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Background
In China, water and sand inrush is very serious safety problem for coal mining in 
20  years, there were many accidents which gave more damage to coal mining (Limin 
et al. 2015, 2016). The coal reserves are located at shallow depths and the thin bedrock 
and thick sand overburdens the strata layers, inducing connected cracks. Surface water, 
groundwater and sand can flow into the mine goaf through the fractured rock and lead 
to inrush of water and collapsing of sand, which can be seen in Fig. 1.

From the mechanical perspective, the result of water and sand erupting, permeating 
fractured rock reflects the instability of the strata layers. Therefore, studying the seepage 
properties of fractured rocks plays an important role in coal mining engineering. The 
inrush of water and sand compromises mine safety by causing instability in stress block 
beams, which creates surface subsidence and water resource run off.

Field tests that are conducted in order to replicate water and sand inrush are difficult; 
therefore, many scholars suggested conducting experimental simulations of inrushing 
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water and sand. Yang (2009), Yang et al. (2012) and Sui et al. (2007) analyzed the angle of 
fluid using cemented sand to analyze the mechanisms supporting the inrushing of water 
and sand. The flow law was examined during various conditions and critical hydraulic 
gradients of sand inrush currents. Sui et al. (2008) and Xu et al. (2012) analyzed the ini-
tial position of inrushing sand based on the structure of water inrush.

Based on underground water dynamic theories, Zhang et al. (2006) created the critical 
condition and forecasting formula for the prevention of sand inrush by calculating the 
hydraulic head. Wu (2004) designed a mechanical model of sand inrush pseudo struc-
tures, and discussed the force during sand inrush and described the theory of expres-
sion of sand inrush. Zhang et al. (2015a) used a case study to discuss drills resulting in 
sand inrush based on the funnel model. Zhang et  al. (2015b) studied the relationship 
between backfill and water through conducting crack zone. Moreover, river sediment 
engineering, the theory of sediment transmission and sediment transport mechanics are 
excellent subject matters to aid in studying the start and movement of sand in mines. 
Furthermore, the study of sediment engineering, sediment transport theory and prac-
tice, and sediment kinematics can aid in understanding the commencement, flow and 
inrushing sand problem (Du 2014). But others discussed water and sand form the pres-
sure, water and sand flow in tunnel or broken rock (Limin et al. 2016; Du 2014), but the 
important is seepage in the fracture, which has not been discussed. The concentration 
and particle’s influence on water and sand inrush.

In this work, permeability attributes of water–sand mixtures are obtained through 
testing by replicating the design system of water–sand seepage in fractures. The influ-
ence of mass concentration in water and particle size of sand on the seepage parameters 
are tested using specially designed instruments.

Viscosity test of water and sediment
Viscous parameters of water–sand mixture in stress-strain relationships were tested 
using a NDJ-8S viscosimeter in Fig. 2:

Shear strain rate γ of water–sand is defined as

(1)γ =
πnrot
30

×
d

(D − d)

Sand layer

Loess layer

Aquifer

Water and sand 
inrush

Fracture

Fig. 1 Water and sand inrush in the fracture
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where D is the diameter of outer cylinder, d is the diameter of the rotor.
Apparent viscosity µa of water–sand mixture were obtained from the NDJ-8S visco-

simeter and the shear stress was calculated as follows

By changing the rotational speed of the NDJ-8S viscosimeter, several values of shear 
strain rate γ and shear stress were obtained and plotted on a γ − τ scatter diagram. 
According to the shape of the γ − τ diagram, the water–sand mixture was identified as 
non-Newton fluid, and the viscous parameter of water–sand was obtained through lin-
ear regression.

During the experiment, the diameters of sand particle are 0.038–0.044, 0.061–0.080, 
0.090–0.109 and 0.120–0.180 mm. Firstly, Sand particles 0.061–0.080 mm with 20 kg/m3 
sand at 20 °C was measured; the shear strain rate γ, apparent viscosity µa and stress τ of 
the water–sand mixture was gotten at various rotation rates (Table 1; Fig. 3).

