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Abstract 

Background: Rice breeding program needs to focus on development of nutrient dense rice for value addition and 
helping in reducing malnutrition. Mineral and vitamin deficiency related problems are common in the majority of the 
population and more specific to developing countries as their staple food is rice.

Results: Genes and QTLs are recently known for the nutritional quality of rice. By comprehensive literature survey 
and public domain database, we provided a critical review on nutritional aspects like grain protein and amino acid 
content, vitamins and minerals, glycemic index value, phenolic and flavonoid compounds, phytic acid, zinc and iron 
content along with QTLs linked to these traits. In addition, achievements through transgenic and advanced genomic 
approaches have been discussed. The information available on genes and/or QTLs involved in enhancement of micro-
nutrient element and amino acids are summarized with graphical representation.

Conclusion: Compatible QTLs/genes may be combined together to design a desirable genotype with superior in 
multiple grain quality traits. The comprehensive review will be helpful to develop nutrient dense rice cultivars by inte-
grating molecular markers and transgenic assisted breeding approaches with classical breeding.
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Background
Rice is the most well known cereal and staple food which 
serves as major carbohydrate for more than half of the 
world population. Half of the world’s population is suf-
fering from one or more vitamin and/or mineral defi-
ciency (World Food Program 2015). More than three 
billion people are affected by micronutrient malnutri-
tion and 3.1  million children die each year out of mal-
nutrition (Gearing 2015) and the numbers are gradually 
increasing (FAO 2009; Johnson et  al. 2011). The devel-
oped countries are managing deficiency by adopting 
fortification programs, but same programs are not afford-
able to poor countries. Therefore, an alternative and less 
expensive strategy is to modify the nutritional quality of 
the major cereals consumed by the people. To improve 

the nutritional value of rice, research programs should 
be reoriented to develop high yielding cultivars with 
nutrient dense cultivars either by selective breeding or 
through genetic modification (Gearing 2015). Increase 
in literacy percentage and awareness of diet, people tend 
to be more health conscious and interested to have nutri-
tionally enriched food. The quality of rice is an important 
character to determine the economic value in the export 
market and consumer acceptance (Pingali et al. 1997).

The genetic basis of the accumulation of micronutri-
ents in the grain, mapping of the quantitative trait loci 
(QTL) and identification of genes will provide the basis 
for preparing the strategies and improving the grain 
micronutrient content in rice. Integrating marker assisted 
breeding with classical breeding makes, the possibility to 
track the introgression of nutritional quality associated 
QTLs and genes into a popular cultivar from various 
germplasm sources (Fig.  1). Till date classical breeding 
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has a significant impact on improving biofortification of 
rice cultivars by making crosses, backcrosses and selec-
tion of the desired superior rice cultivars with high nutri-
tional value. However, by availing technologies such as 
DNA markers, genetic engineering and allele mining 
offers an opportunity to use them as a tool to detect the 
allelic variation in genes underlying the traits and intro-
gression of nutrition related QTLs/genes to improve the 
efficiency of classical plant breeding via marker-assisted 
selection (MAS).

Molecular markers such as SNPs (Ohstubo et al. 2002; 
Bao et al. 2006; Bert et al. 2008; Mammadov et al. 2012), 
SSRs (Anuradha et  al. 2012; Nagesh et  al. 2013; Gande 
et al. 2014), STS (Chandel et al. 2011; Gande et al. 2014), 
etc. have been developed. Integration of the markers 
into the breeding programs for effective selection of the 
plants at early stage of crop growth provides an opportu-
nity to achieve the target earlier than the classical breed-
ing program. Genomic approaches are particularly useful 
when working with complex traits having multigenic and 
influence of environment. In this new plant breeding era, 
genomics will be an essential aspect to develop more effi-
cient nutritional rich rice cultivars (Perez-de-Castro et al. 
2012), for reducing human health problems relating to 
mineral nutrition. Therefore, this is an effective approach 

for future rice breeding to reduce the malnutrition. By 
availing the different molecular approaches and advanced 
genomic technologies such as SNPs array, genome 
sequencing, genome-wide association mapping, tran-
scriptome profiling, etc. could be strategically exploited 
to understand molecular mechanism and their relation 
between the genotypes and phenotypic traits leading to 
development of improved rice varieties (Chandel et  al. 
2011; Varshney et  al. 2014; Malik et  al. 2016; McCouch 
et al. 2016; Peng et al. 2016).

