LETTER TO THE EDITOR

Open Access

Three novel F8 mutations in sporadic haemophilia A cases

Rashid Hussain^{1*}, Noman Bin Abid², Sajjad Hussain³, Zeeshan Shaukat³, Mudassir Altaf³, Sara Altaf³ and Gulzar Niazi³

Hemophilia A (HA) is an X-linked hereditary disorder characterized by bleeding of variable severity through mild, moderate to severe owing to large range of mutations in the Factor VIII (F8) gene (Bowen 2002). All kind of F8 mutations, except repeats, have been reported for HA, in total up to 2370 (Human Genome Mutation Database 2005). A preliminary study was conducted in our lab for identification of mutations in F8 gene in Pakistani HA patients. Correlation of F8 mutations with clinical manifestation of HA patients was the main objective of the study. Blood samples were collected from 62 HA patients from all over the Pakistan and clinical history of all HA patients was recorded (only patients frequently visiting medical centers for the replacement of Factor VIII were selected for the study). Genomic DNA was extracted from whole blood by standard organic procedure. Specific primers (Figure 1) were designed using "Primer3" (http://biotools.umass med.edu/bioapps/primer3_www.cgi) to amplify the coding region of F8 gene; amplified products were sequenced by ABI 310 and ABI 3100 sequencer (Applied Biosystems, Carlsbad, CA, USA). The sequencing results were visualized using "Chromas 2.33" software (Applied Biosystems) and mutations were detected using "BLAST" software available on the NCBI website (http: balst.ncbi.nlm.nih.gov/Blast.cgi). Three novel mutations (1 deletion; 2 point mutations) were detected in four sporadic HA patients, all from different ethnic backgrounds (Table 1). The deletion of T in exon 7 within the A1 domain represents a frame-shift change disrupting the protein structure and function, which result in severe manifestation of the disease. A missense point mutation in the A3 domain occurs in codon 1907 at nucleotide number 5720, replacing Serine with Isoleucine, and

Full list of author information is available at the end of the article

confers a moderate type of severity. It should be noted that Serine is a polar and acidic amino acid while Isoleucine is a nonpolar and basic amino acid. A nonsense point-mutation was found in two unrelated patients in the C3 domain (exon 26) and was correlated with moderate clinical findings. Beside these mutations, 27 common SNPs were also detected in *F8* gene for the studied patients (Table 2). The allelic data and accession numbers of these SNPs were collected from Ensembl Genome Browser (Ensembl 2000). The results of the study will form the basis not only for an enlarged study but also for diagnosis and genetic counseling of classical hemophilia in Pakistan.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

RH managed the project and wrote the paper. NBA, SH, ZS, MA, SA performed experiments. GN designed the project. All authors read and approved the final manuscript.

Author details

¹National Institute for Genomics and Advance Biotechnology (NIGAB)/ National Agricultural Research Centre (NARC), Park Road, P.O. Box-NIH, Islamabad, Pakistan. ²Lahore University of Management Sciences, DHA Phase III Hospital Street 29, Lahore 54792, Pakistan. ³National Center of Excellence in Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.

Received: 17 April 2012 Accepted: 2 July 2012 Published: 30 July 2012

References

- Bowen DJ (2002) Hemophilia A and B: molecular insights. J clin path; mol path 55:1–18.
- Human Genome Mutation Database (2005) Institute of Medical Genetics, Cardiff, http://www.hgmd.cf.ac.uk. Accessed 26 May 2012.
- Ensembl (2000) European Molecular Biology Laboratory and Welcome Trust Sanger Institute., http://www.ensembl.org. Accessed 10 June.

doi:10.1186/2193-1801-1-10

Cite this article as: Hussain *et al*.: Three novel F8 mutations in sporadic haemophilia A cases. *SpringerPlus* 2012 1:10.

