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Abstract

The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of
nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions
of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by
using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ ) satisfies the auxiliary ordinary
differential equation (ODE) [G' (ξ )]2 = p G2(ξ ) + q G4(ξ ) + r G6(ξ ); p, q and r are constants and the well known
extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two
methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not
been exercised anybody previously which gives further exact solutions than the second one.
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Introduction
Nonlinear evolution equations play a significant role in
various scientific and engineering fields, such as, optical
fibers, solid state physics, fluid mechanics, plasma physics,
chemical kinematics, chemical physics geochemistry etc.
Nonlinear wave phenomena of diffusion, reaction, disper-
sion, dissipation, and convection are very important in
nonlinear wave equations. In recent years, the exact solu-
tions of nonlinear PDEs have been investigated by many
researchers (see for example (Abdou 2007; Ablowitz &
Clarkson 1991; Akbar et al. 2012a; Naher et al. 2012; Akbar
et al. 2012b; Chen & Wang 2005; El-Wakil et al. 2010;
Fan 2000; He & Wu 2006; Hirota 1971; Darvishi & Najafi
2012; Kawahara 1972; Kudryashov 1990; Kudryashov
1991; Kudryashov 2009; Liu et al. 2001; Lu et al. 2009; Lu
2005; Miura 1978; Parkes 2010; Rogers & Shadwick 1982;
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Bekir 2010; Wang & Zhang 2007; Wang & Zhou 2003;
Wang & Li 2005a; Wang & Li 2005b; Wang et al. 2007;
Wang et al. 2005; Ma et al. 2009; Wang et al. 2008; Wazwaz
2008a; Wazwaz 2008b; Inan 2010; Wazzan 2009; Yomba
2008; Naher et al. 2011; Yusufoglu & Bekir 2008; Zayed
et al. 2004a; Zayed et al. 2004b; Zayed et al. 2007; Akbar &
Ali 2011; Akbar et al. 2012c; Zhang et al. 2002; Akbar & Ali
2011; Akbar & Ali 2012; Zhang & Xia 2008; Zhang & Xia
2007; Zhang et al. 2008a; Zhang et al. 2008b)) who are
concerned in nonlinear physical phenomena and many
powerful and efficient methods have been offered by
them. Among non-integrable nonlinear differential
equations there is a wide class of equations that referred to
as the partially integrable, because these equations become
integrable for some values of their parameters. There are
many different methods to look for the exact solutions of
these equations. The most famous algorithms are the trun-
cated Painleve expansion method (Kudryashov 1991), the
Weierstrass elliptic function method (Kudryashov 1990),
the tanh-function method (Abdou 2007; El-Wakil et al.
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2010; Fan 2000; Wazwaz 2008b; Wazzan 2009; Zayed et al.
2004b; Zhang & Xia 2008) and the Jacobi elliptic function
expansion method (Chen & Wang 2005; Liu et al. 2001; Lu
2005; Yusufoglu & Bekir 2008; Zayed et al. 2004a; Zayed
et al. 2007). There are other methods which can be found
in (Kawahara 1972; Wang & Zhang 2007; Wang & Zhou
2003; Wang & Li 2005a; Wang & Li 2005b; Wang et al.
2007; Wang et al. 2005). For integrable nonlinear dif-
ferential equations, the inverse scattering transform
method (Ablowitz & Clarkson 1991), the Hirota method
(Hirota 1971), the truncated Painleve expansion method
(Zhang et al. 2002), the Backlund transform method (Miura
1978; Rogers & Shadwick 1982) and the Exp-function
method (Naher et al. 2012; He & Wu 2006; Naher et al.
2011; Akbar & Ali 2011; Akbar & Ali 2012) are used
for searching the exact solutions.
Wang et al. (2008) introduced a direct and concise

method, called the (G'/G)-expansion method to look
for traveling wave solutions of nonlinear PDEs, where
G = G(ξ) satisfies the second order linear ODE G″(ξ) + λ G′
(ξ) + μ G(ξ) = 0; λ and μ are arbitrary constants. For
additional references see the articles (Akbar et al. 2012a;
Akbar et al. 2012b; El-Wakil et al. 2010; Parkes 2010;
Akbar & Ali 2011; Akbar et al. 2012c; Zhang et al. 2008a;
Zhang et al. 2008b).
In this article, we bring in an alternative approach,