Traits for improvement of the grain nutritive value
In the present situation, attention on grain quality and 
nutritional value has become a primary thought for pro-
ducers and consumers. Rice grain is relatively low in 
some essential micronutrients such as iron (Fe), zinc (Zn) 
and calcium (Ca) as compared to other staple crops like 
wheat, maize, legumes and tubers (Adeyeye et al. 2000). 
However, rice grain consists of ~80% starch and its qual-
ity is dependent on combination of several traits. Another 
component of nutritive value of rice is bran, an important 
source of protein, vitamins, minerals, antioxidants, and 
phytosterols (Iqbal et al. 2005; Liu 2005; Schramm et al. 
2007; Renuka and Arumughan 2007). Rice bran protein 
has a great potential in the food industry, having unique 

Fig. 1 Integration of phenotypic and molecular breeding approaches for improvement of neutraceutical properties in rice grain
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nutraceutical properties (Saunders 1990) and reported 
as hypoallergenic food ingredient in infant formulations 
(Helm and Burks 1996) and having anti-cancer properties 
(Shoji et al. 2001). Improvement in these components in 
the grain can be useful to reduce malnutrition.

Nutritional and nutraceutical properties of rice
Grain protein and amino acid content
Protein energy malnutrition affects 25% of children 
where their dietary intake is mainly on rice and staple 
crops have low levels of essential amino acids (Gearing 
2015). Therefore, attempts to improve the nutritional 
value of rice have been concentrated on protein content 
(PC) and other nutritional quality (Fig. 2). The amount of 
PC in rice is relatively low (8.5%) as compared to other 
cereals like wheat (12.3%), barley (12.8%) and Millet 
(13.4%) and an average of PC in milled rice is about 7 and 
8% in brown rice. The total seed protein content of rice 
is composed of 60–80% glutelin and 20–30% prolamin, 

controlled by 15 and 34 genes respectively (Kawakatsu 
et  al. 2008; Xu and Messing 2009). Rice supplies about 
40% of the protein to human through diet in develop-
ing countries and quality of PC in rice is high, due to 
rich in lysine (3.8%) (Shobha Rani et al. 2006). Therefore, 
improvement of PC in rice grain is a major target for the 
plant breeders and biotechnologists. So far, by classical 
breeding effort, very limited success has been achieved 
because of the complex inheritance nature and the large 
effect of environment on protein content (Coffman and 
Juliano 1987). According to Iqbal et al. (2006), more than 
170  million children and nourishing mothers suffered 
from Protein-calorie malnutrition (PCM) in developing 
Afro-Asian countries. In comparison with meat, plant 
proteins are much less expensive and nutritionally imbal-
anced because of their deficiency in certain essential 
amino acids (EAAs).

In general, cereal proteins are low in lysine (Lys 1.5–4.5 
vs. 5.5% of WHO recommendation), tryptophan (Trp, 

Fig. 2 Depicted diagram of molecular marker positions associated with grain nutritional quality of rice distributed on 12 chromosomes from com-
prehensive literature survey. Molecular marker on right and their position (cM) on left side of the chromososmes. MPGQ milling properties of grain 
quality, GA grain appearance (red), CP cooking properties (blue), NF nutrition factors (pink), FRG fragrance of rice grain (green) (colors indicate markers 
related to nutritional quality traits in rice)
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0.8–2.0 vs. 1.0%), and threonine (Thr, 2.7–3.9 vs. 4.0%). 
Pulses and most vegetable protein contain 1.0–2.0% of 
sulfur containing amino acid (methionine and cysteine), 
compared with the 3.5% of the WHO reference protein 
(Sun 1999). Therefore, these EAAs become the limit-
ing amino acids in cereals and legumes. Recently, Han 
et  al. (2015) compared the quality of rice bran protein 
(RBP) with animal and vegetable proteins. The digest-
ibility of RBP (94.8%) was significantly higher than that 
of rice endosperm protein (90.8%), soy protein (91.7%) 
and whey protein (92.8%) which is same as that of casein. 
Among the total grain PC, rice bran protein appears to 
be a promising protein source with good biological value 
and digestibility.

Recently, Mohanty et  al. (2011) reported 16.41 and 
15.27% of crude protein in brown rice of ARC 10063 
and ARC 10075 respectively on dry weight basis. They 
observed the total free amino acid content to be higher 
in these accessions and lysine content was positively cor-
related with the grain protein content in contrary to the 
view of Juliano et al. (1964) and Cagampang et al. (1966). 
Subsequently, by exploiting ARC 10075 as a donor, CR 
Dhan 310 (IET 24780) rice variety was developed with 
high protein content of 11% and rich in threonine and 
lysine (NRRI Annual Report 2014–2015). Several reports 
claim the varying levels of PC from 4.91 to 12.08%, 
lysine of 1.73–7.13  g/16  g  N and tryptophan from 0.25 
to 0.86 g/16 g N in rice accessions (Banerjee et al. 2010). 
Utilizing the efficiency of molecular marker technology, 
PC in brown and milled rice were mapped using various 
rice populations (Tan et al. 2001; Aluko et al. 2004; Weng 
et al. 2008; Zhang et al. 2008; Yu et al. 2009; Zhong et al. 
2011; Yun et al. 2014).

