 − λp, ρp; 1), (1 − ν, κ ; 1), (1 − a, 1; s)

(0, 1), (1 − μ1, σ1; 1), · · · , (1 − μq, σq; 1), (1 − τ , κ ; 1), (−a, 1; s)

⎤
⎦

= 
(ν)


(τ)
zτ−1 �

(ρ1,··· ,ρp,κ ,σ1,··· ,σq ,κ)

λ1,··· ,λp,ν;μ1,··· ,μq ,τ (zκ , s, a) (�(ν) > 0; κ > 0) . (2.24)
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where the sequence {�n}n∈N0 of the coefficients in (2.12)
is given, as before, by (2.13).
We shall also consider each of the following trun-

cated forms of the generating functions �λ(z, t; s, a) and
�(z, t; s, a) in (3.2) and (3.3), respectively:

�
(0,r)
λ (z, t; s, a) :=

r∑
k=0

�k zk

(k + a)s−λ(k + a − t)λ
(r ∈ N0),

(3.4)

�
(r+1,∞)
λ (z, t; s, a) :=

∞∑
k=r+1

�k zk

(k + a)s−λ(k + a − t)λ
(r ∈ N0),

(3.5)

�(0,r)(z, t; s, a) :=
r∑

k=0

�k zk

(k + a)s
exp

(
t

k + a

)
(r ∈ N0)

(3.6)

and

�(r+1,∞)(z, t; s, a) :=
∞∑

k=r+1

�k zk

(k + a)s
exp

(
t

k + a

)
(r ∈ N0),

(3.7)

which obviously satisfy the following decomposition
formulas:

�
(0,r)
λ (z, t; s, a) + �

(r+1,∞)
λ (z, t; s, a) = �λ(z, t; s, a)

(3.8)

and

�(0,r)(z, t; s, a)+�(r+1,∞)(z, t; s, a) = �(z, t; s, a). (3.9)

Our first set of integral representations for the above-
defined generating functions is contained in Theorem 1
below.

Theorem 1. Each of the following integral representation
formulas holds true:

�λ(z,ω; s, a) = 1

(s)

∫ ∞

0
ts−1 e−at

p�
∗
q⎡

⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦

·1F1 (λ; s;ωt) dt
(
min{�(a),�(s)} > 0

)
(3.10)

and

�(z,ω; s, a) = 1

(s)

∫ ∞

0
ts−1 e−at

p�
∗
q⎡

⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦

·0F1 ( ; s;ωt) dt (min{�(a),�(s)} > 0) ,
(3.11)

provided that both sides of each of the assertions (3.10) and
(3.11) exist.

Proof. For convenience, we denote by S the second
member of the assertion (3.10) of Theorem 1. Then, upon
expanding the functions p�∗

q and 1F1 in series forms, we
find that

S := 1

(s)

∫ ∞

0
ts−1 e−at

p�
∗
q⎡

⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦ 1F1 (λ; s;ωt) dt

= 1

(s)

∞∑
m,n=0

�m zm
(λ)n
(s)n

ωn

n!

∫ ∞

0
ts+n−1 e−(a+m)t dt,

(3.12)

where the inversion of the order of integration and double
summation can easily be justified by absolute convergence
under the conditions stated with (3.10), �n being defined
by (2.13). Now, if we evaluate the innermost integral in
(3.12) by appealing to the following well-known result:

∫ ∞

0
tμ−1 e−κt dt = 
(μ)

κμ

(
min{�(κ),�(μ)} > 0

)
,

(3.13)

we get

S =
∞∑
n=0

(λ)n
n!

( ∞∑
m=0

�m
zm

(m + a)s+n

)
ωn

(
min{�(a),�(s)} > 0

)
,

(3.14)

which, in light of the definitions (2.12) and (3.2),
yields the left-hand side of the first assertion (3.10) of
Theorem 1.
The second assertion (3.11) of Theorem 1 can be proven

in a similar manner.

Remark 3. For ω = 0, each of the assertions (3.10) and
(3.11) of Theorem 1 yields a known integral represen-
tation formula due to Srivastava et al. ((2011), p. 504,
Equation (6.4)). Moreover, in their special case when

ω = 0 and �n = 1 (n ∈ N0),

the assertions (3.10) and (3.11) of Theorem 1 would
reduce immediately to the classical integral representation
(1.7) for the Hurwitz-Lerch Zeta function �(z, s, a).

