
Du et al. SpringerPlus  (2016) 5:2095 
DOI 10.1186/s40064-016-3763-3

RESEARCH

Mutation detection in Chinese patients 
with familial hypercholesterolemia
Ran Du1, Liang‑Liang Fan1, Min‑Jie Lin2, Zhi‑Jian He1, Hao Huang1, Ya‑Qin Chen2, Jing‑Jing Li1, Kun Xia1, 
Shui‑Ping Zhao2 and Rong Xiang1,2*

Abstract 

Background: Familial hypercholesterolemia (FH) is the first molecularly and clinically characterized genetic disease 
of lipid metabolism. It is an autosomal dominant disorder with significantly elevated levels of total cholesterol and 
low density of lipoprotein cholesterol in serum, which would lead to extensive xanthomas and premature coronary 
heart disease. Mutations in low density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 and Apo 
lipoprotein B‑100 (APOB) have been identified to be the underlying cause of this disease.

Methods: Genetic testing and reports of the mutations in the Chinese population are still limited. In this study, 11 
unrelated Chinese FH families were enrolled to detect the candidate gene variants by DNA direct sequencing.

Results and conclusion: We identified 12 mutations (11 in LDLR and one in APOB) in ten FH families. Three novel 
LDLR mutations (c.516C>A/p.D172E, c.1720C>A/p.R574S and c.760C>T/p.Q254X) were identified and co‑segregated 
with the affected individuals in the families. Our discoveries not only further supports the significant role of LDLR in 
FH, but also expands the spectrum of LDLR mutations. These new insights will contribute to the genetic diagnosis and 
counseling of FH patients.
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Background
Dyslipidemia is a common disorder of lipid metabolism 
and major cardiovascular risk factor, accounting for 54% 
of population-attributable risk for myocardial infarc-
tion (Yusuf et  al. 2004). Familial hypercholesterolemia 
(FH, OMIM#143890) is one of the most severe lipid 
dysfunctions, characterized by elevated total cholesterol 
and low density of lipoprotein cholesterol amounts in 
serum (Jannes et  al. 2015). It is inherited in an autoso-
mal dominant fashion, with frequencies of heterozy-
gotes and homozygotes estimated at 1:200 and 1:300,000 
worldwide (Foody and Vishwanath 2016). Total choles-
terol and LDL-C concentrations in heterozygous patients 
often range between 9 and 14 mmol/L and 5–10 mmol/L, 
whereas homozygous patients show levels from 17 to 
26  mmol/L and >10  mmol/L, respectively (European 

Association for Cardiovascular Prevention & Rehabili-
tation et  al. 2011; Goldberg et  al. 2011; Hovingh et  al. 
2013). Such high plasma TC and LDL-C levels may result 
in xanthelasmas and atherosclerotic plaques, the primary 
factors causing premature coronary heart disease (CHD) 
(Najam and Ray 2015). However, the levels of TC and 
LDL-C can be effectively reduced by statin (Vogt 2015).

To date, more than 1741 low density lipoprotein-
receptor gene (LDLR) variants have been reported in the 
Human Gene Mutation Database (http://www.hgmd.
cf.ac.uk/ac/index.php) (Lahtinen et al. 2015). Meanwhile, 
two distinct disease-causing genes were identified in FH 
patients: proprotein convertase subtilisin/kexin type9 
(PCSK9) (Al-Mashhadi et  al. 2013) and Apo lipoprotein 
B-100 (APOB) (Alves et al. 2014). The clinical phenotypes 
resulting from these gene mutations vary. For example, 
APOB mutations may cause the least severe phenotype 
of the three (Soutar and Naoumova 2007). Besides LDLR, 
APOB and PCSK9 mutations, some copy number vari-
ants (CNVs) (Myocardial Infarction Genetics, Kathiresan 
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et  al. 2009; Costelloe et  al. 2012) and rare mutations in 
associated genes, such as LDLRAP1 (Maglio et al. 2014), 
PNPLA5 (Lange et al. 2014) and APOC3 (Jorgensen et al. 
2014) have also been reported in FH patients.

LDLR gene mutations represent 85–90% of disease-
causing mutations in FH patients (Futema et  al. 2014), 
however, most countries (including China) do not have 
valid nationwide registries for FH. Indeed, no more 
than 20 studies have assessed Chinese FH patients using 
genetic analysis, and novel variants identified remain 
scarce (Dai et al. 2011).