Vitamins and minerals
Forty-nine nutrients are required for normal growth and 
development and the demand is fulfilled by nutrients 
supplied by cereals, particularly rice (Welch and Graham 
2004). Among these nutrients, mineral elements play 
beneficial role directly or indirectly in human metabo-
lism. The wide spread occurrence of anemia and osteo-
porosis due to deficiency of iron and calcium respectively 
was observed in most developing countries as well as 
developed countries (Welch and Graham 1999). In the 
scenario, plant breeders started to pay more attention 
to improve the nutrient qualities especially mineral ele-
ments of major food grain crops (Zhang et  al. 2004). 
Several researchers have reported genetic differences 
of mineral elements in rice (Gregorio et al. 2000; Zhang 
et  al. 2004; Anandan et  al. 2011; Ravindra Babu 2013; 
Jagadeesh et  al. 2013). However, limited number of 
reports was observed for molecular level study and QTLs 
for vitamin and mineral content in rice. Brown rice is an 

important source of vitamins and minerals and by polish-
ing the brown rice, several nutritional components such 
as dietary fiber, vitamins and phenols are eliminated that 
are beneficial to human health.

Glycemic index value
Glycemic index (GI) is an indicator for the response of 
blood sugar levels based on the amount of carbohydrate 
consumption (after ingestion), which can be measured 
by rapidly available glucose (RAG). Rice, as a staple food 
contains 80% of starch and increased consumption leads 
to risk of type II diabetes (Courage 2010) and is predicted 
to affect almost 330 million people by 2030 (Misra et al. 
2010). Brand-Miller et  al. (2000) categorized glycemic 
index foods into low (GI value <55), medium (GI value 
56–69) or high (GI value >70) GI foods. Recent stud-
ies have shown the ability of lower GI value will help to 
improve glycemic control in diabetics and cardiovascular 
diseases (Brand-Miller et al. 2003; Srinivasa et al. 2013). 
Low GI foods more slowly convert the food into energy 
by the body, thereby blood glucose levels become more 
stable than diets based on high GI foods. Therefore, iden-
tification of lower GI crops would play a major role in 
managing the disease. Thus, the diabetic sufferers in low-
income countries such as Bangladesh, India, Indonesia, 
Malaysia and Sri Lanka may offer an inexpensive way for 
managing the disease (Fitzgerald et  al. 2011). GI range 
may vary among the genotypes as well as the growing 
regions. GI varied from 54 to 121 among rice genotypes 
(Manay and Shadaksharaswamy 2001).

The degree of gelatinization is proportional to the 
amount of amylose; the less amylose there is, the greater 
the degree of gelatinization and vice versa. In other 
words, starches with lower amylose content will have 
higher Glycemic Indexes. Inversely, starches with a 
higher amylose content will be less susceptible to gelati-
nization, that is, to breaking down into glucose, that 
which makes for low Glycemic Indexes. The amount of 
amylose content (AC), Waxy haplotype and digestibility 
of rice are significantly correlated (Fitzgerald et al. 2011) 
and observed that AC plays a key role in rate of starch 
digestion and GI (Kharabian-Masouleh et  al. 2012). 
Apparent amylose content is primarily controlled by the 
Waxy gene which codes for granule bound starch syn-
thase (Chen et al. 2008a). The combination of two single-
nucleotide-polymorphism (SNP) markers in the Waxy 
gene allows for the identification of three marker haplo-
types in this gene. The first SNP is at the leader intron 
splice site (In1 SNP), and the second polymorphism is in 
exon 6. The haplotypes explained 86.7% of the variation 
in apparent amylose content and discriminated the three 
market classes of low, intermediate and high AC rice 
from each other.
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Chen et  al. (2008a, b), Larkin and Park (2003) and 
Kharabian-Masouleh et  al. (2012) reported that Waxy 
gene showed four haplotypes viz., In1T-Ex6A, In1G-
Ex6C, In1G-Ex6A and In1T-Ex6C used for the clas-
sification of AC in rice. Conversely, Cheng et  al. (2012) 
identified intron1 is insufficient to explain the genetic 
variations of AC in rice. Therefore, the study based on the 
AC and molecular analysis would be helpful for the selec-
tion of appropriate nutritional quality rice for diabetic. 
Angwara et al. (2014) characterized 26 Thai rice varieties 
for RAG and Waxy haplotype (In1-Ex6) as GI indicators. 
The four haplotypes, classified 26 Thai rice varieties into 
grups consisting four varieties having G-A, nine varie-
ties harboring G-C, 13 varieties carrying T-A or T-C 
allele associated with high, intermediate and low amyl-
ose respectively and the varieties having G-A haplotype 
exhibited low RAG.

