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Background
As the amount of patient data increases, compression techniques for the digital stor-
age and transmission of medical images become mandatory. Imaging modalities such as 
ultrasonography (US), computer tomography (CT), magnetic resonance imaging (MRI) 
and X-rays provide flexible means of viewing anatomical cross sections for diagnosis. 
Three dimensional (3D) medical images can be viewed as a time sequence of radio-
graphic images, the tomographic slices (images) of a dynamic object, or a volume of a 
tomographic slice images of a static object (Udupa and Herman 2000). In this paper, a 
3D medical image corresponds to a volume of tomographic slices, which is a rectangular 
array of voxels with certain intensity values. Progressive lossy to lossless compression 
from a unified bit string is highly desirable in medical imaging. Lossy compression is 
tolerated as long as the required diagnostic quality is preserved. Lossless to lossy com-
pression techniques are primarily used in telemedicine, teleradiology and the wireless 
monitoring of capsule endoscopy.

Abstract 

This paper presents a listless variant of a modified three-dimensional (3D)-block coding 
algorithm suitable for medical image compression. A higher degree of correlation is 
achieved by using a 3D hybrid transform. The 3D hybrid transform is performed by a 
wavelet transform in the spatial dimension and a Karhunen–Loueve transform in the 
spectral dimension. The 3D transformed coefficients are arranged in a one-dimensional 
(1D) fashion, as in the hierarchical nature of the wavelet-coefficient distribution strat-
egy. A novel listless block coding algorithm is applied to the mapped 1D coefficients 
which encode in an ordered-bit-plane fashion. The algorithm originates from the most 
significant bit plane and terminates at the least significant bit plane to generate an 
embedded bit stream, as in 3D-SPIHT. The proposed algorithm is called 3D hierarchi-
cal listless block (3D-HLCK), which exhibits better compression performance than that 
exhibited by 3D-SPIHT. Further, it is highly competitive with some of the state-of-the-
art 3D wavelet coders for a wide range of bit rates for magnetic resonance, digital 
imaging and communication in medicine and angiogram images. 3D-HLCK provides 
rate and resolution scalability similar to those provided by 3D-SPIHT and 3D-SPECK. 
In addition, a significant memory reduction is achieved owing to the listless nature of 
3D-HLCK.
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A compression technique using wavelets provides better image quality compared to 
joint photographic experts group compression (JPEG) (Pennebaker and Mitchell 1993; 
Santa-cruz et  al. 2000). It also provides a rich set of features such as a progressive in 
quality and resolution, the region of interest (ROI) and optimal rate-distortion perfor-
mance with a modest increase in computational complexity. The JPEG standard uses an 
8 × 8 discrete cosine transform (DCT) and the JPEG2000 standard uses two dimensional 
discrete wavelet transform (2D-DWT). The Karhunen–Loueve transform (KLT) is an 
optimal method for encoding images in the mean squared error (MSE) sense. The com-
pression performance of 2D cosine, Fourier, and Hartley transforms was compared using 
positron emission tomography (PET) and magnetic resonance (MR) images in Shyam 
Sunder et al. (2006). The authors claimed that the discrete Hartley transform (DHT) and 
the discrete Fourier transform (DFT) perform better than the DCT. Several techniques 
based on the three-dimensional discrete cosine transform (3D-DCT) have been pro-
posed for volumetric data coding (Tai et al. 2000). Nevertheless, these techniques fail to 
provide lossless coding coupled with quality and resolution scalability, which is a signifi-
cant drawback for teleradiology and telemedicine applications.