© 2012 Hussain et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: raashaiduaar@yahoo.com

¹National Institute for Genomics and Advance Biotechnology (NIGAB)/ National Agricultural Research Centre (NARC), Park Road, P.O. Box-NIH, Islamabad, Pakistan

Primer	Exop	Primer	Size	Product	Annealing	F8E14.1F	14	GGGAGAGAACCTCTAACAGAA	21	396bp	55.18°C	F8E20R		ATCTGAGATTCTCCACCAGA	20		54600
ID	L'AON			size	Temp.	F8E14.1R	1	GCATCAACAAATCACTAGAGG	21	33000	54.97°C	TOLSON			20		54.6 0
F8E1F	TO PUP CASE	CTGCTTCCCACTGATAAAAA	20		55.55°C	F8E14.2F	1.	CCACAATTCCAGAAAATGAC	20	463bp	55.47 °C	F8E21F		CTAGGACTAACCCAGCTGAA	20		54.7%
FSEIR	1	AGCATCACAACCATCCTAAC	20	457bp	55.06°C	F8E14.2R		TAATGAACTGGCATACTTGG	20	N. Contraction	53.79°C	1 Contraction	21	and the second		210bp	
TOLIK		Adeareactive and a second	20	AND DESCRIPTION OF THE OWNER	55.00 0	F8E14.3F	F8E14.3F	TAAATGAGAAACTGGGGACA	20	476bp	55.65°C	F8E21R	1	GAGCITGCAAGAGGAATAAG	20		54.5%
F8E2F	2	AAGIGICCACCAAAAIGAAC	20	258bp	54.94 C	FOE14.3R		GCCATCAATGTGAGTCTTTC	20		55.62°C	FOFAAF	15 Capile	and an and a second		C. Seller	
F8E2R		GCACITITTAACTGCAACCT	20	54.80 °C	F8E14.4F	14	ATGGACCTGCTTTGTTGAC	19	487bp	56.01 °C	F8E22F	22	TTCAGGAGGTAGCACATACA	20	255bp	54.2°	
F8E3F	3	TGGAATAACAGGTTTTCTGG	20	250bp 55.23 °C		F8E14.4R	120	TGACCTTCCACAGATTTTTC	20		55.17°C	F8E22R		AGTATTCAGGCATTCCCTTT	20	20	55.4
F8E3R	12 2 3	GCACACACATCTCACTGTTC	20	54.86°C		F8E14.5F	14	GGATACAAAGGACTCATGGA	20	487bp	54.95°C	100000000	23			20 277bp	
F8E4F	4	TGTTTCTTTGAGTGTACAGTGG	22	373bp 55.49°C		F8E14.5R		TTTGAGAAATGAGCTGTGTG	20		54.89°C	F8E23F		GCACAAAGCAAATTAGAAGG	20		55.3°
F8E4R		TCTTTCAGGTGAAGGAACAC	20	55.24°C		F8E14.6F		GGCATATGCTCCAGTACTTC	20	529bp 54.90 °C	F8E23R		GTTGAGGGAAGAAGGATATG	20	.0	53.8	
F8E5F	5	TCCTCCTAGTGACAATTTCC	20	188bp	54.23 °C	F8E14.6R	14	TGCTGGAAGATGAGAAGAGT	20	. Loop	55.05°C	F8F24F	1	CONTOTOTTOTOTTOTOT	20		
F8E5R	1.30	GCAGAGGATTTCTTTCAGG	19	1967	54.97 °C	F8E14.7F	1	GAGTCATAGCATCCCTCAAG	20	54.8	54.85°C		- 24	GCATGICCHGIGATAACCI	20	277bp	55.1
F8E6F		TCATLCATGAGACACATGCT	20	54.9°C		F8E14.7R	14	CIGTTIGCTICATTCCACTT	20	492bp	55.45°C	F8E24R	1	ACCTCAGAAGAAACAGICAAG	21	21	53.7