Phenolic and flavonoid compounds of rice grain
The phytochemicals such as phenolic compounds (toco-
pherols, tocotrienols and γ-oryzanol) and flavonoids 
(anthocyanidin) are responsible for good source of natu-
ral antioxidant and grain colour respectively. Kernel of 
red rice is characterized by the presence of proanthocya-
nidins whereas black rice is characterized by the accumu-
lation of anthocyanins, mainly cyanidin-3-glucoside and 
peonidin 3-glucoside. These compounds help in decreas-
ing the toxic compounds and reduce the risk of develop-
ing chronic diseases including cardiovascular disease, 
type-2 diabetes, reduction of oxidative stress and preven-
tion of some cancers (Ling et al. 2001; Kong et al. 2003; 
Hu et al. 2003; Iqbal et al. 2005; Yawadio et al. 2007; Shao 
et al. 2011).

Red rice has phenolic compounds in the range of 
165.8–731.8  mg gallic acid equivalent (GAE) 100  g−1 
(Shen et al. 2009) and black/purple rice reported to have 
higher amount of Fe, Zn, Ca, Cu and Mg than red rice 
(Meng et  al. 2005). On the other hand, pigmented rice 
reported to have higher amount of antioxidative activ-
ity (Zhang et al. 2006; Nam et al. 2006; Chung and Shin 
2007; Hiemori et al. 2009). The concept of the total anti-
oxidant capacity, which represents the ability of differ-
ent food antioxidants to scavenge free radicals, has been 
suggested as a tool for evaluating the health effects of 
antioxidant rich foods. In non-pigmented rice varie-
ties, the bran fraction has a total phenolic content (TPC) 
of 596.3  mg  GAE  100  g−1, which is close to that of the 
husk (599.2  mg  GAE  100  g−1) followed by the whole 
grain (263.9  mg  GAE  100  g−1) and the rice endosperm 
(56.9 mg GAE 100 g−1) (Goufo and Trindade 2014). The 
phenolic compounds are mainly associated with the peri-
carp colour, darker the pericarp higher the amount of 
polyphenols (Tian et al. 2004; Zhou et al. 2004; Yawadio 

et  al. 2007). Shen et  al. (2009) characterized coloured 
parameters of rice grain (white, red and black rice) in 
wide collection of rice germplasm and found significantly 
associated with total phenolics, flavonoid and antioxi-
dant capacity in three types of rice grain. Moreover, the 
correlations among the white rice accessions are rather 
weak. Goffman and Bergman (2004) evaluated different 
colour of rice genotypes and their total phenolic con-
tent ranged from 1.90 to 50.32 mg GAE g−1 of bran, and 
between 0.25 and 5.35 mg GAE g−1 of grain. Recent evi-
dence of Goufo and Trindade (2014), showed 12 phenolic 
acids are generally identified in rice ranging from 177.6 
to 319.8  mg  100  g−1 in the bran, 7.3 to 8.7  mg  100  g−1 
in the endosperm, 20.8 to 78.3 mg 100 g−1 in the whole 
grain, and 477.6  mg  100  g−1 in the husk, depending on 
the rice color. This suggest that, rice bran has highest 
source of phenolic acids than others consumable part of 
rice. Numerous literatures have shown that consumption 
of colored rice reduces oxidative stress and simultane-
ously increases in antioxidant capacity. Consumption of 
colored rice varieties is very limited in Western coun-
tries, but in some growing areas of Asia, traditional varie-
ties with colored pericarp are particularly valued in local 
markets (Finocchiaro et al. 2007).

The antioxidant compounds in rice as γ-oryzanols, 
tocols and phenolic acids associated with reduced risk 
of developing chronic diseases (Liu 2007; Yawadio et al. 
2007). Among the various phenolic compounds, feru-
lic acid (56–77% of total phenolic acids) found in the 
endosperm, bran, and whole grain, followed by p-cou-
maric acid (8–24%), sinapic acid (2–12%), gallic acid 
(1–6%), protocatechuic acid (1–4%), p-hydroxybenzoic 
acid (1–2%), vanillic acid (1%), and syringic acid (1%) 
(Goufo and Trindade 2014).

Effect of phytic acid in rice grain
An important mineral storage compound in seed is 
phytate, a mixed cation salt of phytic acid (InsP6) 
accounted approximately 75% of total phosphorus in 
seeds (Lott 1984; Suzuki et al. 2007; Raboy 2009). A con-
siderable part of the phosphorus taken up by plants from 
soil is translocated ultimately to the seed and synthesized 
into phytic acid (PA). Therefore, this compound repre-
sents a major pool in the flux of phosphorus and recently 
estimated that, the amount of phosphorus synthesized 
into seed in the form of PA by crops each year represents 
a sum equivalent to >50% of phosphorus fertilizer used 
annually world-wide (Lott et al. 2000). Phytate being vital 
for seed development and higher seedling vigour, often 
considered as an anti-nutritional substance, but may have 
a positive nutritional role as an antioxidant, anti-cancer 
agent, lowering chronic disease rates, heart diseases 
in humans and prevents coronary diseases (Bohn et  al. 
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2008; Gemede 2014). PA is considered as an anti-nutri-
tional factor, as it forms complexes with proteins in seeds 
and essential minerals, such as Fe, Zn and Ca. (Reddy 
et  al. 1996; Mendoza 2002; Bohn et  al. 2008; Tamanna 
et al. 2013). However, Welch and Graham (2004) finding 
indicates that, PA have no much negative effects on Fe 
and Zn bioavailability.