Several works on wavelet-based 3D medical image compression have been reported 
in the literature (Schelkens et al. 2003; Xiong et al. 2003; Chao et al. 2003; Gibson et al. 
2004; Xiaolin and Tang 2005; Sriram and Shyamsunder 2011; Ramakrishnan and Sriram 
2006; Srikanth and Ramakrishnan 2005; He et al. 2003). A method based on block-based 
quad-tree compression, layered zero-coding, and context-based arithmetic coding was 
proposed by Schelkens et  al. (2003). They claimed that the method gives an excellent 
result for lossless compression and a comparable result for lossy compression. Modified 
3D-SPIHT and 3D-EBCOT schemes for the compression of medical data were proposed 
by Xiong et al. (2003). Their method gives a comparable result for lossy and lossless com-
pression. An optimal 3D coefficient tree structure for 3D zero-tree coding was proposed 
by Chao et al. (2003). They suggested that an asymmetrical tree can produce a higher 
compression ratio than a symmetrical one. Gibson et  al. (2004) incorporated an ROI 
and texture modelling stage into the 3D-SPIHT coder for the compression of angiogram 
video sequences based on bit allocation criteria. Xiaolin and Tang (2005) presented a 
3D scalable coding scheme which aimed to improve the productivity of a radiologist by 
providing a high decoder throughput, random access to the coded data volume, progres-
sive transmission, and coding gain in a balanced design approach. Sriram and Shyam-
sunder (2011) proposed an optimal coder by making use of wavelets db4, db6, cdf9/7, 
and cdf5/3 with 3D-SPIHT, 3D-SPECK, and 3D-BISK. They found that cdf 9/7 with 
3D-SPIHT yields the best compression performance. Ramakrishnan and Sriram (2006) 
proposed a wavelet-based SPIHT coder for DICOM images for teleradiology applica-
tions. Similarly, many works based on 3D-SPECK, 3D-BISK, and 3D-SPIHT used for the 
compression of hyperspectral images have been reported (Tang et al. 2003; Fowler and 
Rucker 2007; Lu and Pearlman 2001).

3D-SPIHT and 3D-SPECK use auxiliary lists [e.g., a list of insignificant pixels (LIP), a 
list of insignificant sets (LIS), and a list of significant pixels (LSP)] for tree/block parti-
tioning. The auxiliary lists demand an efficient memory management technique, as the 
coefficients in the list are shuffled out during bit-plane partitioning. This feature is not 
favorable for hardware realisation. Therefore, 2D variants of listless coders called no list 
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SPIHT (NLS) (Latte et  al. 2006), listless SPECK (Wheeler and Pearlman 2000), LEBP 
(Senapati et al. 2013), and HLDTT (Senapati et al. 2014a) use a state table to keep track 
of set partitions. These listless coders can be efficiently realised in hardware. Recently, a 
listless implementation of 3D-SPECK for the compression of hyperspectral images was 
proposed by Ngadiran et al. (2010).

To the best of the authors’ knowledge, there have been few works on 3D listless imple-
mentations for medical images in the literature. This motivates us to develop a novel 
technique for encoding medical images using a modified 3D listless technique. The 3D 
listless algorithm uses static and dynamic marker state tables for encoding large clusters 
of insignificant blocks, which results in a rate reduction at earlier passes. From a unified 
bit string, the algorithm provides rate and resolution scalability for the compression of 
volumetric data. This set of features is a potential requirement in telemedicine and tel-
eradiology applications.

The organization of the paper is as follows: “The proposed 3D-HLCK embedded 
coder” section presents the proposed 3D-HLCK algorithm and its memory allocation 
for 3D medical images. Simulation result and analysis with respect to coding perfor-
mances and computational complexity using big-O notation are presented in “Results 
and discussion” section. Conclusions and further research directions are provided in 
“Conclusion” section.

The proposed 3D‑HLCK embedded coder
The block diagram of the proposed 3D-HLCK algorithm is shown in Fig.  1. The 3D 
hybrid transformation is carried out in the 1st stage. Then, all 3D coefficients are mapped 
to one dimensional for processing by the proposed 3D-HLCK algorithm. Figure 2 shows 
the coefficient arrangement algorithm. The arrangement is created by keeping in mind 
the hierarchical nature of a wavelet pyramid. Four image slices are shown here as an 
illustration. The experiment is carried out for eight slices in all images. The coefficients 
in each slice undergo Z-scanning which maps two dimension to one dimension.

The coefficient is accessed using a linear indexing scheme (Wheeler and Pearlman 
2000). Two types of marker state tables are used. They are a (1) dynamic marker table 
(Dm) and (2) static marker table (Sm). The one-to-one correspondence between the 
coefficient values and the marker values are shown in Fig. 3. All marker values are ini-
tialised and loaded into memory along with the one dimensional (1D) arrangement of 
the image coefficient values. The dynamic markers in Dm update the values to indicate 
partitioning. The partitioning can be octal (8), tri (3) or quad (4). Octal partitioning 
takes place while there is a search for the significant coefficient in a composite wavelet 