called a further improved (G'/G)-expansion method to
find the exact traveling wave solutions of the breaking
soliton equation, where G = G(ξ) satisfies the auxiliary
ODE [G′(ξ)]2 = p G2(ξ) + q G4(ξ) + r G6(ξ); p, q and r are
constants. Recently El-Wakil et al. (2010) and Parkes
(2010) have shown that the extended tanh-function
method proposed by Fan (2000) and the basic (G'/G)-
expansion method proposed by Wang et al. (2008) are
entirely equivalent in as much as they deliver exactly
the same set of solutions to a given nonlinear evolution
equation. This observation has also been pointed out
recently by Kudryashov (2009). In this article, we assert
even though the basic (G'/G)-expansion method is
equivalent to the extended tanh-function method, the
further improved (G'/G)-expansion method presented
in this letter is not equivalent to the extended tanh-
function method. The method projected in this article
is varied to some extent from the extended (G'/G)-
expansion method.
The objective of this article is to show that the further

improved (G'/G)-expansion method and the celebrated
extended tanh-function method are not identical. Fur-
ther novel solutions are achieved via the offered fur-
ther improved (G'/G)-expansion method. It has not
been used by somebody previously. This approach will
play an imperative role in constructing many exact
traveling wave solutions for the nonlinear PDEs via the
(2 + 1)-dimensional breaking soliton equation.
The further improved (G'/G)-expansion method
Suppose we have the following nonlinear partial differential
equation

F u; ut ; ux; uy; utt; ux t; uy t;⋯
� � ¼ 0; ð1Þ

where u = u(x, y, t) is an unknown function, F is a poly-
nomial in u = u(x, y, t) and its partial derivatives in
which the highest order derivatives and the nonlinear
terms are involved. In the following we give the main steps
of the further improved (G'/G)-expansion method.

Step 1: The traveling wave variable,

u x; y; tð Þ ¼ u ξð Þ ξ ¼ xþ y−V t ; ð2Þ
where V is the speed of the traveling wave, permits us
to convert the Eq. (1) into an ODE in the form,

P u; u′; u″; u‴;⋯ð Þ ¼ 0; ð3Þ

wherein = ¼ d
dξ.

Step 2: Assume the solution of the Eq. (3) can be
expressed by means of a polynomial in (G'/G) as follows:

u ξð Þ ¼
Xn
i¼0

αi
G′
G

� �i

ð4Þ

where αi(i = 1, 2, 3,⋯) are constants provided αn ≠ 0 and
G = G(ξ ) satisfies the following nonlinear auxiliary
equation,

G′ ξð Þ½ �2 ¼ pG2 ξð Þ þ qG4 ξð Þ þ rG6 ξð Þ; ð5Þ
Where p, q and r are random constants to be
determined later (Table 1).

Step 3: In Eq. (4), n is a positive integer to be
determined; typically this involves balancing the highest
order nonlinear term(s) with the linear term(s) of the
highest order come out in Eq. (3).

Step 4: Substituting Eq. (4), into Eq. (3) and utilizing
Eq. (5), we obtain polynomials in Gi(ξ ) and G'(ξ ) Gi (ξ )
(i = 0, ± 1, ± 2, ± 3,⋯). Vanishing each coefficient of the
resulted polynomials to zero, yields a set of algebraic
equations for αn, p, q, r,V and constant(s) of integration, if
applicable. If the original evolution equation contains
some arbitrary constant coefficients, these will, of course,
also appear in the system of algebraic equations. Suppose
with the aid of symbolic computation software such as
Maple, the unknown constants αn, p, q, r and V can be
found by solving these set of algebraic equations and
substituting these values into Eq. (4), new and more
general exact traveling wave solutions of the nonlinear
partial differential Equation (1) can be found.



Table 1 The general solutions of Eq. (5) are as follows (Yomba 2008; Zhang & Xia 2007)

No G(ξ) No G(ξ)