Prerequisite for improvement of Fe and Zn content 
in rice grain
Iron and zinc micronutrients are the most important 
elements, deficiency of which is a major cause for mal-
nutrition. More than half of the world population is suf-
fering from bioavailable nutrient deficiencies particularly 
in developing countries (Seshadri 1997; Shahzad et  al. 
2014). The main reason of these deficiency occurred due 
to consumption of polished cereal based food crops as 
rice, wheat and maize (Pfeiffer and McClafferty 2007). 
Modern high yielding rice varieties are poor sources 
of essential micronutrients like Fe and Zn (Zimmer-
man and Hurrel 2002). On an average, polished rice has 
2 mg kg−1, while the recommended dietary intake of Fe 
for humans is 10–15  mg  kg−1. Therefore, globally more 
than 3 billion people were affected by Fe deficiency, par-
ticularly in developing countries (Graham et  al. 1999; 
Welch and Graham 2004). Pregnancy maternal mortal-
ity by anemia leads to 1.15 lakh deaths per year, resulting 
in 3.4 million disability-adjusted life-years (DALYs), has 
been recognized to Fe deficiency (Stoltzfus et  al. 2004). 
Hence, improvement of Fe content in rice grain is nec-
essary, which is a major challenge to the plant breeders. 
In plants, Zn plays a significant role in the biosyntheses 
and turnovers of proteins, nucleic acids, carbohydrates 
and lipids, with functional aspects as integral cofac-
tor for more than 300 enzymes, coordinating ion in the 
DNA-binding domains of transcription factors and 
equally important as Fe and vitamin A (Marschner 1995). 
Males within the age bracket of 15–74  years require 
approximately 12–15  mg of Zn daily, while females 
within 15–74  years of age group need about 68  mg of 
Zn (Sandstead 1985). Generally, the content of Zn in 
polished rice is an average of only 12 mg kg−1, whereas 
the recommended dietary intake of Zn for humans is 
12–15  mg  kg−1 (FAO 2001). About 17.3% of the global 
population is under risk of Zn deficiency and in some 
regions of the world, it is as high as 30% due to dietary 
inadequacy (Wessells and Brown 2013). Therefore, to 
enhance the concentration of these micronutrients in rice 
grain could be possible as signified the presence of vast 
genetic potential of various rice germplasm by adapt-
ing appropriate genetic approaches (Fig.  1). However, 
major attention to date has been paid on identification 
and development of genetically engineered rice grains 

with increased bioavailable contents of Fe and/or Zn. 
The list of rice cultivars that possess dense micronutri-
ent are presented in Table  1. Recently, Indian Institute 
of Rice Research, Hyderabad has developed a genotype 
(IET 23832) that possesses high Zn (19.50 ppm). As the 
brown rice has higher amount of Fe and Zn, more than 
70% of micronutrients are lost during polishing (Sellap-
pan et al. 2009) as they are located on the outer layer of 
the kernel. Martinez et  al. (2010) found 10–11  ppm Fe 
and 20–25 ppm Zn in brown rice, while 2–3 ppm Fe and 
16–17 ppm Zn was observed in milled rice.

QTLs linked to nutritional and nutraceutical 
properties of rice
QTLs for protein content in rice
Protein content in rice grain is a key factor for the 
enhancement of nutritional values and influencing the 
palatability of cooked rice (Matsue et  al. 1995). Tan 
et al. (2001) mapped two QTLs for PC in the interval of 
C952-Wx on chromosome 6 near to waxy gene with 13% 
PV and LOD score of 6.8 and another QTL was mapped 
within the interval of R1245-RM234 on chromosome 
7, which accounted for 4.7% of the PV and LOD score 
of 3.2. On the other hand, Aluko et al. (2004) identified 
four QTLs located on chromosomes 1, 2, 6 and 11 in a 
DH population from an inter specific crosses between 
O. sativa and O. glaberrima. Among the four QTLs, one 
QTL was located on chromosome 6, which is closely 
associated with Wx gene influencing rice quality.