Fig. 1 Proposed 3D hierarchical listless embedded coder



Page 4 of 16Senapati et al. SpringerPlus  (2016) 5:2100 

level. Tri partitioning takes place while there is a search for the significant coefficient in 
a wavelet level. Quad partitioning takes place if a coefficient is found to be significant 
in a wavelet subband or a subblock inside a subband. The static marker table Sm is only 
used to skip a large cluster of areas, e.g. the entire composite level/wavelet level/wavelet 
subband. The length of the dynamic marker table is the same as that of the image array 
length. If each marker in the dynamic marker state table is 4 bits, then the memory con-
sumes I/2 bytes for the state table. There are only three fixed markers per wavelet level. 
For five levels, there will be 15 × 3 = 45 markers in the constant marker table. The values 
of the markers depend on the image size (i.e. N × N) and the level of wavelet decompo-
sitions L. The initial marker value is (log2N − L+ 1), and the final value is (log2N + 1). 
For example, if the image dimension N = 128 and the level of decomposition L = 5, the 
marker values are 3, 4, 5, 6, 7, and 8 in each leading node of the wavelet level. Each bit 
plane undergoes three passes, as in conventional 3D-SPIHT. They are (1) an insignificant 
coefficient pass, (2) an insignificant set pass, and (3) a refinement pass.

During the insignificant coefficient pass, a single coefficient will be tested for signifi-
cance. During the insignificant set pass, a composite level/individual level/individual 
subband will be tested for significance. The refinement pass successively reduces the 
uncertainty interval between the reconstructed coefficient value and the actual coeffi-
cient value.

Fig. 2 Scanning pattern of the subbands in medical MRI images and mapping to 1D array

Fig. 3 The association between Dm[k] values and coefficient values ξ(k), where k = 0, 1, 2, . . .
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The symbol and meaning of each type of marker are specified below

  • INC: The coefficient is insignificant or untested for this bit plane.
  • NSC: The coefficient becomes significant so it shall not be refined for this bit plane.
  • SCR: The coefficient is significant and it shall be refined in this bit plane.

The markers listed below corresponds to the leading indices of each lower level of the 
pyramid. These markers shall be used to test the insignificance of a subband/block dur-
ing each bit-plane pass.

Static markers (Sm[k]):

  • Sm[1]: The coefficient is at the leading index of the combined wavelet level L. All the 
coefficients in the same wavelet level shall be skipped.

  • Sm[129]: The coefficient is at the leading index of the combined wavelet level L − 1. 
All coefficients in the same wavelet level shall be skipped.

  • Sm[513]: The coefficient is at the leading index of the combined wavelet level L − 2. 
All coefficients in the same wavelet level shall be skipped.

  •
...

  • Sm[32,719]: This coefficient is at the leading index of the finest pyramid level L− 5. 
All coefficients in this level shall be skipped.

Dynamic markers (Dm[k]): The partitioning take place due to dynamic markers in a typi-
cal pyramid level (L-1) is illustrated below. Similar illustration can be applied for other 
levels.

  • If Dm[129] = Sm[129], then the combined wavelet level L − 1 may be skipped.
  • If Dm[129] =  Sm[129]-1, then a wavelet level (for a single plane) L −  1 may be 

skipped.
  • If Dm[129] = Sm[129]-2, then a single subband block in the wavelet level L − 1 may 

be skipped.
  • If Dm[129] = Sm[129]-3, then 14th of a subband block from a wavelet level may be 

skipped.
  •
...

  • If Dm[129] = 0, then a single coefficient is to be examined for significance.

Similar partitioning algorithm is applied to the other combined subbands as well as the 
composite coarsest subband.
k = 129, 513, 2049, 8193, 32,719 are the leading indices from resolution level (L − 1) to 

level 1(finest resolution level). There is a total of five combined level of arrangement in 
eight MRI slices, where each of 128 × 128 resolution.

The 3D coefficients are mapped to a 1D array of length I after hybrid transformation. 
The progressive encoder encodes the most significant bit plane and moves towards the 
lowest bit plane. It can be stopped whenever the bit budget matches the target rate. The 
significance level for each bit plane is s = 2n, which is calculated with the bitwise logi-
cal AND operation (∩). The decoder performs reverse of encoding operation with some 
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minor changes. The decoder generates the magnitude bits and sign bits of the coeffi-
cients with bitwise logical OR (∪) instead of bitwise logical AND (∩).