F8E6R		ACAGAACTCTGGTGCTGAAT	20	2310p 54.8°C		F8E14.8F	14	AGAAGGACCTATICCCTACG	20	a fare	55.02°C	F8E25F	1313	TTCTGGGAGTAAATGGTGAC	20		55.05
F8E7F	7	TCCATTCTGTCCTAGCAAGT	20	400bp 54.9°C		F8E14.8R		TOACTICTATTICCCCCTTA	20	369bp 55 23 °C	111	25		20	295bp	33.0	
F8E7R	12.2	CCTTCAGCAACACACTATATTC	22	I a tal	54.2°C	F8E14.9F		CATACCATTERECCICAA	20		51.07°C	F8E25R	113	TIAAUCICIAUUAUAUUUUU	21		55.0
FSESF		GCCTAATATAGCAAGACACTCTG	23	STATE OF BELLE	55.2 °C	F8E14.9R	14	GATACCATTIGICCCIGAA	20	445bp	64.75°C	F8E26.1F		AGAAGTGAGAAAAGCGTCTG	20	20	54.89
F8E8R	8	TTTTGAGTATGGGGAAGAGA	20	358bp 54.8 °C	FREISE		IGGIGICAICAICIGGIAAA	20		54.75 °C	F8F26 1R	- 26			475bp		
ESEOE		ATTTTTCTTCCCAACCTCTC	20		54.9°C		15	GAGGATGTGAGGCATTTCTA	20	300bp	55.3°C		135	GGAAGGAAGGAGTAATCTGG	20	55.38	
Follor	9			302bp		F8E15R		GTGGGAATACATTATAGTCAGC	22		53.1°C	F8E26.2F		ATCATCAGICCTGCATTTCT	20	1.1967	54.66
F8E9R	14.1	GACAAGGCTGAATTATGAGG	20	1.2.2.2	54.9°C	F8E16F		GGGATGTAAACCCTAAGGAC	20	0	55.1 °C	Faca (an	26			480bp	-
F8E10F	10	GGCCACITTIATTTAICIGG	20	2841-	54.1 °C	F8E16R 16		AGCTTCTTATTGCACGTAGG		389bp	54.9°C	P8E20.2R		GTGCCCCTCATAATGACTAA	20	20	55.17
F8E10R		СТОБАВАЛАВВАССАЛСАТА	20	28400	55.2 °C	F8E17F	124	TGAGAAATCCACTCTGGTTC	20	S. Starte	55.2°C	F8E26.3F	24	ACAATCTGCAAAATGGAGAG	20	1011	55.37
F8E11F		CAGATTTGTAGAACCCTTGC	20		55.0 °C	F8E17R	17	CCIGGATCAAGICICATTIG	20	371bp	55.6°C	F8E26.3R	0	GGGAGAGAGTAAACTGAGTGC	21 49100	49100	55.70
F8E11R	- "	AAGGGGACATACACTGAGAA	20	361bp	54.6°C	F8E18F	P C C	ATATCIGIGGGAGTGGAATC	20	53.0 C	53.81°C	F8E26.4F	The last		-	The second second	
F8E12F		GACTGCTAGCTCCTACCTGA	20		54.8°C	FSEISR	18	TOTOCTTTCATCACTCATTC	20	389bp	54.70°C		26	GATGACATTAGGCTTCTAAAGG	22	22 497bp	54.95
EVELOP	- 12	TCITTATTCACCACCCACTG	20	262bp	56.0 °C	PERIOR		Terectificateactoartic	20		34.79 C	F8E26.4R	3	TTAGGATCTCCTGTTTTCCA	20)	54.85
PEIZE		TCTCTTCCTGGGAATAAGAT	20		53.0°C	F8E19F	19	ACCAATGTATCTCATGCTCA	20	226bp	539°C	F8E26.5F		GGCTGGAGACAAGGATAAGT	20		55.90
reEISF	13		20	393bp 55.0°C F8E19R	F8E19R		AGGCTGAGTAGGTAGGGAAC	20	-1	55.1 °C	F8F26 5R	26			600bp		
F8E13R	1. 18. 1	ATACOAATOOCTAGTGAAGC	20	122	54.7°C	F8E20F	E20F 20	GEIGAATTIGIGCACITCI	20	199bp	55.6°C	10120.51	10L20.3K	CAGTGCCCCTATTTGTTTTA	20		55.43