It can be seen that the shear strain rate γ increases monotonously along with the shear 
strain of the water–sand mixture. Therefore, we assume that the water–sand mixture is a 
power law fluid as follows

where C is the consistency coefficient, n is the power exponent.
Combining Eqs. 2 and 3 yields expression of apparent viscosity as follows

(2)τ = µaγ

(3)τ = Cγ n

Fig. 2 NDJ-8S viscometer

Table 1 Angle strain rate, apparent viscosity and shear stresses at different rotating speed

Rotational speed (rpm) Shear strain rate (s−1) Apparent viscosity (Pa s) Shear stress (Pa)

6 5.24 0.0013 0.0687

12 10.47 0.0075 0.0785

30 26.17 0.0034 0.088967

60 52.33 0.002 0.104667
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Through linear regression, viscous parameters of water–sand (consistency coefficient 
C and power exponent n) were obtained, as shown in Table 2. It was deduced that the 
water–sand mixture was a pseudo-plastic fluid, whose viscous parameters changed with 
sand particle ds and mass concentration of sand ρs.

Different consistencies were tested of coefficient C and power exponent n with the 
diameters of sand particle sizes 0.038–0.044, 0.061–0.080, 0.090–0.109 and 0.120–
0.180 mm; and sand 20, 40, 60 and 80 kg/m3 in the water. The testing results of consist-
ency coefficient C and power exponent n are shown in Table 2.

From Table  2, consistency coefficient C increases with mass concentration in water 
as exponential relationship, and decreases along with the increase of sand particle; 

(4)µa = Cγ n−1

Fig. 3 Scatter plot of angle strain rate—shear stress (0.061–0.080 mm)

Table 2 Relation of surface viscosity and shearing rate

Particle size (mm) Concentration  
(kg/m3)

Regression equation Power exponent Consistency 
coefficient 
(N Sn/m)

0.038–0.044 20 µa = 0.0569γ−0.7613 0.2387 0.0569

40 µa = 0.0617γ−0.8046 0.1954 0.0617

60 µa = 0.0623γ−0.8401 0.1599 0.0623

80 µa = 0.0701γ−0.8692 0.1308 0.0701

0.061–0.080 20 µa = 0.0413γ−0.8235 0.1765 0.0513

40 µa = 0.5016γ−0.8433 0.1567 0.0516

60 µa = 0.0527γ−0.8744 0.1256 0.0527

80 µa = 0.0547γ−0.9091 0.0909 0.0547

0.090–0.109 20 µa = 0.0487γ−0.8358 0.1642 0.0487

40 µa = 0.0509γ−0.8672 0.1328 0.0509

60 µa = 0.0513γ−0.8996 0.1004 0.0513

80 µa = 0.0525γ−0.9208 0.0792 0.0525

0.120–0.180 20 µa = 0.0416γ−0.9159 0.0841 0.0416

40 µa = 0.0437γ−0.9258 0.0742 0.0437

60 µa = 0.0489γ−0.9298 0.0702 0.0489

80 µa = 0.0507γ−0.9369 0.0631 0.0507
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power exponent n increases along with the increase of mass concentration in water, and 
decreases along with the increase of sand particle.

Seepage test of water and sand in a fracture
Test principle

Figure  4 demonstrates a model of seepage in a fracture. In this paper, the aperture of 
fracture is 0.75 mm, the length is 12.5 mm, the height is 75 mm. b is the aperture of frac-
ture, h is the height of the fracture, and L is the sample length.

According to Fig. 4, we can get Eq. 5.

where V is the velocity of seepage, Q is the flow of seepage.
For the fracture, Re is defined as Eq. 6 (Javadi et al. 2014).

where Re is Reynolds number, ρ is the density, Q is the flow of seepage, μ is the fluid 
viscosity.

In the paper, Q is 6.00× 10−4−3.10× 10−3  m3/s, ρ = 1.02−1.08× 103  kg/m3, 
µ = 1.005 mpa s.

So, Re =
ρQ
µb

= 76.5−421.2 in case of higher Reynolds numbers (Re ≫ 1), the pres-
sure losses pass from a weak inertial to a strong inertial regime, described by the Forch-
heimer equation (Forchheimer 1901; Chin et al. 2009; Cherubini et al. 2012, 2013; Javadi 
et al. 2010; Li et al. 2008), given by:

(5)V =
Q

bh

(6)Re =
ρQ

µb

(7)ρca
∂V

∂t
= −

∂p

∂l
−

µ

k
V − ρβV 2

Fig. 4 Seepage in parallel fracture
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where µ is fluid viscosity, β is non-Darcy factor, the pressure is p, ∂p
∂l

 is the pressure gradi-
ent, ca is the acceleration of water and sand, b1 is two term coefficient.

Because of water and sand permeability parameter’s particularity (permeability param-
eter is relevant to liquid and fracture), we use µe, ke to describe the water and sand of 
effective viscosity µe, effective permeability ke, as shown in Eq. 8 (Liu 2014).