The 1D coefficient array ξ is bit-plane coded and examined for significance in each bit 
plane pass. The initial threshold value can be computed as follows:

1. The initialization of Sm[k] and Dm[k] state table markers are illustrated below:

  • Sm[1, 17, 33, 49, 65, 81, 97, 113] = Dm[1, 17, 33, 49, 65, 81, 97, 113] = 3 for LL5 sub-
band.

  • Sm[129, 177, 225, 273, 321, 369, 417, 465] = 
Dm[129, 177, 225, 273, 321, 369, 417, 465] = 4 are the leading nodes of HL5, LH5 and 
HH5 subbands.

  • Sm[513, 705, 897, 1089, 1281, 1473, 1665, 1857] = 
Dm[513, 705, 897, 1089, 1281, 1473, 1665, 1857] = 5 are the leading nodes of HL4, 
LH4 and HH4 subbands.
...

  • Sm[2049, 2817, 3585, 4353, 5121, 5889, 6657, 7425] = 
  • Dm[2049, 2817, 3585, 4353, 5121, 5889, 6657, 7425]  = 6 are the leading nodes of 
HL3, LH3 and HH3 subbands.

  • Sm[8193, 11,265, 14,337, 17,409, 20,481, 23,553, 26,625, 29,697] = 
Dm[8193, 11,265, 14,337, 17,409, 20,481, 23,553, 26,625, 29,697]  = 7 are the leading 
nodes of HL2, LH2 and HH2 subbands.

  • Sm[32,769, 45,057, 57,345, 69,633, 81,921, 94,209, 106,497, 118,785] = 
Dm[32,769, 45,057, 57,345, 69,633, 81,921, 94,209, 106,497, 118,785]  =  8 are the 
leading nodes of HL1, LH1 and HH1 subbands.

2. Dm[k] shall be initialize to an arbitrary value (i.e. Dm[k] ≥ (log2N + 1)+ 1) and these 
are marked as INC.

Block partitioning of 3D‑HLCK algorithm

The block partitioning of composite/combined levels is demonstrated in Fig. 4. Figure 4a 
demonstrates how the partitioning takes place for the composite coarsest level for the 1D 
arrangement of coefficients, and Fig. 4b demonstrates the partitioning of the combined 
pyramid level. If a coefficient is found to be significant, the combined coarsest level is 
partitioned into eight levels, where each level corresponds to the coarsest level of indi-
vidual slices. Further, recursive quad partitioning in each level takes place until a coef-
ficient is found to be significant. Finally, the significance of the coefficient value along 
with the sign bit will be transmitted. No sign bit will be transmitted if the coefficient is 
found to be insignificant. Similarly, the combined pyramid level is first octal partitioned 
into individual pyramid levels which correspond to each image slice. Then, each pyramid 
level is tri partitioned to find the subbands. The subbands are further quad partitioned 
to find a significant coefficient. Then, the coefficient will be coded and transmitted.

All the steps described above is presented below in the form of Pseudocode.

(1)n =

⌊

log2(max
k

∣

∣ξ(k)
∣

∣)

⌋
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Pseudocode of 3D‑HLCK algorithm

Bit plane pass1: Insignificant coefficient pass 

1: Initialize k = 0, while k ≤ I
2: if Dm[k] ← INC then
3: Send bit(Θ = ξ[k] ∩ s)
4: if Θ == ‘1 then
5: Send bit(sign bit of ξ[k])
6: Dm[k] ← NSC
7: else
8: Skip to the next coefficient
9: end if

10: else
11: Jump to insignificant set pass

12: end if

Fig. 4 Partitioning of a combined coarsest subband, b combined wavelet level
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Bit plane pass2: Insignificant set pass

1: if k ∈ Composite coarsest level then
2: if (Sm[k] = Dm[k])&(Dm[k] = INC) then
3: Test for the significance of combined coarsest level, Send bit(’Θ’)
4: if Θ == 1 then
5: OctalSplit( )
6: else
7: Skip the combined coarsest band
8: end if
9: else if (Dm[k] = Sm[k] − 1)&(Dm[k] = INC) then