Table 1 Novel mutations in F8 gene

Age/Sex	Severity	Exon	Nucleotide change	Amino acid change	Codon/Codon no.	Nucleotide genome ref./cDNA ref.	Affected Domain
4 yr /male	Severe	7	Deletion of T	Frame-shift	CTC \rightarrow C-C/ 318	159197688/953	A1
35 yr / male	Moderate	17	$G \mathop{\rightarrow} T$	$Ser \to lle$	AGC \rightarrow ATC/ 1907	154132724/5720	A3
15 & 19 yr /male	Moderate	26	$C \rightarrow A$	$Tyr \rightarrow Termination$	TAC \rightarrow TAA/ 2324	154065994/6972	C2

yr (years).

Table 2 Common SNPs in F8 gene (exonic region)

Sr. #	Patient	Exon	SNP ambiguity	SNP	Codon	Codon#	Comments	Accession number
1	All 62 Samples	2	W: A/T	A/A	G <u>A</u> T	75	European = T/T	rs1800288
2	All 62 Samples	7	K: G/T	G/G	TG <u>G</u>	274	European = C/C; Spanish Caucasians = C(0.995)/A(0.005); African American, Chinese, Southeast Asia, Mexican Indian = C/A	rs34371500
3	All 62 Samples	8	R: G/A	G/G	C <u>G</u> C	391	Ancestral: G	rs137852364
4	All 62 Samples	8	Y: T/C	T/T	<u>T</u> CA	392	European = C/C	rs28933669
5	All 62 Samples	8	Y: C/T	C/C	TCA	392	?	rs28933668
6	All 62 Samples	8	K: T/G	T/T	ATT	405	European = A/A	rs28933670
7	All 62 Samples	8	R: A/G	A/A	GAG	409	?	rs28933671
8	All 62 Samples	9	K: G/T	T/T	TTG	431	Ancestral: G	rs28933672
9	All 62 Samples	9	R: A/G	A/A	AAA	444	Ancestral: G	rs28937272
10	All 62 Samples	9	W: T/A	T/T	<u>T</u> AC	450	Ancestral: A	rs111033616
11	All 62 Samples	10	R: G/A	G/G	CGT	503	Ancestral: A	rs35383156

12	All 62 Samples	12	Y: T/C	T/T	CTT	622	Ancestral: T	rs1800290
13	All 62 samples	15	R: G/A	G/G	CAG	1764	Ancestral: A	rs5986891
14	All 62 samples	16	R: G/A	G/G	ATG	1842	European = G/G	rs28943674
15	All 62 samples	16	Y: C/T	C/C	CCC	1844	European = C/C	rs28933675
16	All 62 samples	16	M: A/C	A/A	ACT	1845	?	rs28933676
17	All 62 samples	16	Y: C/T	C/C	GCC	1853	European = C/C	rs28933677
18	All 62 samples	17	D: G/A/T	G/G	GAT	1865	Not Available	Cl076951
19	All 62 samples	17	R: A/G	A/A	CAC	1867	Ancestral: G	rs28933679
20	All 62 samples	17	S: C/G	C/C	C <u>C</u> C	1873	European = G/G	rs28933680
21	All 62 samples	17	R: G/A	G/G	<u>G</u> AG	1904	European = C/C	rs28933681
22	All 62 samples	17	S: G/C	G/G	T <u>G</u> C	1922	European = G/G	rs4384155
23	All 62 samples	17	S: C/G	C/C	TG <u>C</u>	1922	European = C/C	rs4520342
24	All 62 samples	18	R: A/G	A/A	AAT	1940	?	CM083806
25	All 62 samples	18	D: G/A/T	G/G	CGA	1960	?	rs28937294
26	All 62 samples	18	R: G/A	G/G	GGC	1967	?	rs111033615
27	All 62 samples	24	Y: C/T	C/C	TAC	2214	Ancestral: C	rs1800296

Table 2 Common SNPs in F8 gene (exonic region) (Continued)