1
−p q sech2

ffiffi
p

p
ξð Þ

q2−p r 1� tanh
ffiffi
p

p
ξð Þð Þ

� �1
2

or
−p q csch2

ffiffi
p

p
ξð Þ

q2−p r 1� coth
ffiffi
p

p
ξð Þð Þ

� �1
2

6
−p sec2

ffiffiffiffi
−p

p
ξð Þ

q�2
ffiffiffiffiffiffi
−p r

p
tan

ffiffiffiffi
−p

p
ξð Þ

� �1
2

or
−p csc2

ffiffiffiffi
−p

p
ξð Þ

q�2
ffiffiffiffiffiffi
−p r

p
cot

ffiffiffiffi
−p

p
ξð Þ

� �1
2

; p < 0; r > 0

2 2 p
� ffiffiffi

Δ
p

cosh 2
ffiffi
p

p
ξð Þ−q

� �1
2

; p > 0;Δ > 0 7 p e�2
ffiffi
p

p
ξ

e�2
ffiffi
p

p
ξ−4 qð Þ2−64 p r

� �1
2

; p > 0

3 2 p
� ffiffiffi

Δ
p

cos 2
ffiffiffiffi
−p

p
ξð Þ−q

� �1
2

or 2 p
� ffiffiffi

Δ
p

sin 2
ffiffiffiffi
−p

p
ξð Þ−q

� �1
2

; p < 0;Δ > 0 8 − p
q 1� tanh 1

2

ffiffiffi
p

p
ξ

� �� �h i1
2
or − p

q 1� coth 1
2

ffiffiffi
p

p
ξ

� �� �h i1
2
; p > 0;Δ ¼ 0

4 2 p
� ffiffiffiffiffi

−Δ
p

sinh 2
ffiffi
p

p
ξð Þ−q

� �1
2

; p > 0;Δ < 0 9 �p e�2
ffiffi
p

p
ξ

1−64 p r e�4
ffiffi
p

p
ξ

h i1
2
; p > 0; q ¼ 0

5
−p sech2

ffiffi
p

p
ξð Þ

q�2
ffiffiffiffi
p r

p
tanh

ffiffi
p

p
ξð Þ

� �1
2

or
p csch2

ffiffi
p

p
ξð Þ

q�2
ffiffiffiffi
p r

p
coth

ffiffi
p

p
ξð Þ

� �1
2

; p > 0; r > 0 10 � 1ffiffi
q

p
ξ ; p ¼ 0; r ¼ 0

where Δ = q2 – pr.
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Application
In this section, we bring to bear the further improved
(G'/G)-expansion method to the (2 + 1)-dimensional
breaking soliton equation which is dreadfully important
nonlinear evolution equations in mathematical physics
and have been paid attention by a lot of researchers and
the extended tanh-function method to compare the so-
lutions obtained by the two methods.

On solving the (2 + 1)-dimensional breaking soliton
equation by the projected method
We start with the (2 + 1)-dimensional breaking soliton
equation (Darvishi & Najafi 2012; Bekir 2010; Ma et al.
2009; Inan 2010) in the form,

ux t−4ux yux−2ux xuy−uxx x y ¼ 0: ð6Þ

This equation was first introduced by Calogero and
Degasperis in 1977. The breaking soliton equation describe
the (2 + 1)-dimensional interaction of the Riemann wave
propagation along the y-axis with a long wave propagation
along x-axis (Ma et al. 2009). In the recent years, a consider-
able amount of research works on the breaking soliton equa-
tion have been accomplished. For example, its solitary wave
solutions, periodic and multiple soliton solutions are found
in (Inan 2010). Let us now solve the Eq. (6) by the proposed
further improved (G'/G)-expansion method. To this end, we
perceive that the traveling wave variable (2) permits us in
converting Eq. (6) into an ODE and upon integration yields:

V u′þ 3 u′ð Þ2 þ u‴ ¼ 0 ð7Þ

with zero constant of integration. Considering the homoge-
neous balance between the highest order derivative and the
nonlinear term come out in Eq. (7), we deduce that D(u′)2 =
D(u‴), where D(u′)2 stands for degree of (u′)2 and so on.
This yield n= 1. Therefore, the solution (4) turns out to be

u ξð Þ ¼ α1
G′
G

� �
þ α0 ð8Þ
Substituting (8) together with Eq. (5) into (7), we ob-
tain the following polynomial equation in G:

α1q V þ 4pð ÞG2 þ 3α21q
2 þ 32α1r pþ 2V α1r þ 6α1q

2
� �

G4

þ12α1 r q α1 þ 4ð ÞG6 þ 12α1 r
2 α1 þ 4ð ÞG8 ¼ 0 ð9Þ

Setting each coefficient of the polynomial Eq. (9) to zero,
we achieve a system of algebraic equations which can be
solved by using the symbolic computation software such as
Maple and obtain the following two sets of solutions:

The set 1.

α1 ¼ −4; α0 ¼ α0; q ¼ 2
ffiffiffiffiffi
pr

p
; V ¼ −4p; ð10Þ

where α0, p and r are arbitrary constants.
The set 2.

α1 ¼ −4; α0 ¼ α0; q ¼ 0; V ¼ −16p; ð11Þ
where α0, p and r are arbitrary constants.