10: Test for the significance of single coarsest level, Send bit(’Θ’)
11: if Θ == 1 then
12: QuadSplit( )
13: else
14: Jump to the next coarsest level
15: end if
16: else if (Dm[k] = Sm[k])&(Dm[k] = INC) then
17: Test for the significance of a block in the coarsest level, Send bit(’Θ’)
18: if Θ == 1 then
19: QuadSplit()
20: else
21: Move to the next block
22: end if
23: end if
24: else if k ∈ Composite/combined pyramid level then
25: if (Sm[k] = Dm[k])&(Dm[k] = INC) then
26: Test for the significance of combined pyramid level, Send bit(’Θ’)
27: if Θ == 1 then
28: OctalSplit()
29: else
30: Move to the next combined pyramid level
31: end if
32: else if (Dm[k] = Sm[k] − 1)&(Dm[k] = INC) then
33: Test for the significance of single pyramid level, Send bit(’Θ’)
34: if Θ == 1 then
35: TriSplit()
36: else
37: Move to the next pyramid level
38: end if
39: else if (Dm[k] = Sm[k])&(Dm[k] = INC) then
40: Test for the significance of a subband, Send bit(’Θ’)
41: if Θ == 1 then
42: QuadSplit()
43: else
44: Move to the next subband
45: end if
46: end if
47: else
48: Skip the coefficient

49: end if
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Bit plane Pass3: Refinement pass

1: if Dm[k] ← SCR then
2: Send bit(Θ = ξ[k] ∩ s)
3: Skip the coefficient
4: else if Dm[k] ← NSC then
5: Dm[k] ← SCR
6: Skip the coefficient
7: else if Move to insignificant set pass then
8: Skip the block/set
9: else

10: Skip coefficient
11: end if

Functions and parameters used in pseudocode

1. Significant test function (ζn(γ )): Significant test is obtained by logical AND (∩) oper-
ation.

Example Let a (2 ×  2) block γ = [−127 109 19 − 24], and current threshold value 
n = 6. ζn can be calculated as

2. Function QuadSplit( ):

 The function partition the subband into four equal block sizes. The algorithm for quard 
partitioning can be illustrated below:

Note that if Dm[k] = 0, quad partitioning stops. The corresponding coefficient in block 
‘γ’ is an insignificant coefficient (INC), and it will be examined for significance in insig-
nificant coefficients pass (Pass 1) of the algorithm.

The OctalSplit() and TriSplit() functions are similar to the algorithm for QuadSplit(). 
OctalSplit() produces eight equal partitioned blocks, whereas TriSplit() produces three 
equal partitioned blocks.

If block ‘γ’ is a composite coarsest subband, then ‘γ’ undergoes octal partitioning 
(shown in Fig. 4a). Each partitioned block belongs to the coarsest wavelet level of the 
extracted plane of 3D medical image.

If block ‘γ’ is a composite/combined wavelet level, then ‘γ’ also undergoes octal parti-
tioning (shown in Fig. 4b). Each partitioned corresponds to a wavelet level having three 
subbands.

(2)ζn(γ ) =
∑

all k

[(2n ≤
∣

∣γ (k)
∣

∣) ∩ (
∣

∣γ (k)
∣

∣ ≤ 2n+1)]

if ζn(γ ) = 0, then output = 0
else, partition the block.

Dm[k] = Dm[k] − 1;
for j = 1, 2, 3

Dm[k + (j × 22 × Dm[k])] = Dm[k]
end
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3. If Dm[k] = Sm[k], then a combined wavelet level is to be tested for significance.
4. If Dm[k] = Sm[k] − 1, then a single wavelet level is to be tested for significance.
5.  If Dm[k] = Sm[k] − 2, then a subband is to be tested for significance.

Comparison with listless embedded block partitioning (LEBP)

The main differences between our earlier work on LEBP algorithm (Senapati et  al. 
2014b) and 3D-HLCK are:

1. A 3D hybrid transform is used in 3D-HLCK (Wavelet transform using CDF 9/7 fil-
ters (Daubechics and Sweldens 1998) along spatial dimension and KLT along spectral 
dimension), whereas 2D wavelet transform is used in LEBP algorithm.

2. The 3D coefficient arrangement is mapped to an 1D arrangement in order to encode 
large clusters of insignificant coefficients in 3D-HLCK. However, LEBP uses 2D to 
1D mapping scheme.

3. Rate reduction because of fixed state table (Sm[k] markers) at initial passes in 
3D-HLCK. For example, Sm[k] = Dm[k] indicates a composite wavelet level can be 
skipped instead of a single wavelet level as in LEBP.