The proof of Theorem 2 belowwould run parallel to that
of Theorem 1, which we already have detailed above fairly
adequately. It is based essentially upon the Hankel type
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contour integral in the following form (Erdélyi et al. 1953,
p. 14, Equation 1.16 (4)):

2i sin(πν)
(ν) = −
∫ (0+)

∞
(−t)ν−1 e−t dt(| arg(−t)| � π

) (3.15)

or, equivalently,

1

(1 − ν)

= − 1
2π i

∫ (0+)

∞
(−t)ν−1 e−t dt(| arg(−t)| � π
)
.

(3.16)

Theorem 2. Each of the following Hankel type contour
integral representation formulas holds true:

�λ(z,ω; s, a) = − 
(1 − s)
2π i

∫ (0+)

∞
(−t)s−1 e−at

p�
∗
q⎡

⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦

·1F1 (λ; s;ωt) dt
(�(a) > 0; | arg(−t)| � π

)
(3.17)

and

�(z,ω; s, a)=− 
(1 − s)
2π i

∫ (0+)

∞
(−t)s−1 e−at

p�
∗
q⎡

⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦

·0F1 ( ; s;ωt) dt
(�(a) > 0; | arg(−t)|�π

)
,

(3.18)

provided that both sides of each of the assertions (3.17) and
(3.18) exist.

Remark 4. For ω = 0, each of the assertions (3.17) and
(3.18) of Theorem 2 yields the following (presumably new)
integral representation formula:

�
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(z, s, a)

= −
(1 − s)
2π i

∫ (0+)

∞
(−t)s−1 e−at

·p�∗
q

⎡
⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦ dt

(�(a) > 0; | arg(−t)| � π
)
.

(3.19)

Furthermore, in their special case when

ω = 0 and �n = 1 (n ∈ N0),

the assertions (3.17) and (3.18) of Theorem 2 would
reduce to the classical Hankel type contour integral rep-
resentation for the Hurwitz-Lerch Zeta function �(z, s, a)

(see, for example, (Erdélyi et al., 1953, p. 28, Equation 1.11
(5)); see also (Srivastava and Choi 2012), p. 195, Equation
2.5 (8)).

Next, by making use of the following known result
(see, for example, Srivastava and Manocha ((1984), p. 86,
Problem 1):

∫ b

a
(t − a)α−1 (b − t)β−1 dt = (b − a)α+β−1 B(α,β)(

b �= a; min{�(α),�(β)} > 0
)
,

(3.20)

we evaluate several Eulerian Beta-function integrals
involving the generating functions �λ(z, t; s, a) and
�(z, t; s, a) defined by (3.2) and (3.3), respectively, B(α,β)

being the familiar Beta function.

Theorem 3. In terms of the sequence {�n}n∈N0 of the coef-
ficients given by the definition (2.13), each of the following
Eulerian Beta-function integral formulas holds true:
∫ η

ξ

(t − ξ)α−1 (η − t)β−1 �λ

(
z,ω(t − ξ)γ (η − t)δ ; s, a

)
dt

= (η − ξ)α+β−1 B(α,β)

∞∑
n=0

�n
zn

(n + a)s 3�
∗
1

·
⎡
⎣ (λ, 1), (α, γ ), (β , δ);

(α + β , γ + δ);

ω(η − ξ)γ+δ

n + a

⎤
⎦

(
η �= ξ ; min{�(α),�(β)} > 0; γ , δ > 0

)
(3.21)

and∫ η

ξ

(t − ξ)α−1 (η − t)β−1 �
(
z,ω(t − ξ)γ (η − t)δ ; s, a

)
dt

= (η − ξ)α+β−1 B(α,β)

∞∑
n=0

�n
zn

(n + a)s 2�
∗
1

·
⎡
⎣ (α, γ ), (β , δ);

(α + β , γ + δ);

ω(η − ξ)γ+δ

n + a

⎤
⎦

(
η �= ξ ; min{�(α),�(β)} > 0; γ , δ > 0

)
,
(3.22)

provided that both sides of each of the assertions (3.21)
and (3.22) exist, the Fox-Wright function 00 3�∗

1 in (3.21)
being tacitly interpreted as an H-function contained in the
definition (2.18).