Now for the set 1, we have the following solution:

u ξð Þ ¼ −4
G′
G

� �
þ α0; ð12Þ

where

ξ ¼ xþ yþ 4p t:

According to the step 2 of section 2, we have the sub-
sequent families of exact solutions:

Family 1. If p > 0, the solution of Eq. (5) has the form,

G ξð Þ ¼ −pq sech2
ffiffiffi
p

p
ξ

� �
q2−pr 1� tanh

ffiffiffi
p

p
ξ

� �� �2
" #1

2

ð13Þ

or

G ξð Þ ¼ −pq csch2
ffiffiffi
p

p
ξ

� �
q2−pr 1� coth

ffiffiffi
p

p
ξ

� �� �2
" #1

2

ð14Þ
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In these cases we have the ratio,
G′
G

¼
ffiffiffi
p

p
q2 sinh

ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �
−2pr sinh

ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �
∓2pr cosh2

ffiffiffi
p

p
ξ

� �� pr
	 


−q2 cosh2
ffiffiffi
p

p
ξ

� �þ 2pr cosh2
ffiffiffi
p

p
ξ

� �� 2pr sinh
ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �
−pr

ð15Þ
and
G′
G

¼
ffiffiffi
p

p
q2 sinh

ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �
−2pr sinh

ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �
∓2pr cosh2

ffiffiffi
p

p
ξ

� �� pr
	 

−q2 cosh2

ffiffiffi
p

p
ξ

� �þ 2pr cosh2
ffiffiffi
p

p
ξ

� �� 2pr sinh
ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �þ q2−pr
ð16Þ
respectively.
Since q ¼ 2

ffiffiffiffiffiffi
pr

p
, subsequently, we obtain the follow-

ing traveling wave solutions,

u ξð Þ ¼ ∓4
ffiffiffi
p

p � 8
ffiffiffi
p

p
sech2 2

ffiffiffi
p

p
ξ

� �
sech2 2

ffiffiffi
p

p
ξ

� �
∓2 tanh 2

ffiffiffi
p

p
ξ

� �þ 2
þ α0

ð17Þ
and

u ξð Þ ¼ 4
ffiffiffi
p

p
−

8
ffiffiffi
p

p
sech2 2

ffiffiffi
p

p
ξ

� �
3 sech2 2

ffiffiffi
p

p
ξ

� �þ 2 tanh 2
ffiffiffi
p

p
ξ

� �
∓2

þ α0;

ð18Þ
where

ξ ¼ xþ yþ 4p t

Family 2. If p > 0, r > 0, the solution of Eq. (5) has
the form,

G ξð Þ ¼ −p sech2
ffiffiffi
p

p
ξ

� �
q � 2

ffiffiffiffiffiffi
pr

p
tanh

ffiffiffi
p

p
ξ

� �
" # 1

2
or G ξð Þ

¼ p csch2
ffiffiffi
p

p
ξ

� �
q � 2

ffiffiffiffiffiffi
pr

p
coth

ffiffiffi
p

p
ξ

� �
" # 1

2
:

ð19Þ

Then we have the ratio,

G′
G

¼
ffiffiffi
p

p �q sinh
ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �
∓2

ffiffiffiffiffiffi
pr

p
cosh2

ffiffiffi
p

p
ξ

� �
∓

ffiffiffiffiffiffi
pr

p	 

cosh

ffiffiffi
p

p
ξ

� �
q cosh

ffiffiffi
p

p
ξ

� �� 2
ffiffiffiffiffiffi
pr

p
sinh

ffiffiffi
p

p
ξ

� �	 

or

G′
G

¼ −
ffiffiffi
p

p �q sinh
ffiffiffi
p

p
ξ

� �
cosh

ffiffiffi
p

p
ξ

� �� 2
ffiffiffiffiffiffi
pr

p
cosh2

ffiffiffi
p

p
ξ

� �
∓

ffiffiffiffiffiffi
pr

p	 

sinh

ffiffiffi
p

p
ξ

� �
q sinh

ffiffiffi
p

p
ξ

� �� 2
ffiffiffiffiffiffi
pr

p
cosh

ffiffiffi
p

p
ξ

� �	 
 :