Therefore, in this study we investigated the possi-
ble causative gene in Chinese FH families. We iden-
tified three novel mutations (c.516C>A/p.D172E, 
c.1720C>A/p.R574S and c.760C>T/p.Q254X) in the 
affected members of their families. Based on the best of 
our knowledge, these mutations have not been reported 
in previous studies and were not presented in either our 
control cohorts, dbSNP or Exome Variant Server data-
base (http://evs.gs.washington.edu/EVS/).

Methods
The Review Board of The Second Xiangya Hospital of the 
Central South University has approved this research. All 
related subjects have consented to this study.

Patients and subjects
Eleven unrelated Chinese FH patients were enrolled 
after being diagnosed and treated at Department of Car-
diology, The Second Xiangya Hospital of Central South 
University. Definition of FH was based on the standard 
(TC  >  9  mmol/L and LDL-C  >  5  mmol/L) formulated 
by European Society of Cardiology (ESC) and the Euro-
pean Atherosclerosis Society (EAS) (European Associa-
tion for Cardiovascular Prevention & Rehabilitation et al. 
2011; Goldberg et al. 2011; Hovingh et al. 2013). We have 
also taken CHD and xanthelasmas patients into account. 
Two hundred unrelated healthy Chinese subjects were 
recruited as control subjects to detect whether any 
sequence changes might be a common polymorphism 
(Xiang et al. 2014). Clinical data and detailed family his-
tory were collected for each subjects.

Methods
DNA extraction
Genomic DNA was extracted from peripheral blood of 
all the subjects by using a DNeasy Blood & Tissue Kit 
(Qiagen, Valencia, CA) as previously described (Xiang 
et al. 2014).

Mutation sequencing
The entire coding regions and flanking intronic sequences 
of LDLR (NM_000527) and PCSK9 (NM_174936) 

together with the p.R3527 mutation (part of exon 26) of 
APOB (NM_000384) were performed with polymerase 
chain reaction (PCR; primer sequences will be provided 
upon requests). Sanger sequencing was applied by the 
ABI 3100 Genetic Analyzer (ABI, Foster City, CA).

Multiple sequence alignments and bioinformatic prediction 
of mutation
The standard sequences of LDLR, PCSK9 and APOB refer 
to Ensemble database. The polyphen2 (polymorphism 
phenotyping, http://genetics.bwh.harvard.edu/pph2/) 
(Sunyaev et  al. 2000), Sorting Intolerant From Tolerant 
(SIFT, http://provean.jcvi.org/) (Ng and Henikoff 2003) 
and MutationTaster (www.mutationtaster.org) programs 
(Schwarz et  al. 2010) will be used for the prediction of 
pathogenicity of genetic mutations.

Results
Clinic data
A total of 11 unrelated FH probands were enrolled in this 
study, among whom four and seven showed homozygous 
and heterozygous phenotypes, respectively. Demographic 
details, clinical features, and lipid levels are shown in 
Table 1. In addition, the proband F3 had a history of xan-
thomas (Fig. 1), while proband F8 had a history of CHD.

Mutation spectrum
Eleven mutations in LDLR and one mutation in 
APOB were found by DNA direct sequencing in ten 
probands and co-segregated with all the affected mem-
bers (Table  2). No mutation of PCSK9 was found in 
any probands. Among these ten probands with vari-
ants, proband F1 carried the homozygous mutation, 
probands F3 and F8 carried compound heterozygous 
mutations. All three patients showed xanthomas, CHD 
or high TC and LDL-C levels. The mean serum TC was 
18.57  mmol/l (min 17.05  mmol/l, max 20.15  mmol/l), 
and the mean serum LDL-C was 17.12 mmol/l (minimum 
16.54 mmol/l, maximum 18.21 mmol/l). Other probands 
(F2, F4, F5, F6, F7 and F9) carried heterozygous muta-
tions in LDLR. The mean serum TC was 9.12  mmol/l 
(min 7.52  mmol/l, max 11.23  mmol/l), and the mean 
serum LDL-C was 7.80 mmol/l (minimum 5.50 mmol/l, 
maximum 11.2 mmol/l). The proband F10 was detected 
a heterozygous mutation in APOB, whose serum TC was 
7.8  mmol/l and serum LDL-C was 5.47  mmol/l. Cur-
rently none mutation of candidate genes was identified 
in proband F11. The serum TC was 18.91  mmol/l and 
serum LDL-C was 16.84 mmol/l.