4. Separate encoding techniques are used in 3D-HLCK for combined coarsest and 
combined wavelet levels so as to reduce the number of zeros for insignificant coef-
ficients in the coarsest subband.

Memory allocation

In 3D-HLCK, the mapped 3D coefficient array, Lmax has length 8I, where I is a 1D length 
of each slice/plane. If Y bytes are allocated for each subband coefficient, then the total 
storage memory required is 8IY for the subband coefficients and RC / 2 for the Dynamic 
state table Dm as each marker is half a byte. In the case of L level of wavelet decomposi-
tion, Sm needs (8L+1)

2  bytes, as the number of fixed markers are (8L+ 1) and each marker 
is half a byte.

Hence, the total memory needed by 3D-HLCK is:

As said earlier Sm[k] markers are fixed markers. These are used in association with 
Dm[k] markers to check for insignificance (refer to pseudocode).

In 3D-SPIHT coder, dynamic memory is determined by the auxiliary lists. The 
3D-SPIHT uses of LIP, LIS, and LSP as auxiliary lists. LIS has type ‘A’ or ‘B’ information 
to distinguish the coefficients.

Let, NLIP be the number of coefficients in LIP, NLSP be the number of coefficients in 
LSP, NLIS be the number of coefficients in LIS, and Y be the number of bits to store the 
addressing information of a coefficient.

Then the total memory required (in bytes) due to auxiliary lists is given by Senapati 
et al. (2014a):

As the memory size increases in each bit plane pass, The worst case values are,

(3)M3D−HLCK = 8IY + RC/2+ (8L+ 1)/2.

(4)M3D−SPIHT = [Y (NLIP + NLIS + NLSP)+ NLIS]/8

(5)NLIP + NLSP = 3×M × N ,NLIS = 3× (M × N )/4.
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The memory required by Jyotheswar and Mahapatra (2007) is 
(

37
16 + 5

16 × (Y + 1)
)

×M × N× (No. of planes).
For a 128 × 128 image using 3 bytes per coefficient and five levels of wavelet trans-

form, and having the optional pre-computed maximum length array (i.e, 8IY for 
3D-HLCK), the worst case memory (RAM) required is (128×128)

2 × (8 bits)+ (8L+1)
2 ≃ 8 

kB for 3D-HLCK, 204 kB for 3D-SPIHT and 60 kB by Jyotheswar and Mahapatra (2007). 
Therefore 3D-HLCK is a suitable candidate over 3D-SPIHT and work in Jyotheswar 
and Mahapatra (2007) in terms of memory saving. This calculation is based using only 
memory consumption by the algorithms without regard to wavelet transform. Efficient 
wavelet transform techniques that take less memory have been reported recently in 
Mendlovic et al. (1997).

Results and discussion
Simulation was carried out on a Window XP platform having an Intel core i5 processor 
operating at a frequency of 2.6 GHz and 6 GB of internal RAM. The bit rate was varied 
from 0.5 to 2 bpp for compressing the images. Brain MRI, DICOM knee, and angiogram 
images were used in our experiment. Each image with a size 128 ×  128 was used for 
the experiment. Tables 1, 2 and 3 summarise the PSNR comparison between 3D-SPIHT 
(Sriram and Shyamsunder 2011), the algorithm by Jyotheswar and Mahapatra (2007) and 
the proposed 3D-HLCK algorithm for brain MRI images. Tables 4, 5 and 6 summarise 
the PSNR comparison for DICOM knee images. Figures 5, 6, and 7 show compressed 
brain MRI images at a bit rate of 1.0 bpp using 3D-HLCK, the algorithm in Jyotheswar 
and Mahapatra (2007), and 3D-SPIHT respectively. It is apparent from the Figs.  5, 6, 
and 7 that the visual quality of the compressed images using 3D-HLCK is better than 
that obtained by using 3D-SPIHT and comparable with the algorithm in Jyotheswar and 
Mahapatra (2007). Figures 8 and 9 show the DICOM knee and angiogram images com-
pressed at 2.0 bpp using proposed 3D-HLCK algorithm.