Three QTLs viz., qPC1.1, qPC11.1, and qPC11.2 were 
associated with PC of brown rice (Qin et al. 2009). Among 
them, qPC11.1, and qPC11.2 were identified on chromo-
some 11 exhibiting 22.10% and 6.92% PV with LOD score 
of 4.90 and 2.75, respectively. The QTL qPC11.2 was 
found to be consistent over two years of trial and linked 
with marker RM287. Yu et al. (2009) detected five QTLs 
for PC and four QTLs for fat content from 209 RILs. The 
five QTLs (qPC-3, qPC-4, qPC-5, qPC-6 and qPC-10) for 
PC were detected on chromosomes 3, 4, 5, 6 and 10 with 
LOD score of 6.25, 2.87, 2.28, 9.78 and 4.50 respectively. 
Among these five loci, qPC-6 observed to be nearer to 
the Wx marker between RM190 and RZ516 on the short 
arm of rice chromosome 6, explaining 19.3% of the PV 
and other four QTLs explained 3.9–10.5% of the PV. 
Zhong et al. (2011) reported two consistent QTLs for PC 
in milled rice as qPr1 and qPr7 detected over two years 
and positioned in the marker interval of RM493-RM562 
and RM445-RM418 on chromosome 1 and 7 respectively. 
Recently, three QTLs qPro-8, qPro-9 and qPro-10 were 
detected on chromosome 8 flanked by RM506-RM1235 
with a LOD score of 2.57, chromosome 9 in the inter-
val of RM219-RM23914 with a LOD score of 2.66, and 
chromosome 10 separated by RM24934-RM25128 with a 
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LOD score of 6.13 respectively for PC from 120 DH lines 
(Yun et al. 2014).

QTLs associated with amino acid in rice
Amino acid (AA) composition and mapping was reported 
in milled rice using 190 RILs and detected eighteen chro-
mosomal regions for 17 out of 20 AA (except Trypto-
phan, Glutamine, and Asparagine), essential AA in total 
and total AA content in rice grain (Wang et  al. 2008). 
Two major QTL clusters in RM472-RM104 (1–19) and 
RM125-RM542 (7–4, 5) were detected consistently in 
two years and explained about 30 and 40% of PV. Zhong 
et  al. (2011) detected 48 and 64 QTLs related to AA in 
the year of 2004 and 2005, respectively. Most QTLs co-
localized, forming 29 QTL clusters on the chromosomes 
with three major ones detected in both years, which 
were mapped on chromosomes 1, 7 and 9, respectively. 
The two QTL clusters for amino acid content, qAa1 and 
qAa7, influenced almost all the traits and the third QTL 
cluster for amino acid content, qAa9, increased the lysine 
content. Therefore, these identified QTLs and their asso-
ciation with particular grain quality nutrient trait results 
will be useful to find the candidate genes and favora-
ble alleles to transfer into elite breeding rice cultivars 
through marker-assisted breeding program.

QTLs responsible for mineral contents in rice
Several QTLs related to nutritional quality traits have 
been reported in rice from different genetic backgrounds 
of intraspecific and interspecific crosses using molecular 
markers. The grain nutrient traits associated with various 
QTLs and linked/flanking markers are summarized in 
Table 2 and Fig. 2. Three loci explaining 19–30% variation 
for Fe content on chromosomes 7, 8, and 9 were observed 
by Gregorio et al. (2000). A major QTL explaining 16.5% 
of PV for Fe content on chromosome 2 was identified 
from a DH population derived from a cross between 

IR64 and Azucena (Stangoulis et al. 2007). Besides, Gar-
cia-Oliveira et  al. (2008) reported a QTL for Fe content 
close to the marker RM6641 on chromosome 2 from an 
introgression line derived from a cross between Teqing 
and Oryza rufipogon. Wild rice (O. rufipogon) contrib-
uted favorable alleles for most of the QTLs (26 QTLs), 
and chromosomes 1, 9 and 12 exhibited 14 QTLs (45%) 
for these traits. One major effect of QTL for zinc content 
accounted for the largest proportion of phenotypic vari-
ation (11–19%) was detected near the simple sequence 
repeats marker RM152 on chromosome 8. James et  al. 
(2007) used a DHs population for three Fe linked QTLs 
on chromosomes 2, 8 and 12, explaining 17, 18 and 14% 
of the total PV, respectively. They also reported two QTLs 
for Zn content on chromosomes 1 and 12, explaining PV 
of 15 and 13% respectively. Norton et al. (2010) reported 
ten QTLs for five mineral elements (Cu, Ca, Zn, Mn and 
Fe) and Fe (qFe-1) mineral trait explained the highest PV 
of 25.81% with LOD score of 7.66. Anuradha et al. (2012) 
identified 14 QTLs for Fe and Zn from unpolished rice 
of Madhukar/Swarna RILs. Seven QTLs each for grain Fe 
and Zn content were identified on chromosomes 1, 3, 5, 
7 and 12 and the PV ranged from 29 to 71%. In addition, 
Gande et  al. (2014) identified 24 candidate gene mark-
ers responsible for Zn content and four candidate genes 
namely OsNAC, OsZIP8a, OsZIP8c and OsZIP4b showed 
significant PV of 4.5, 19.0, 5.1 and 10.2%, respectively.