ð20Þ
Since q ¼ 2

ffiffiffiffiffiffi
pr

p
, subsequently, we obtain the following

traveling wave solutions:

u ξð Þ ¼ �2
ffiffiffi
p

p þ 2
ffiffiffi
p

p
tanh

ffiffiffi
p

p
ξ

� �þ α0
or

u ξð Þ ¼ �2
ffiffiffi
p

p þ 2
ffiffiffi
p

p
coth

ffiffiffi
p

p
ξ

� �þ α0 ð21Þ
where

ξ ¼ xþ yþ 4p t

Family 3. If p < 0, r > 0, the solution of Eq. (5) has the
form,

G ξð Þ ¼ −p sec2
ffiffiffiffiffiffi
−p

p
ξ

� �
q � 2

ffiffiffiffiffiffiffiffi
−pr

p
tan

ffiffiffiffiffiffi
−p

p
ξ

� �
" #1

2

or

G ξð Þ ¼ −p csc2
ffiffiffiffiffiffi
−p

p
ξ

� �
q � 2

ffiffiffiffiffiffiffiffi
−pr

p
cot

ffiffiffiffiffiffi
−p

p
ξ

� �
" #1

2

: ð22Þ

Then we have the ratio

G′
G

¼
ffiffiffiffiffiffi
−p

p ffiffiffiffiffiffiffiffi
−pr

p
−2

ffiffiffiffiffiffiffiffi
−pr

p
cos2

ffiffiffiffiffiffi
−p

p
ξ

� �� q sin
ffiffiffiffiffiffi
−p

p
ξ

� �
cos

ffiffiffiffiffiffi
−p

p
ξ

� �	 

cos

ffiffiffiffiffiffi
−p

p
ξ

� �
2

ffiffiffiffiffiffiffiffi
−pr

p
sin

ffiffiffiffiffiffi
−p

p
ξ � q cos

ffiffiffiffiffiffi
−p

p
ξ

� �g�	
or

G′
G

¼
ffiffiffiffiffiffi
−p

p ffiffiffiffiffiffiffiffi
−pr

p
∓2

ffiffiffiffiffiffiffiffi
−pr

p
cos2

ffiffiffiffiffiffi
−p

p
ξ

� �
∓q sin

ffiffiffiffiffiffi
−p

p
ξ

� �
cos

ffiffiffiffiffiffi
−p

p
ξ

� �	 

sin

ffiffiffiffiffiffi
−p

p
ξ

� �
2

ffiffiffiffiffiffiffiffi
−pr

p
cos

ffiffiffiffiffiffi
−p

p
ξ

� �� q sin
ffiffiffiffiffiffi
−p

p
ξ

� �	 
 :

ð23Þ
Since q ¼ 2

ffiffiffiffiffiffi
pr

p
, subsequently, we obtain the follow-

ing traveling wave solutions:

u ξð Þ ¼ −4
ffiffiffiffiffiffi
−p

p
tan 2

ffiffiffiffiffiffi
−p

p
ξ

� �
∓1

	 

1� tan 2

ffiffiffiffiffiffi
−p

p
ξ

� �þ sec 2
ffiffiffiffiffiffi
−p

p
ξ

� �þ α0

or

u ξð Þ ¼ −4
ffiffiffiffiffiffi
−p

p
tan 2

ffiffiffiffiffiffi
−p

p
ξ

� �� 1
	 


1∓ tan 2
ffiffiffiffiffiffi
−p

p
ξ

� �
− sec 2

ffiffiffiffiffiffi
−p

p
ξ

� �þ α0; ð24Þ

where

ξ ¼ xþ yþ 4p t:
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Family 4. If p > 0, Δ = 0, the solution of Eq. (5) has the
form,

G ξð Þ ¼ −
p
q

1� tanh
1
2

ffiffiffi
p

p
ξ

� �� �� �1
2

or

G ξð Þ ¼ −
p
q

1� coth
1
2

ffiffiffi
p

p
ξ

� �� �� �1
2

ð25Þ

Then we have the ratio

G′
G

¼
ffiffiffi
p

p
4

�1− tanh
1
2

ffiffiffi
p

p
ξ

� �� �

or

G′
G

¼
ffiffiffi
p

p
4

�1− coth
1
2

ffiffiffi
p

p
ξ

� �� �
ð26Þ

Subsequently, we obtain the following traveling wave
solutions:

u ξð Þ ¼ −
ffiffiffi
p

p �1− tanh
1
2

ffiffiffi
p

p
ξ

� �� �
þ α0

or

u ξð Þ ¼ −
ffiffiffi
p

p �1− coth
1
2

ffiffiffi
p

p
ξ

� �� �
þ α0; ð27Þ

where

ξ ¼ xþ yþ 4p t

Family 5. If p > 0, the solution of Eq. (5) has the form

G ξð Þ ¼ pe�2
ffiffi
p

p
ξ

e�2
ffiffi
p

p
ξ−4q

� �2−64pr
( )1

2

ð28Þ

Then we have the ratio

G′
G

¼
ffiffiffi
p

p
e�4

ffiffi
p

p
ξ−16q2 þ 64pr

	 