Proof. Each of the assertions (3.21) and (3.22) of
Theorem 3 can be proven fairly easily by appealing to
the definitions (3.2) and (3.3), respectively, in conjunction
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with the Eulerian Beta-function integral (3.20). The details
involved are being skipped here.

Remark 5. In addition to their relatively more familiar
cases when ξ = η − 1 = 0, various interesting limit
cases of the integral formulas (3.21) and (3.22) asserted by
Theorem 3 can be deduced by letting

lim
γ ↓ 0

or lim
δ ↓ 0

.

Some such very specialized cases of Theorem 3 can be
found in the recent works by Bin-Saad (2007), Gupta and
Kumari (2011) and Saxena et al. (2011a).

The Eulerian Gamma-function integrals involving the
generating functions �λ(z, t; s, a) and �(z, t; s, a) defined
by (3.2) and (3.3), respectively, which are asserted by
Theorem 4 below, can be evaluated by applying the well-
known formula (3.13).

Theorem 4. Let the function�∗
μ(z, s, a) be defined by (2.5).

Then, in terms of the sequence {�n}n∈N0 of the coefficients
given by the definition (2.13), each of the following single or
double Eulerian Gamma-function integral formulas holds
true:

1

(μ)

∫ ∞

0
tμ−1 e−κt �λ

(
z,ωe−δt ; s, a

)
dt

= δ−μ
∞∑
n=0

�nzn

(n + a)s
�∗

λ

(
ω

n + a
,μ,

κ

δ

)
(
min{�(κ),�(μ),�(δ)} > 0

)
,

(3.23)

1

(μ)

∫ ∞

0
tμ−1 e−κt � (z,ωt; s, a) dt

= κ−μ �μ

(
z,

ω

κ
; s, a

) (
min{�(κ),�(μ)} > 0

)
(3.24)

and

1

(μ)
(ν)

∫ ∞

0

∫ ∞

0
uμ−1vν−1e−κu−δv �

(
z,ωue−σv; s, a

)
du dv

= κ−μ σ−ν

∞∑
n=0

�nzn

(n + a)s
�∗

μ

(
ω

κ(n + a)
,μ,

δ

σ

)
(
min{�(κ),�(μ),�(ν),�(δ),�(σ )} > 0

)
,

(3.25)

provided that both sides of each of the assertions (3.23),
(3.24) and (3.25) exist.

Remark 6. Some very specialized cases of Theorem 4
when

�n = 1 (n ∈ N0)

were derived in the recent works (Bin-Saad 2007), (Gupta
and Kumari 2011) and (Saxena et al. (2011a)).

Remark 7. Two of the claimed integral formulas in Bin-
Saad’s paper (2007, p. 42, Theorem 3.2, Equations (3.10)
and (3.11)) can easily be shown to be divergent, simply
because the improper integrals occurring on their left-
hand sides obviously violate the required convergence
conditions at their lower terminal t = 0.

We now turn toward the truncated forms of the generat-
ing functions�λ(z, t; s, a) and�(z, t; s, a) in (3.2) and (3.3),
respectively, which are defined by (3.4) to (3.7). Indeed,
by appealing appropriately to the definitions in (3.4) to
(3.7) in conjunction with the Eulerian Gamma-function
integral in (3.13), it is fairly straightforward to derive the
integral representation formulas asserted by Theorem 5
below.

Theorem 5. In terms of the sequence {�n}n∈N0 of the coef-
ficients given by the definition (2.13), each of the following
Eulerian Gamma-function integral formulas holds true:

�
(0,r)
λ (z,ω; s, a)

= 1

(s)

∫ ∞

0
ts−1 e−at

( r∑
k=0

�k
(
ze−t)k)

1F1(λ; s;ωt)dt

(
min{�(s),�(a)} > 0

)
,

(3.26)

�
(r+1,∞)
λ (z,ω; s, a)

= 1

(s)

∫ ∞

0
ts−1 e−at

⎛
⎝ ∞∑

k=r+1
�k

(
ze−t)k

⎞
⎠ 1F1(λ; s;ωt)dt

(
min{�(s),�(a)} > 0

)
,

(3.27)

�(0,r)(z,ω; s, a)

= 1

(s)

∫ ∞

0
ts−1 e−at

( r∑
k=0

�k
(
ze−t)k)

0F1( ; s;ωt)dt

(
min{�(s),�(a)} > 0

)
(3.28)

and

�(r+1,∞)(z,ω; s, a)

= 1

(s)

∫ ∞

0
ts−1 e−at

⎛
⎝ ∞∑

k=r+1
�k

(
ze−t)k

⎞
⎠ 0F1( ; s;ωt)dt

(
min{�(s),�(a)} > 0

)
,

(3.29)
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provided that both sides of each of the assertions (3.26) to
(3.29) exist.