As for one kind of non-Newton fluid, liquid viscosity and permeability in fracture of 
water–sand mixture were related to fluid properties and fracture aperture. Therefore, 
liquid viscosity and permeability were not obtained separately, and the effective fluidity 
Ie was introduced to simplify the expression.

The Eq. 8 can be changed into

Equation  10 calculated the momentum conservation of water–sand seepage in the 
fracture. For the seepage in Fig.  4, the steady-flow method was selected to measure 
water–sand seepage in the fracture. Equation 10 can be deduced into Eq. 11,

Substituting Eq. 5 into Eq. 11 yields Eq. 12

b is the aperture of the fracture, m is the mass of sand and water.
For the length, the integrating range is [0, L]; the mass is m, the pressure of water and 

sand at the entrance wall were: 

The definite integral of Eq. 12 on the interval [0, L] was

Introducing the sign �1 = 1
Ie

(

1
bh

)n
, �2 = mβ

(hb)2
,

Therefore, Eq. 14 was obtained by using

(8)ρca
∂V

∂t
= −

∂p

∂l
−

µe

ke
V n − ρβV 2

(9)Ie =
ke

µe

(10)ρca
∂V

∂t
= −

∂p

∂l
−

1

Ie
V n − βρV 2

(11)
1

Ie
V n + βρV 2 = −

∂p

∂l

(12)−dp =
1

Ie

(

Q

bh

)n

dl + βρ

(

Q

bh

)2

dl

(13)

{

p|x=0 = p0
p|x=L = 0

(14)p =
L

Ie

(

Q

bh

)n

+ βmL

(

Q

bh

)2

(15)�1Q
n + �2Q

2 − p0 = 0
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In the test, 5 flows were set as Qi, i = 1, 2, . . . , 5. Steady state values of inlet pressures 
were tested, and coefficients �1 and �2 were fitted. The specific process was as follows:

Equation 15 was obtained

In order to get the least value of the flow Q, Eq. 16 can be set as Eq. 17.

�1 and �2 were solved by Eq. 16, effective mobility Ie and non-Darcy β were obtained.

Experimental equipment and steps

Based on testing principles, a set of experimental system was designed and manufac-
tured as shown in Fig. 5. Sand comes from the surface of the mine in northwest of China. 
The rock sample is the sandstone under −265 m from the Luan mine in Shanxi, China. 
There are five specimens of rock fracture with Joint Roughness Coefficient (JRC) 4–6, 
the velocity of seepage was obtained.

Figure 6 illustrates the entire experimental procedure. The test steps were as follows:

1. The test system was assembled according to Fig. 6 and the sample was loaded. The 
leakage of the experiment system was tested.

2. The sand grain with a diameter of 0.038–0.044 mm was placed into the mixing pool 
and the sand concentration was 20 kg/m3 in water.

(16)Π =

5
∑

i=1

(

�1Q
n
i + �2Q

2
i − pi0

)2
= 0

(17)
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Fig. 5 Scheme of system principles. 1 Sidebend; 2 pressure transmitter; 3 injection pipe; 4 vane pump; 5 
agitator tank; 6 VVVF; 7 screw pump; 8 flow sensor; 9 piezometer; 10 filter box; 11 scheme of permeameter
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3. To control the motor speed, flow and pressure under different rotational speeds were 
recorded while the fracture aperture 0.75 mm; the motor speeds, 200, 400, 600, 800, 
1000 r/min were changed separately. Different pressures and seepage velocities of the 
fracture were obtained using a paperless recorder. The sand concentration ρs in water 
was 40, 60, 80 kg/m3 respectively.

4. The flow and pressure under different grain diameters (0.038–0.044, 0.061–0.080, 
0.090–0.109 and 0.120–0.180  mm)were recorded during the different rotational 
speeds. In order to easily calculate the data, we choose the arithmetic mean of each 
range of the grain diameter, e.g. 0.041, 0.071, 0.100 and 0.150 mm.

5. According to Eqs. 15 and 16, Ie and β were calculated.

Results
Pressure graduate

According to the pressure and velocity measured in the tests, the pressure gradient and 
velocity under different sand concentration in water were shown in Fig. 7 and Table 3. 

Install sample with fracture

Collect the flow and 
pressure of the 

fracture

Drive screw pump, set its 
speed

Waiting for flow and 
pressure of acquistion 

system 

Install fixed ratio of 
water and sand mixture 

Test different speed of the 
screw pump

Unload the pump and end of 
the test

Change different mass 
concentration of sand

Change differnet grain size
of sand 

Start agitation pump , water and 
sand unform mixed 

Fig. 6 Flow chart of the test
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Table 3 lists the test result of pressure gradient and seepage velocity of the water and 
sand, the polynomial fitting formula and its coefficient, the power fitting formula and its 
coefficient.