Garcia-Oliveira et  al. (2008) identified 31 putative 
QTLs associated with microelements (Fe, Zn, Mn, Cu,) 
and macro elements (Ca, Mg, P and K) on all chromo-
somes except on chromosome 7. Among the total QTLs 
identified, chromosomes 1 and 9 had the highest number 
of QTLs having five QTLs each. Earlier reports showed 
several QTLs for the mineral content associated with dif-
ferent chromosomal regions of rice. QTLs for K on chro-
mosomes 1 and 4 (Wu et  al. 1998), P on chromosomes 
1 and 12 (Ni et al. 1998; Wissuwa et al. 1998; Ming et al. 

Table 1 List of identified promising donors for Fe and Zn nutritional quality traits in rice

S. 
no

Rice genotypes Nutritional element Reference

1 SL-32, Annada, ASD16, CH-45, Nagina 22, Swarna, IR-29, 
Pusa Sugandha-1, IRGC-106187, IR68144-3B-2-2-3, IRGC-
105320, IRGC-105320, IRGC-86476, CH-45, Jyoti, HKR-126, 
Varsha, MSE-9, Jalmagna, Zuchem, Kalabath, Pusa Basmati, 
Noothipattu, Pitchavari, Thanu, TKM-9, NDR-6279, and 
Aghonibora

Fe (>20 ppm) Gregorio (2002), Anandan et al. (2011), Anuradha et al. 
(2012), Ravindra Babu (2013), Jagadeesh et al. (2013)

2 Nagina 22, Honduras, RG-187, SL-32, Aghoni bora, Annada, 
ASD-16, Jalmagna, CH-45, BPT-5204, Lalat, Sasyasri, Swarna, 
IR-29, Pusa Sugandha-1, IRGC-106187, IRGC-105320, IRGC-
86476, Benibhog, CH-45, Jyoti, HKR-126, Pant Sugandh-17, 
Ratna, Chitiimutyalu, Ranbir basmati, IRRI-38, Jeerigesanna, 
Kalabath, Pusa Basmati, Noothipattu, Madhukar, Swarna, 
AM-141, Thanu, TKM-9, NDR-6279, Aghonibora and Pitch-
avari

Zn (>20 ppm) Anandan et al. (2011), Anuradha et al. (2012), Ravindra 
Babu (2013), Berhanu et al. (2013) Jagadeesh et al. 
(2013), Vishnu et al. (2014), Gande et al. (2014)
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Table 2 List of rice nutrient traits associated with different QTLs (>3.0 LOD) mapped in different rice population

S. no Grain traits Chr QTLs Markers Type Peak marker Populations References

1 PC 1 qPr1 RM493-RM562 RILs RM493-RM562 Zhenshan97B/Delong 
208

Zhong et al. (2011)

2 PC 1 qPC1.1 1008-RM575 DHs Samgang/Nagdong Qin et al. (2009)

3 MAC-P 1 qP.1 RM3411 LT/TL-RILs TeQing/Lemont Zhang et al. (2014)

4 MAC-K 1 qK.1 RM5501 LT/TL-RILs Lemont/TeQing Zhang et al. 2014

5 PC 1 qPC1 RM472-RM104 RILs Zhenshan97/ 
Nanyangzhan

Peng et al. (2014)

6 AAC 1 qAa1 RM493-RM562 RILs Zhenshan97B/Delong 
208

Zhong et al. (2011)

7 MAC-P 1 qP.1 RM495 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

8 MAC-Cd 1 qCd.1 RM6840 LT-RILs

9 Zn 1 qZn.1 RM34-RM237 DHs IR64/Azucena James et al. (2007)

10 Mn 1 qMn.1 RM243-RM312 DHs

11 MAC-Co 1 qCo.1 RM490 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

12 MAC-Ca 1 qCa1-1 RM6480 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

13 MAC-P 1 qP1-1 RM212 ILs

14 Fe 1 qFe1.1 RM243-RM488 RILs Madhukar/Swarna Anuradha et al. (2012)

15 Fe 1 qFe1.2 RM488-RM490 RILs

16 AAC-Asp/Thr/Glu/Gly/
Ala/Cys/Tyr/Pro/Eaa/
total

1 qAA.1 RM472-RM104 RILs RM472 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)

17 Fe 1 qFe.1 RM259-RM243 RILs RM259-RM243 Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

18 MIC-Fe 2 qFe2-1 RM6641 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

19 PC 2 qPC-2 RM5897-RM6247 RILs Chuan7/Nanyanghan Lou et al. (2009)

20 MIC-Cu 2 qCu.2 RM6378 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

21 MAC-Sr 2 qSr.2 RM3688 LT-RILs

22 Fe 2 qFe.2 RM53-RM300 DHs RM53-RM300 IR64/Azucena James et al. (2007)

23 AAC-His 2 qAA.2 RM324-RM301 RILs RM301 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)

24 AAC-Val/Ile/Leu/His/Phe 2 qAA.2 RM322-RM521 RILs RM521

25 PC 2 qLip-2 RM5619-RM1211 DHs Cheongcheong/ 
Nagdong

Yun et al. (2014)