Remark 8. Several specialized cases of Theorem 5 when

�n = 1 (n ∈ N0)

can be found in the recent works (Bin-Saad 2007), (Gupta
and Kumari 2011) and (Saxena et al. (2011a)).

It is not difficult to derive various other properties and
results involving the generating functions �λ(z, t; s, a) and
�(z, t; s, a) in (3.2) and (3.3), respectively, as well as their
truncated forms which are defined by (3.4) to (3.7). For
example, by applying the definition (3.2) in conjunction
with the definition (2.15), it is easy to derive the following
general form of the generating relations asserted by (for
example) Bin-Saad (2007, p. 44, Theorem 4.2):

∞∑
n=0

(α1)nu1 · · · (α�)nu�

(β1)nv1 · · · (βm)nvm
�λ(z,ω; s + n, a)

tn

n!

=
∞∑
k=0

�k

(
1 − ω

k + a

)−λ

· ��
∗
m

⎡
⎣ (α1,u1) , · · · , (α�,u�) ;

(β1, v1) , · · · , (βm, vm) ;

t
k + a

⎤
⎦ zk

(k + a)s(
�,m ∈ N0; αj ∈ C, uj ∈ R

+ (j = 1, · · · , �);
βj ∈ C \ Z−

0 , vj ∈ R
+ (j = 1, · · · ,m); max{|ω|, |t|} < 1

)
,

(3.30)

where the sequence {�n}n∈N0 of the coefficients is given
by the definition (2.13) and it is tacitly assumed that each
member of the generating relation (3.30) exists. We do,
however, choose to leave the details involved in all such
derivations as exercises for the interested reader.

τ -Generalizations of the Hurwitz-Lerch Zeta
functions
In a recent paper, Saxena et al. (2011a) considered a so-
called τ -generalization of the Hurwitz-Lerch Zeta func-
tion �(z, s, a) in (1.1) in the following form [Saxena et al.
((2011a), p. 311, Equation (2.1))]:

�(τ ; z, s, a) :=
∞∑
n=0

zn

(τn + a)s
(τ ∈ R

+). (4.1)

Subsequently, by similarly introducing a parameter τ > 0
in the definition (2.5), Gupta and Kumari (2011) studied
a τ -generalization of the extended Hurwitz-Lerch Zeta
function �∗

μ(z, s, a) in (2.5) as follows:

�∗
μ(τ ; z, s, a) :=

∞∑
n=0

(μ)n
n!

zn

(τn + a)s
(τ ∈ R

+),

(4.2)

which, when compared with the definition (4.1), yields the
relationship:

�(τ ; z, s, a) = �∗
1(τ ; z, s, a) (τ ∈ R

+). (4.3)

By looking closely at the definitions (4.1) and (4.2), in
conjunction with the earlier definitions (1.1) and (2.5),
respectively, we immediately get the following rather obvi-
ous connections:

�(τ ; z, s, a) = 1
τ s

�
(
z, s,

a
τ

)
or

�(z, s, a) = τ s �(τ ; z, s, aτ) (τ ∈ R
+)

(4.4)

and

�∗
μ(τ ; z, s, a) = 1

τ s
�∗

μ

(
z, s,

a
τ

)
or

�∗
μ (z, s, a) = τ s �∗

μ(τ ; z, s, aτ) (τ ∈ R
+)

(4.5)

Clearly, therefore, the definitions in (4.1) and (4.2) (with
τ ∈ R

+) are no more general than their corresponding
well-known cases when τ = 1 given by the definitions in
(1.1) and (2.5), respectively. Thus, by trivially appealing to
the parametric changes exhibited by the connections in
(4.4) and (4.5), all of the results involving the so-called τ -
generalized functions �(τ ; z, s, a) and �∗