Figure  7 and Table  3 been presented above, we can obtain: the seepage velocity of 
water and sand increases with pressure gradient increasing, Moreover, the greater the 
sand concentration in water is, the lower the seepage velocity is.

G
p

M
Pa
/m

V(m/s)

Fig. 7 Relationship between pressure gradient and velocity

Table 3 Relationship between  pressure gradient and  velocity under  different sand con-
centration

Number Concentration 
(kg/m3)

Pressure  
gradient (MPa/m)

Velocity 
(m/s)

Polynomial function Power  
function

1 20 0.38 0.10 Gp = 155.61V2 − 41.24V + 3.72

R2 = 0.9882

Gp = 0.29e9.04V

R2 = 0.92592.10 0.17

5.08 0.27

6.98 0.35

15.27 0.44

24.92 0.52

4.54 0.17

2 40 7.62 0.30 Gp = 118.08V2 − 36.42V + 7.43

R2 = 0.9970

Gp = 2.14e4.28V

R2 = 0.995411.11 0.40

19.21 0.50

27.98 0.60

5.71 0.11

3 60 9.30 0.26 Gp = 108.12V2 − 7.42V + 5.38

R2 = 0.9956

Gp = 3.74e4.07V

R2 = 0.995315.24 0.35

24.16 0.40

33.81 0.51

7.94 0.16

12.70 0.27

4 80 22.22 0.35 Gp = 55.04V2 + 119.60V − 11.08

R2 = 0.9602

Gp = 4.50e4.35V

R2 = 0.896828.57 0.44

35.24 0.51
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Permeability of water and sand in the fracture

Keeping the fracture aperture 0.75 mm, the permeability parameters of water and sand 
seepage in the fracture under particle sizes 0.041, 0.071, 0.100 and 0.150 mm are tested 
at 20, 40 and 60 kg/m3 sand concentration in water, as shown in Fig. 8, liquid viscosity 
and permeability were not obtained separately, and the effective fluidity Ie was intro-
duced to simplify the expression.

Because of the permeability parameters of water and sand seepage in fracture are con-
nected with water and sand, at the same time, the structure of fracture; so the perme-
ability k is not enough to describe permeability parameters, the effective fluidity and 
non-Darcy factor β are used.

The 5 samples were used to obtain the permeability parameters in test, and we adopted 
the arithmetic mean values, as shown in Table 4.

Fitting the curves of Fig.  8, the functional relationship between seepage parameters 
and sand concentration in water was used, as shown in Table 5.

The exponential function was used to fit the relationship between effective fluid-
ity, non-Darcy coefficient and particle sizes of sand. The power exponent equations are 
used to fit the relationship between effective fluidity Ie, the non-Darcy factor β and Sand 
concentration.

From Fig. 8 and Table 5, the following results were obtained:

1. The seepage of water and sand in a fracture is nonlinear.
2. Along with the change of grain size of sediment, the relationship between effective 

fluidity Ie and mass concentration of sand ds was the negative exponential relation-
ship; the absolute value of the exponent increased along with the increase of sand 
particle in the water.

3. Non-Darcy factor β and sand concentration in water had a positive exponential rela-
tionship; the absolute value of the exponent increased along with the decrease of 
sand particle in water.

Discussion
It is non-Darcy flow in the paper, which was influenced by roughness, flow velocity, 
aperture of fracture, and so on. Roughness has a large influence on fracture flow, where 
non-Darcy also happened (Boutt et al. 2006; Lomize 1951; Louis 1969; Qian et al. 2011).

During the flow, Reynolds number and Forchheimer’s number are important param-
eters to judge (Bear 1972): when Re > 100 or Re < 1, it will be nonlinear flow and does 
not conform to Darcy flow. What’s more, the velocity of water and sand, the aperture 
of fracture and the tortuosity of fracture also have much influence on flow parameters 
(Tsang 1984; Tsang and Tsang 1987). The concentration and density also have influence 
on flow character in fracture (Watson et al. 2002; Tenchine and Gouze 2005). Here Ie 
has relationship with the structure of fracture, and the character of mixture or water and 
sand. With the pressure drop increasing, the nonlinear flow became obvious (Elsworth 
and Doe 1986; Wen et al. 2006; Yeo and Ge 2001) the Forchheimer’s law is well known 
classical approach to describe the nonlinear flow in fracture. Non-Darcy factor β is the 
parameter which reflected the deviation of Darcy of the seepage. Along with sand parti-
cle in water, the non-Darcy character became more obvious.
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Conclusion
In this paper, the viscosity of water and sand mixture was discussed and the seepage of 
water and sand mixture in rude fracture was analyzed.