Novel mutations
By sequencing analysis of LDLR, PCSK9 and APOB, 
three novel mutations in LDLR (c.516C>A/p.D172E, 
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c.1720C>A/p.R574S and c.760C>T/p.Q254X) were 
detected and co-segregated with the affected FH fam-
ily members in our study (Fig. 2). These newly identified 
mutations were not found in either our control cohort 
of 200 patients, dbSNP or the Exome Variant Server 
database (http://evs.gs.washington.edu/EVS/). Align-
ment of LDLR amino acid sequences from Human, 
Ptroglodytes, Mmulatta, Mmusculus, Trubripes, Drerio 
etc., revealed that the affected amino acids were evolu-
tionarily conserved (Fig.  3). Three programs for analyz-
ing protein functions, MutationTaster, polyphen2 and 
SIFT, predicted that these three variants are disease 

causing, probably damaging and deleterious, respectively 
(Table  2). All three different algorithm based bioinfor-
matics programs showed a consistent result of detrimen-
tal effect of these variants, suggesting that these three 
sites (D172, Q254 and R574) play important roles in the 
function of LDLR.

Discussion and future perspective
According to EAS data, the estimated percentage of 
individuals diagnosed with FH in 2013 was less than 
1% in approximately 180 countries/territories, includ-
ing China. Moreover, China is a multi-racial nation, and 

Table 1 Characteristics and lipid levels of examined patients

In FH cases, TC and LDL levels are higher than 9 and 5 mmol/L

M male, F female
a Homozygous mutation, b heterozygous mutation, c compound heterozygous mutations

Gender Patient Age (years) TC (mmol/L) TG (mmol/L) HDL (mmol/L) LDL-C (mmol/L) Xanthoma CHD

F F1a 14 17.05 1.14 1.19 16.62 No No

M F2b 13 9.12 0.89 1.24 6.92 No No

F F3c 25 20.15 1.21 1.08 18.21 Yes No

M F4b 48 8.05 2.18 0.76 7.79 No No

F F5b 19 10.49 1.23 1.16 8.62 No No

F F6b 22 7.52 1.41 0.92 5.50 No No

F F7b 50 8.32 1.96 0.72 6.74 No No

F F8c 31 18.5 2.01 0.79 16.54 No Yes

M F9b 12 11.23 0.95 0.77 11.2 No No

F F10b 20 7.8 1.12 0.86 5.47 No No

M F11 7 18.91 1.03 0.94 16.84 No No

Fig. 1 Xanthomas of FH homozygous individual (proband F3). On elbow (a) and knee (b)

http://evs.gs.washington.edu/EVS/
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such heterogeneous population is expected to harbor 
a number of novel gene mutations (Nordestgaard et  al. 
2013). In the present study, we employed direct sequenc-
ing to explore mutations of possible causative genes for 
FH. Twelve LDLR and APOB variants were detected, 
including three unique mutations (c.516C>A/p.D172E, 
c.1720C>A/p.R574S and c.760C>T/p.Q254X). The inci-
dence rates of LDLR and APOB mutations were 82 and 
9% in these Chinese FH families, respectively. These 
data corroborated previous reports demonstrating that 
over 85% of FH cases are due to hereditary mutations in 
LDLR, with the APOB variant (p.Arg3527) accounting for 
5% of FH cases (Futema et al. 2014).

The novel mutations (c.516C>A/p.D172E, c.1720C>A/p.
R574S and c.760C>T/p.Q254X) were detected in Families 
F1, F2 and F3, respectively. In Family F1, one homozygous 
and four heterozygous (c.516C>A/p.D172E) patients were 
identified. This mutation is found in the highly conserved 
ligand binding domain of LDLR, and may affect LDL bind-
ing (Gent and Braakman 2004). In Family F2, four patients 
(c.1720C>A/p.R574S) were diagnosed as FH. The substitu-
tion of the alkaline amino acid (Arg) by the polar but not 
charged amino acid (Ser) at position 574 of LDLR may 
be the genetic basis for FH. Proband F3 was a compound 
heterozygous mutation (c.760C>T/p.Q254X/c.1216C>A) 
carrier. The disease-causing SNP (c.1216C>A) is a splic-
ing site that was used to exclude the natural splicing site, 
and causes a deletion of 31 bp from the mRNA, probably 
introducing premature termination of four codons after 
R406 (Bourbon et  al. 2007). If the mRNA carries a non-
sense mutation (c.760C>T/p.Q254X), it will be degraded 
by nonsense mediated mRNA decay. The LDLR protein 
without the C-terminal domain will not be found in the 
cell membrane. Therefore, serum TC and LDL levels were 

consistent with homozygous mutation carriers, such as 
proband F1.