μ(τ ; z, s, a) can be
derived simply from the corresponding (usually known)
results involving the familiar functions �(z, s, a) and
�∗

μ(z, s, a), respectively. Just for illustration of the trivial-
ity associated with such straightforward derivations, we
recall the following sum-integral representation formula
due to Lin and Srivastava ((2004), p. 729, Equation (20))
(see also Srivastava et al. ((2011), p. 494, Equation (2.6))
for the special case when k = 1):

�(ρ,σ)
μ,ν (z, s, a)

= 1

(s)

k−1∑
j=0

(μ)ρj

(ν)σ j
zj

·
∫ ∞

0
ts−1 e−(a+j)t

2�1

⎡
⎣
(
μ + ρj, ρk

)
, (1, 1);

(
ν + σ j, σk

)
;
zk e−kt

⎤
⎦ dt

(
k ∈ N; min{�(a),�(s)} > 0; σ > ρ > 0 when

z ∈ C; σ � ρ > 0 when |z|1/k < ρ−ρ σσ
)
,

(4.6)

it being tacitly assumed that each member of (4.6) exists.
Indeed, in the special case when ρ = σ = ν = 1,
(4.6) yields the following sum-integral representation for
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the generalized Hurwitz-Lerch Zeta function �∗
μ(z, s, a)

involved in (2.5):

�∗
μ(z, s, a)

= 1

(s)

k−1∑
j=0

(μ)j

(ν)j
zj

·
∫ ∞

0
ts−1 e−(a+j)t

2�1

⎡
⎣
(
μ + j, k

)
, (1, 1);

(
ν + j, k

)
;
zk e−kt

⎤
⎦ dt

(
k ∈ N; min{�(a),�(s)} > 0; |z| < 1

)
(4.7)

or, equivalently,

�∗
μ(z, s, a)

= 1

(s)

k−1∑
j=0

(μ)j

(ν)j
zj

·
∫ ∞

0
ts−1 e−(a+j)t

k+1Fk

⎡
⎣�∗ (k;μ + j

)
, (1, 1);

�∗ (k; ν + j
)
;
zk e−kt

⎤
⎦ dt

(
k ∈ N; min{�(a),�(s)} > 0; |z| < 1

)
,

(4.8)

where, for convenience, �∗ (n; λ) abbreviates the array of
n parameters

λ

n
,
λ + 1
n

, · · · , λ + n − 1
n

(n ∈ N),

the array being empty when n = 0.
Now, in order to rewrite this last result (4.8) in

terms of the τ -generalized Hurwitz-Lerch Zeta function
�∗

μ(τ ; z, s, a) defined by (4.2), we simply make the follow-
ing parameter and variable changes:

a �→ a
τ
, t �→ τ t and dt �→ τdt (τ ∈ R

+)

and multiply the resulting equation by τ−s. By using the
connection in (4.5), we thus find immediately that

�∗
μ(τ ; z, s, a)

= 1

(s)

k−1∑
j=0

(μ)j

(ν)j
zj

·
∫ ∞

0
ts−1 e−(a+τ j)t

k+1Fk

⎡
⎣�∗ (k;μ + j

)
, (1, 1);

�∗ (k; ν + j
)
;
zk e−kτ t

⎤
⎦dt

(
k ∈ N; min{�(a),�(s)} > 0; |z| < 1

)
.

(4.9)

In its particular case when k = 1, this last formula (4.9)
would simplify at once to the following form given by
Saxena et al. ((2011a), p. 311, Equation (2.2)):

�∗
μ(τ ; z, s, a) = 1


(s)

∫ ∞

0
ts−1 e−at (1 − ze−τ t)−μ dt

(4.10)(�(a) > 0; �(s)} > 0 when |z| < 1; �(s) > 1
when z = 1

)
,

which obviously is equivalent to (and certainly not a gen-
eralization of) of the τ = 1 case derived earlier by Goyal
and Laddha ((1997), p. 100, Equation (1.6)).