Discussion

Comparisons of the coding performance (PSNR vs. Slice no.) for MRI brain image, 
DICOM knee image, and MRI angiogram images for a constant bit rate are sum-
marised in Tables 1, 2, 3, 4, 5, 6, 7 and 8 respectively. It is observed that the proposed 
3D-HLCK algorithm exhibits a PSNR improvement between 0.05 and 0.5 dB for MRI 
brain images and 0.05–0.6 dB for DICOM knee images for a bit rate of 0.5–2.0 bpp com-
pared to 3D-SPIHT. 3D-SPIHT shows higher a PSNR in the Slice-1, Slice-2, and Slice-7 
images in comparison to 3D-HLCK in the MRI angiogram images at 1 bpp. A similar 
trend is also observed at 2 bpp. In comparison to the work by Jyotheswar and Mahapa-
tra (2007), 3D-HLCK shows an improvement of 0.05–0.5 dB for the given slices at 0.5 
bpp. However, at higher rates, the work in Jyotheswar and Mahapatra (2007) shows a 
PSNR improvement of around 0.15 dB in the MRI images compared to 3D-HLCK. In 
the DICOM and angiogram images, the algorithm in Jyotheswar and Mahapatra (2007) 
shows a slight PSNR improvement with respect to 3D-HLCK.

The proposed algorithm exhibits a better PSNR improvement for other slices in 
3D-SPIHT because of the following reasons:
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1. 3D SPIHT uses 3D DWT coefficients for encoding, whereas hybrid transformed (2D 
DWT+KLT) coefficients are encoded by 3D-HLCK.

2. Large clusters of zeros are efficiently coded (both inter and intra) by 3D-HLCK.
3. Coefficients are efficiently arranged among different subbands of slices to exploit 

inter- and intra-subband correlations within and across slices.

The work in Jyotheswar and Mahapatra (2007) outperforms 3D-HLCK at higher rates 
(above 1 bpp) for MRI images for the following reasons: (i) The execution of a refine-
ment pass before the sorting pass. (ii) The ordering of the coefficient scanning process 
for simple hardware implementation. (iii) Optimisation for lossless encoding using 5/3 
filters in the spatial and spectral dimensions.

The proposed 3D-HLCK algorithm will occupy a fixed amount of memory, irrespec-
tive of the number of bit-plane passes, owing to the fixed number of state table markers. 
Partitioning takes place by updating the marker values. Each marker holds a maximum 

Table 1 PSNR comparison of brain MRI image at 0.5 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

24.7942 24.8550 25.2461 24.9937 25.2052 25.3051 24.7844 24.9987

Jyotheswar and Mahapatra (2007) 24.8210 24.9234 25.3012 25.1224 25.3045 25.3412 24.7724 25.0654

3D-HLCK 25.0136 25.4772 25.6954 25.1605 25.3025 25.5581 24.8334 25.0457

Table 2 PSNR comparison of brain MRI image at 1.0 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

28.7479 29.3962 29.6978 28.8805 28.7790 28.9684 28.6158 29.3115

Jyotheswar and Mahapatra (2007) 29.1123 29.9129 29.8125 29.2224 29.4042 29.5512 28.9724 29.4654

3D-HLCK 28.9032 29.7086 29.7709 29.0900 29.3314 29.4190 28.8109 29.3783

Table 3 PSNR comparison of brain MRI image at 2.0 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

35.5649 35.8673 35.7901 35.5476 35.5843 35.6065 35.7257 35.6406

Jyotheswar and Mahapatra (2007) 35.7210 35.9524 35.9612 35.8128 35.9245 35.8322 35.9724 35.9654

3D-HLCK 35.6260 35.9328 35.9546 35.7196 35.9179 35.7822 35.8127 35.8426

Table 4 PSNR comparison of DICOM knee image at 0.5 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

35.6328 35.2043 34.2868 34.9760 34.9612 34.9178 34.6008 34.3115

Jyotheswar and Mahapatra (2007) 35.8276 35.3610 34.9234 35.3578 35.2997 35.2491 34.7612 34.4321

3D-HLCK 35.8646 35.3801 34.9428 35.3693 35.3564 35.2795 34.8423 34.4471
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4 bits. The algorithm in Jyotheswar and Mahapatra (2007) requires a fixed memory size 
and exhibits simple hardware portability. However, in 3D-SPIHT, the linked lists (LIP, 
LIS, and LSP) add/remove/move additional nodes for every bit-plane pass. Therefore, 
the memory usage grows exponentially. Rate and resolution scalability on par with 
3D-SPIHT is achieved by 3D-HLCK. Memory saving is trivial, as in most applications, 
the cost of memory is cheap. However, the proposed algorithm is potentially suitable 
for applications such as the progressive transmission of DICOM images, lossless archi-
val, telemedicine, teleradiology, and capsule endoscopy. Therefore, 3D-HLCK can be a 
preferred option over 3D-SPIHT for the aforementioned applications. A further reduc-
tion in the overall complexity can be achieved by using fractional wavelet transforms 
(FrWTs) (Mendlovic et al. 1997) for such applications.