0.00E+00

8.00E+07

1.60E+08

2.40E+08

3.20E+08

4.00E+08

0 0.1 0.2

β/
(m

-1
) 

ds/mm

Sample1
Sample2
Sample3
Sample4
Sample5

e f

g h
Fig. 8 Curves of permeability parameters changing with ds. a Curve of Ie − ds under 20 kg/m3, b curve of 
β − ds under 20 kg/m3, c curve of Ie − ds under 40 kg/m3, d curve of β − ds under 40 kg/m3, e curve of 
Ie − ds under 60 kg/m3, f curve of β − ds under 60 kg/m3, g curve of Ie − ds under 80 kg/m3, h curve of β − ds 
under 80 kg/m3
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1. The seepage velocity of water and sand in a fracture increases along with the pressure 
of the fracture, but the relationship between them is nonlinear.

2. Consistency coefficient C becomes larger in conjunction with the mass concentra-
tion in water, but decreases along with the particle size of sand. The lower exponent 
n becomes enlarger along with mass concentration in water, but decreases along with 
particle size of sand.

3. Along with the change of the grain size of sediment, the relationship between effec-
tive fluidity Ie and mass concentration of sediment ρs in water is exponential. The 
absolute value of the exponent increases along with the increase of sand concentra-
tion in water. The non-Darcy factor β and sand concentration in water has a positive 
exponential relationship and the absolute value of the exponent increases along with 
the decrease of sand concentration in water.

4. For the future work, we will work for the different concentration, for particle and 
concentration both has influence to the flow character, but we should do some 
experiments to make sure which one is more influence. And acceleration, low veloc-
ity of water and sand how to change into water and sand inrush.

Table 4 permeability parameters of water and sand under different sand concentration

Concentration of sediment (kg/m3) Particles size Ie Ie
(

mn+2
· s2−n/kg

)

β (m−1)

20 0.04 1.57E−06 5.67E+06

0.075 7.62E−07 1.46E+07

0.100 4.34E−07 2.64E+07

0.151 1.71E−07 6.48E+07

40 0.04 8.34E−07 2.14E+06

0.075 5.53E−07 1.03E+07

0.100 3.54E−07 1.75E+07

0.151 1.73E−07 2.93E+07

60 0.04 6.82E−07 3.04E+06

0.075 4.41E−07 1.10E+07

0.100 2.60E−07 2.54E+07

0.151 6.31E−08 9.33E+07

80 0.04 6.76E−07 1.05E+06

0.075 6.76E−07 4.77E+07

0.100 2.20E−07 9.90E+07

0.151 1.28E−07 2.28E+08

Table 5 Fitted equations of permeability parameters changing with ds at JRC 4–6

Number Sand concentration (kg/m3) Permeability parameters Fitting equations Coefficient

1 20 Ie Ie = 3.40× 10
−6e−20.03ds 0.9980

β β = 2.64× 10
6e21.79ds 0.9872

2 40 Ie Ie = 1.65× 10
−6e−14.80ds 0.9693

β β = 3.10× 10
5e33.82ds 0.7805

3 60 Ie Ie = 1.95× 10
−6e−21.81ds 0.9688

β β = 1.01× 10
6e30.66ds 0.9905

4 80 Ie Ie = 1.15× 10
−6e−15.10ds 0.9781

β β = 1.78× 10
5e48.84ds 0.9549
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List of symbols
b: aperture of fracture; C: consistency coefficient; Ca: acceleration coefficient; d: diameter of the rotor; D: diameter of 
outer cylinder; ds: particle size of sand; h: height of the fracture; Ie: effective fluidity; ke: effective permeability; L: sample 
length; m: mass of sand and water; n: power exponent; nrot: rotate speed of rotor; β: non-Darcy coefficient; p: pressure; Q: 
flow of seepage; τ: shear stress; µ: fluid viscosity; µa: apparent viscosity of water and sand; µe: effective viscosity; V: veloc-
ity of seepage; γ : apparent viscosity; ρ: density; ρs: mass concentration of sand; ∂p

∂ l
: pressure gradient.
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