Furthermore, APOB mutation (c.10579C>T/p.
R3527W) was detected in Family F10. This mutation 
could influence the conformation and structure of APOB 
in the binding domain. This may decrease LDL degrada-
tion and increase TC and LDL-C levels (Gaffney et  al. 
1995). Besides, APOB mutations often show a lighter 
phenotype than LDLR and PCSK9 mutations in patients. 
Our clinical and molecular data also confirmed this 
viewpoint.

Among all LDLR mutations, 27% (three out of eleven) 
of variants are found in exon 4. According to previous 
studies assessing Chinese FH patients, 24% of variants 
are found in exon 4 of LDLR, and our data are consist-
ent with this percentage (Austin et al. 2004). Such a high 
frequency may be caused by the large exon size, but could 
be also related to selection bias.

In addition, no disease causing mutations in candidate 
genes were detected in proband F11, despite high TC and 
LDL-C levels in the patient. This might be caused by vari-
ations in other genes such as APOC3 and PNPLA5 (Jor-
gensen et al. 2014, Lange et al. 2014). Furthermore, CNVs 
also play a crucial role in FH for unique cases (Myocar-
dial Infarction Genetics, Kathiresan, et  al. 2009, Costel-
loe et  al. 2012). Considering the serious phenotype of 
proband F11, we believe that genetic factors may have 
had a dominant effect. This will be identified through 
whole-exome sequencing in the future.

In conclusion, we detected mutations of LDLR, APOB 
and PCSK9 in 11 Chinese FH families, among which 
ten were found to be deleterious mutations. Mean-
while, three novel LDLR mutations (c.516C>A/p.D172E, 
c.1720C>A/p.R574S and c.760C>T/p.Q254X) were 

Table 2 Mutations found in the Chinese and their predicted effect

a Homozygous mutation, b heterozygous mutation, c compound heterozygous mutations

Patient Gene Exon cDNA Protein Protein prediction PMID

Mutation taster Polyphen-2 SIFT

F1a LDLR 4 c.516C>A p.D172E Disease causing Probably damaging Deleterious Novel

F2b LDLR 12 c.1720C>A p.R574S Disease causing Probably damaging Deleterious Novel

F3c LDLR 5
9

c.760C>T/
c.1216C>A

p.Q254X/
No

Disease causing/
Disease causing

Unknown
Unknown

Deleterious/Tolerated Novel/
17335829

F4b LDLR 13 c.1954_1955delAT p.M652GfsX16 Disease causing Probably damaging Deleterious 20538126

F5b LDLR 4 c.682G>T p.E228X Disease causing Unknown Unknown 1301956

F6b LDLR 4 c.485C>T p.P162L Disease causing Probably damaging Deleterious 12436241

F7b LDLR 13 c.1897C>T p.R633C Disease causing Probably damaging Deleterious 9259195

F8c LDLR 8 c.1132C>T p. Q378X Disease causing Unknown Unknown 11005141

10 c.1448G>A p.W483X Disease causing Unknown Unknown 11810272

F9b LDLR 12 c.1747C>T p.H583Y Disease causing Probably damaging Deleterious 7903864

F10b APOB 26 c.10579C>T p.R3527W Disease causing Probably damaging Deleterious 7903864
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identified. More patients were not available for statisti-
cal analyses, and no percentage of Chinese FH patients 
with positive genetic diagnosis could be revealed in this 

study. However, the present identification of three novel 
mutations and other mutations not only further supports 
the significant role of LDLR in FH, but also expands the 

Fig. 2 Pedigrees and sequencing results of the LDLR mutations of the families affected with FH. The hypercholesterolemic patient is indicated by a 
black symbol. The normal cholesterolemic individuals are indicated by open symbols. N normal, M mutant, arrow the proband
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Fig. 3 Analysis of the mutations of LDLR. Alignment of multiple LDLR protein sequences across species (from Ensemble). Red columns show con‑
served regions in site D172 (a), R574 (b) and Q264 (c) respectively

spectrum of LDLR mutations. These new insights will 
contribute to the genetic diagnosis and counseling of FH 
patients.
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