From the simulation, it is observed that the average encoding and decoding times for 
3D-HLCK are 12 times more than those for 3D-SPIHT at 2 bpp. Further optimisation 
can be done for 3D-HLCK to reduce the time complexity. However, it can be proved 

Table 5 PSNR comparison of DICOM knee image at 1.0 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

38.9826 38.7107 38.4028 38.5471 38.7088 38.5060 38.3513 37.8718

Jyotheswar and Mahapatra (2007) 39.0214 38.8820 38.5221 38.7510 38.8997 38.6126 38.3901 37.9011

3D-HLCK 39.1471 38.8796 38.5239 38.7847 38.9222 38.6316 38.4140 37.9713

Table 6 PSNR comparison of DICOM knee image at 2.0 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

44.3862 44.2377 43.5063 43.9376 43.9620 43.7279 43.7797 43.4163

Jyotheswar and Mahapatra (2007) 44.3901 44.3213 43.9112 44.2011 44.1930 43.9902 43.9128 43.5234

3D-HLCK 44.3887 44.3083 43.8962 44.1202 44.1539 43.9502 43.8313 43.5019

Fig. 5 Compressed MRI image slices (a–h) by 3D-HLCK at a BR = 1.0 bpp
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Fig. 6 Compressed MRI image slices (a–h) by Jyotheswar and Mahapatra (2007) at a BR = 1.0 bpp

Fig. 7 Compressed MRI image slices (a-h) by 3D-SPIHT at a BR = 1.0 bpp

Fig. 8 Compressed DICOM image slices (a–h)at a BR = 2.0 bpp
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mathematically that the computational complexity of 3D-HLCK will be O(N) operations 
compared to O(N log N) for 3D-SPIHT (Senapati et al. 2014a).

Conclusion
A new 3D coder called 3D-HLCK is proposed in this paper. Owing to the listless nature 
of 3D-HLCK, significant memory reductions of over 96 and 86% are achieved com-
pared to 3D-SPIHT and the work by Jyotheswar and Mahapatra respectively. 3D-HLCK 
has features such as rate and resolution scalability. In brain MRI, DICOM knee and 
angiogram images, a PSNR improvement of 0.05–0.5 dB is also achieved compared to 
3D-SPIHT. The proposed coder exhibits a comparable coding efficiency and easy hard-
ware portability with the work by Jyotheswar and Mahapatra. Therefore, it can be used 
in applications such as telemedicine, teleradiology, wireless capsule endoscopy and the 
Internet transmission of DICOM images. Future work will incorporate additional fea-
tures such as the ROI coding, random access coding, and video coding using 3D-HLCK.

Fig. 9 Compressed angiogram image slices (a–h) at a BR = 2.0 bpp using 3D-HLCK

Table 7 PSNR comparison of MRI angiogram image at 1.0 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

36.3810 36.5521 36.0900 36.4401 36.4912 36.3016 37.0721 36.5801

Jyotheswar and Mahapatra (2007) 36.4891 36.4389 36.2523 36.5013 36.4434 36.4012 37.0121 36.6010

3D-HLCK 36.2908 36.4508 36.2815 36.5191 36.4380 36.3937 36.9916 36.0091

Table 8 PSNR comparison of MRI angiogram image at 2.0 bpp

Algorithm Slice‑1 Slice‑2 Slice‑3 Slice‑4 Slice‑5 Slice‑6 Slice‑7 Slice‑8

3D-SPIHT (Sriram and  
Shyamsunder 2011)

45.1229 45.2415 45.0016 44.7210 44.6910 44.7890 44.8010 44.7892

Jyotheswar and Mahapatra (2007) 45.1321 45.2312 45.1200 44.8310 44.7610 44.8231 44.8012 44.7891

3D-HLCK 44.8976 45.1531 45.1106 44.8234 44.7794 44.8434 44.8144 44.8627
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