∓e�4

ffiffi
p

p
ξ � 8q e�2

ffiffi
p

p
ξ∓16q2 � 64pr

ð29Þ

Since q ¼ 2
ffiffiffiffiffiffi
pr

p
, subsequently, we obtain the follow-

ing traveling wave solutions:

u ξð Þ ¼ −4
ffiffiffi
p

p
e�2

ffiffi
p

p
ξ

�16
ffiffiffiffiffiffi
pr

p
∓e�2

ffiffi
p

p
ξ
þ α0 ð30Þ

where

ξ ¼ xþ yþ 4p t

For the set 2, we have the following solution:

u ξð Þ ¼ −4
G′
G

� �
þ α0 ð31Þ
where

ξ ¼ xþ yþ 16p t:

According to the step 2 of section 2, we obtain the
subsequent families of exact solutions:
Cohort 1. If p > 0, Δ > 0, the solution of Eq. (5) has the

form,

G ξð Þ ¼ 2p

� ffiffiffiffi
Δ

p
cosh 2

ffiffiffi
p

p
ξ

� �
−q

" #1
2

ð32Þ

Since q = 0, then r < 0. In this case we have the ratio,

G′
G

¼ −
ffiffiffi
p

p
tanh 2

ffiffiffi
p

p
ξ

� � ð33Þ

Therefore, we obtainthe following traveling wave solu-
tion,

u ξð Þ ¼ 4
ffiffiffi
p

p
tanh 2

ffiffiffi
p

p
ξ

� �þ α0; ð34Þ
where

ξ ¼ xþ yþ 16p t:

Cohort 2. If p > 0, Δ < 0, the solution of Eq. (5) has the
form

G ξð Þ ¼ 2p

� ffiffiffiffiffiffi
−Δ

p
sinh 2

ffiffiffi
p

p
ξ

� �
−q

" #1
2

ð35Þ

Since q = 0, then r > 0. In this case we have the ratio,

G′
G

¼ −
ffiffiffi
p

p
coth 2

ffiffiffi
p

p
ξ

� �
: ð36Þ

Therefore, we obtain the following traveling wave so-
lutions:

u ξð Þ ¼ 4
ffiffiffi
p

p
coth 2

ffiffiffi
p

p
ξ

� �þ α0; ð37Þ
where

ξ ¼ xþ yþ 16pt:

Cohort 3. If p < 0, Δ > 0, the solutions of Eq. (5) has
the form,

G ξð Þ ¼ 2p

� ffiffiffiffi
Δ

p
cos 2

ffiffiffiffiffiffi
−p

p
ξ

� �
−q

" #1
2

or

G ξð Þ ¼ 2p

� ffiffiffiffi
Δ

p
sin 2

ffiffiffiffiffiffi
−p

p
ξ

� �
−q

" #1
2

ð38Þ
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Since q = 0, then r > 0. Thus we have the ratio,

G′
G

¼ ffiffiffiffiffiffi
−p

p
tan 2

ffiffiffiffiffiffi
−p

p
ξ

� �
or

G′
G

¼ −
ffiffiffiffiffiffi
−p

p
cot 2

ffiffiffiffiffiffi
−p

p
ξ

� � ð39Þ

Therefore, we obtain the following traveling wave solu-
tions:

u ξð Þ ¼ −4
ffiffiffiffiffiffi
−p

p
tan 2

ffiffiffiffiffiffi
−p

p
ξ

� �þ α0

or

u ξð Þ ¼ −4
ffiffiffiffiffiffi
−p

p
cot 2

ffiffiffiffiffiffi
−p

p
ξ

� �þ α0 ð40Þ

where

ξ ¼ xþ yþ 16p t:

Cohort 4. If p > 0, r > 0, the solutions of Eq. (5) has the
form,

G ξð Þ ¼ −p sech2
ffiffiffi
p

p
ξ

� �
q � 2

ffiffiffiffiffiffi
pr

p
tanh

ffiffiffi
p

p
ξ

� �
" #1

2

or

G ξð Þ ¼ p csch2
ffiffiffi
p

p
ξ

� �
q � 2

ffiffiffiffiffiffi
pr

p
coth

ffiffiffi
p

p
ξ

� �
" #1

2

: ð41Þ

Since q = 0, we have the ratio,

G′
G

¼ −
1
2

ffiffiffi
p

p
tanh

ffiffiffi
p

p
ξ

� �þ coth
ffiffiffi
p

p
ξ

� � � ð42Þ

Therefore, we obtain the following traveling wave solu-
tion:

u ξð Þ ¼ 2
ffiffiffi
p

p
tanh

ffiffiffi
p

p
ξ

� �þ coth
ffiffiffi
p

p
ξ

� �	 
þ α0 ð43Þ
where

ξ ¼ xþ yþ 16p t

Cohort 5. If p < 0, r > 0, the solutions of Eq. (5) has the
form

G ξð Þ ¼ −p sec2
ffiffiffiffiffiffi
−p

p
ξ

� �
q � 2

ffiffiffiffiffiffiffiffi
−pr

p
tan

ffiffiffiffiffiffi
−p

p
ξ

� �
" #1

2

or

G ξð Þ ¼ −p csc2
ffiffiffiffiffiffi
−p

p
ξ

� �
q � 2

ffiffiffiffiffiffiffiffi
−pr

p
cot

ffiffiffiffiffiffi
−p

p
ξ

� �
" #1

2

ð44Þ
Since q = 0, then we have the ratio,

G′
G

¼ −
1
2

ffiffiffiffiffiffi
−p

p
cot

ffiffiffiffiffiffi
−p

p
ξ

� �
− tan

ffiffiffiffiffiffi
−p

p
ξ

� � �
: ð45Þ

Therefore, we obtain the following traveling wave solu-
tions:

u ξð Þ ¼ 2
ffiffiffiffiffiffi
−p

p
cot

ffiffiffiffiffiffi
−p

p
ξ

� �
− tan

ffiffiffiffiffiffi
−p

p
ξ

� �	 
þ α0;

ð46Þ
where

ξ ¼ xþ yþ 16p t:

Cohort 6. If p > 0, q = 0, the solution of Eq. (5) has the
form,

G ξð Þ ¼ �pe�2
ffiffiffiffiffi
p ξ

p

1−64pr e�4
ffiffiffiffiffi
p ξ

p
" #1

2

ð47Þ

Then we have the ratio,

G′
G

¼ � 1
8

ffiffi
r

p coth
�ξ

4
ffiffi
r

p
� �

; ð48Þ

where 64 pr = 1.
Therefore, we have the solution:

u ξð Þ ¼ ∓
1

2
ffiffi
r

p coth
�ξ

4
ffiffi
r

p
� �

þ α0; ð49Þ

where

ξ ¼ xþ yþ 16p t:

Cohort 7. If p = 0, r = 0, then the solution of Eq. (5)
has the form,

G ξð Þ ¼ � 1ffiffiffi
q

p
ξ
: ð50Þ

Then we have the ratio,

G′
G

¼ −
1
ξ
þ α0: ð51Þ

Therefore, we have the solution:

u ξð Þ ¼ 4
ξ
þ α0; ð52Þ

where

ξ ¼ xþ yþ 16p t:

These are the exact solutions of the breaking soliton
equation obtained by the further improved (G'/G)-ex-
pansion method.
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On solving the breaking soliton equation by the
extended tanh-function method
With reference to the well-known extended tanh-function
method (Abdou 2007; El-Wakil et al. 2010; Fan 2000;
Wazwaz 2008b; Wazzan 2009; Zayed et al. 2004b; Zhang &
Xia 2008), the solution of the breaking soliton Eq. (6) can
be written in the form,

u ξð Þ ¼ α1ϕ ξð Þ þ α0; ð53Þ
where ϕ(ξ ) satisfy the Riccati equation

ϕ′ ξð Þ ¼ Aþ ϕ2 ξð Þ: ð54Þ
The Riccati Eq. (54) has the following solutions:
(i) If A < 0, then

ϕ ξð Þ ¼ −
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� �
or

ϕ ξð Þ ¼ −
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� �
: ð55Þ

(ii) If A > 0, then

ϕ ξð Þ ¼
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� �
or ϕ ξð Þ ¼ −

ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
ξ

� �
ð56Þ

(iii) If A = 0, then

ϕ ξð Þ ¼ −
1
ξ
: ð57Þ

Substituting (53) together with (54) into (7), we obtain
the following polynomial equation in φ:

3α1 α1 þ 2ð Þφ4 ξð Þ þ α1 V þ 8Aþ 6α1Að Þφ2 ξð Þ
þ α1A V þ 2Aþ 3α1Að Þ ¼ 0

ð58Þ
Equating the coefficients of this polynomial to zero

and solving the set of algebraic equations with the aid of
Maple, we obtain the subsequent solution:

α1 ¼ −2; α0 ¼ α0; V ¼ 4A ð59Þ
where α0 and A are arbitrary constants.
Accordingly the exact solutions of Eq. (6) have the fol-

lowing forms:
When A < 0, the solution takes the form,

ϕ ξð Þ ¼ 2
ffiffiffiffiffiffi
−A

p
tanh

ffiffiffiffiffiffi
−A

p
ξ

� �
þ α0

or

ϕ ξð Þ ¼ 2
ffiffiffiffiffiffi
−A

p
coth

ffiffiffiffiffiffi
−A

p
ξ

� �
þ α0; ð60Þ

where

ξ ¼ xþ y−4A t:
When A > 0, the solution takes the form,

ϕ ξð Þ ¼ −2
ffiffiffiffi
A

p
tan

ffiffiffiffi
A

p
ξ

� �
þ α0

or

ϕ ξð Þ ¼ −2
ffiffiffiffi
A

p
cot

ffiffiffiffi
A

p
ξ

� �
þ α0 ð61Þ

where

ξ ¼ xþ y−4A t:

When A = 0, the solution takes the form,

u ξð Þ ¼ 2
ξ
þ α0; ð62Þ

where

ξ ¼ xþ y−4A t:

From the above results achieved by the two methods,
we can draw the following conclusive remarks:

Remark 1. If we put A = −4p where p > 0, the results
arranged in Eq. (59) are identical to the results (34) and
(37) respectively.
Remark 2. If we put A = −4p where p < 0 then the
results arranged in Eq. (61) are identical to the results
given in (40).
Remark 3: Result given in (62) is alike to the result
given in (52).

Discussion
From these remarks we have the assessments: The exact
solutions of the breaking soliton equation obtained by
means of the extended tanh-function method can also be
found by the further improved (G'/G)-expansion method
and in appendage some new solutions are obtained.
Recently Parkes (Parkes 2010) showed that the extended

tanh-function expansion method proposed by Fan in
(Fan 2000) and the basic (G'/G)-expansion method pro-
posed by Wang et al. in (Wang et al. 2008) are entirely
equivalent in as much as they deliver exactly the same
set of solutions to a given nonlinear evolution equation.
He demonstrated that in many articles in which the
basic (G'/G)-expansion method has been used, the authors
claimed that new solutions have been derived but unfortu-
nately these solutions are often erroneous; the alleged the
so called new solutions are merely the disguised versions of
the previously known solutions. Parkes also claim that the
extended tanh-function expansion method delivers solu-
tions in an easy way, alternatively extra effort is necessary
when using the basic (G'/G)-expansion method. But, in
this article we have detected that the projected further
improved (G'/G)-expansion method and the extended
tanh-function expansion method are not equivalent
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although the extended tanh-function expansion method
and the basic (G'/G)-expansion method are equivalent. We
see that by means of the extended tanh-function we attain
merely three solutions of the breaking soliton equation, al-
ternatively through the further improved (G'/G)-expansion
method we obtain twelve solutions of which three solutions
are analogous, two are reducible and the rest of the seven
solutions cannot be found by the extended tanh-function
method. The calculations of the projected method are also
easier than the extended tanh-function method as well as
the basic (G'/G)-expansion method.

Conclusions
A further improved (G'/G)-expansion method is sug-
gested and applied to the (2 + 1)-dimensional breaking
soliton equation. The results obtained by the suggested
method have been compared with those obtained by
the celebrated extended tanh-function method. From
this study, we observe that the further improved (G'/G)-
expansion method and the extended tanh-function method
are not equivalent, although El-Wakil (El-Wakil et al. 2010)
and Parkes (Parkes 2010) have shown that the basic (G'/G)-
expansion method and the extended tanh-function method
are equivalent. We see that all the results obtained by the
extended tanh-function are found by the suggested method
and in addition some novel solutions are attained. It is evi-
dent that obtained solutions are more general and many
known solutions are only special case of them. The analysis
shows that the proposed method is quite resourceful and
practically well suited to be used in finding exact solutions
of NLEEs. We expect the suggested method might be ap-
plicable to other kinds of NLEEs in mathematical physics
and this is our next job.
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