Remark 9. The so-called τ -generalizations 2Rτ
1 and 1Rτ

1
of the Gauss hypergeometric function 2F1 and Kummer’s
confluent hypergeometric function 1F1, respectively,
which were used in the aforecited paper by Saxena et al.
((2011a), p. 315), are obviously very specialized cases of
the well-known and extensively-investigated Fox-Wright
function p�q defined by (2.15). In fact, it is easily seen
from Definition 2 that [Saxena et al. ((2011a), pp. 315
and 317)] (see also (Al-Zamel 2001), (Ali et al. 2001) and
(Virchenko et al. 2001))

2Rτ
1(a, b; c; z) :=


(c)

(b)

∞∑
n=0

(a)n
(b + τn)


(c + τn)

zn

n!

= 
(c)

(a)
(b) 2�1

⎡
⎣ (a, 1) , (b, τ);

(c, τ) ;
z

⎤
⎦

= 2�
∗
1

⎡
⎣ (a, 1) , (b, τ);

(c, τ) ;
z

⎤
⎦

(|z| < 1; τ ∈ R
+; c /∈ Z

−
0 )

(4.11)

and

1Rτ
1(b; c; z) : =


(c)

(b)

∞∑
n=0


(b + τn)


(c + τn)

zn

n!

= 
(c)

(b) 1�1

⎡
⎣ (b, τ) ;

(c, τ) ;
z

⎤
⎦

= 1�
∗
1

⎡
⎣ (b, τ) ;

(c, τ) ;
z

⎤
⎦

(|z| < ∞; τ ∈ R
+; c /∈ Z

−
0 ).

(4.12)

Similar remarks and observations would apply equally
strongly to the other τ -generalizations of well-known and
extensively-investigated hypergeometric functions in one,
two and more variables.
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We conclude this section by presenting a generalization
of the sum-integral representation formula (4.6) due to
Lin and Srivastava ((2004), p. 729, Equation (20)).

Theorem 6. The following sum-integral representation
formula holds true:

�
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;μ1,··· ,μq

(z, s, a) = 1

(s)

k−1∑
j=0

p∏
�=1

(λ�)jρ�

q∏
�=1

(μ�)jσ�

zj

j!

∫ ∞

0
ts−1 e−(a+j)t

·p+1�
∗
q+1

⎡
⎣

(
λ1 + jρ1, kρ1

)
, · · · , (λp + jρp, kρp

)
, (1, 1);

(
μ1 + jσ1, kσ1

)
, · · · , (μq + jσq, kσq

)
, (j + 1, k);

zk e−kt

⎤
⎦ dt (4.13)

(k ∈ N; min{�(a),�(s)} > 0) ,

provided that each member of the assertion (4.13) exists.

Proof. First of all, in light of the following elementary
series identity:

∞∑
n=0

f (n) =
k−1∑
j=0

∞∑
n=0

f (kn + j) (k ∈ N),

we find from the definition (2.12) that

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s, a) = k−s
k−1∑
j=0

p∏
�=1

(λ�)jρ�

q∏
�=1

(μ�)jσ�

zj

j!

· �
(kρ1,··· ,kρp ,1,kσ1,··· ,kσq ,k)
λ1+jρ1,··· ,λp+jρp ,1;μ1+jσ1,··· ,μq+jσq ,j+1

(
zk , s,

a + j
k

)
(k ∈ N).
(4.14)

The assertion (4.13) of Theorem 6 would now emerge
readily upon first appealing to the aforementioned known
result due to Srivastava et al. ((2011), p. 504, Equation
(6.4)) (see also Remark 3 above) given by

�
(ρ1,··· ,ρp ,σ1,··· ,σq)
λ1,··· ,λp ;μ1,··· ,μq

(z, s, a)

= 1

(s)

∫ ∞

0
ts−1 e−at

p�
∗
q

⎡
⎣ (λ1, ρ1), · · · , (λp, ρp);

(μ1, σ1), · · · , (μq, σq);
ze−t

⎤
⎦dt

(
min{�(a),�(s)} > 0

)
(4.15)

and then setting

t �→ kt and dt �→ k dt (k ∈ N).

Obviously, in its special case when

p = 2 (λ1 = μ and ρ1 = ρ; λ2 = 1 and ρ2 = 1)

and

q = 1 (μ1 = ν and σ1 = σ),

the general result (4.13) asserted by Theorem 6 would
reduce immediately to the known sum-integral represen-
tation formula (4.6) due to Lin and Srivastava ((2004),
p. 729, Equation (20)).
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