26 PC 2 qPro-2 RM12532-RM555 DHs Cheongcheong/ 
Nagdong

Lee et al. (2014)

27 MIC-Fe 2 qFe.2 RM452 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

28 MIC-Mn 2 qMn2-1 RM6367 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

29 MAC-S 2 qS.2 RM266 LT-RILs Lemont/TeQing Zhang et al. (2014)

30 MAC-Ca 3 qCa.3 RM5626-RM16 LT/TL-RILs

31 MAC-Rb 3 qRb.3 RM489 LT-RILs

32 AAC-Tyr 3 qAA.3 RM520-RM468 RILs RM520 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)

33 MAC-Mg 3 qMg3-1 RM5488 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

34 Ca 3 qCa.3. RM200-RM227 RILs Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

35 PC 3 qPC-3 RM251-RM282 RILs Xieqingzao B/Milyang Yu et al. (2009)

36 Zn 3 qZn3.1 RM7-RM517 RILs Madhukar × Swarna Anuradha et al. (2012)

37 PC 3 qPC-3 RM251-RM282 RILs Xieqingzao B/Milyang Yu et al. (2009)
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Table 2 continued

S. no Grain traits Chr QTLs Markers Type Peak marker Populations References

38 Mn 3 qMn.3 RM227-R1925 RILs Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

39 Cu 3 qCu.1 R1925-RM148 RILs R1925-RM148

40 AAC-Thr/Gly/His/Arg 4 qAA.4 RM348-RM131 RILs RM131 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)

41 CPB 4 qcpb4 E12M61.256 RILs Cypress/Panda Kepiro et al. (2008)

42 CPH 4 qcph4 E12M61.256 RILs

43 Cu 5 qCu.5 C1447-RM31 RILs Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

44 PA 5 qPA.5 RM305-RM178 DHs IR64/Azucena James et al. (2007)

45 FC 5 qFC-5 RG480-RM274 RILs Xieqingzao B/Milyang Yu et al. (2009)

46 Fe 5 qFe5.1 RM574-RM122 RILs Madhukar/Swarna Anuradha et al. (2012)

47 MAC-Ca 5 qCa5-1 RM598 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

48 MIC-Zn 5 RM421 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

49 LC 6 qLIp-6 RM586-RM1163 DHs Cheongcheong/ 
Nagdong

Yun et al. (2014)

50 PC 6 qPC-6 RM190-RZ516 RILs RM190-RZ516 Xieqingzao B/Milyang Yu et al. (2009)

51 FC 6 qFC-6 RM190-RZ516 RILs RM190-RZ516 Xieqingzao B/Milyang Yu et al. (2009)

52 MIC-Cu 6 qCu6-1 RM204 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

53 Zn 6 qZn.6 RZ398-RM204 RILs Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

54 PC 6 qPC-6 RM190-RZ516 RILs Xieqingzao B/Milyang Yu et al. (2009)

55 MAC-Mg 6 qMg.6 OSR 21 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

56 PC 7 qPc7 RM270-C751 DHs Yuefu/IRAT109 Yongmei et al. (2007)

57 MIC-Mn 7 qMn.7 RM214 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

58 AAC-Pro/Gly/Met/Arg 7 qAA.7 RM125-RM214 RILs RM214 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)

59 Zn 7 qZn7.3 RM501-OsZip2 RILs Madhukar/Swarna Anuradha et al. (2012)

60 Fe 7 qFe7.1 RM234-RM248 RILs

61 MAC-P 7 qP.7 RM70-RM172 DHs IR64/Azucena James et al. (2007)

62 PC 7 qPC.1 R1245-RM234 RILs Zhenshan97/Minghui 
63

Tan et al. (2001)

63 PC 7 qPr7 RM445-RM418 RILs Zhenshan97B/Delong 
208

Zhong et al. (2011)

64 MIC-Zn 8 qZn8-1 RM152 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

65 AAC-Tyr 8 qAA.8 RM137-RM556 RILs RM556 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)

66 AAC-Cys 8 qAA.8 RM447-RM458 RILs RM447

67 MAC-K 8 qK8-1 RM3572 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

68 Zn 8 qZn.8 RM25-R1629 RILs Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

69 Cu 8 qCu.8 RM201-C472 RILs

70 Fe 8 qFe.8 RM137-RM325A DHs IR64/Azucena James et al. (2007)

71 AAC 9 qAa9 RM328-RM107 RILs Zhenshan97B/Delong 
208

Zhong et al. (2011)

72 MAC-P 9 qP9-1 RM201 ILs O. rufipogon/Teqing Garcia-Oliveira et al. 
(2008)

73 MAC-Mg 10 qMg.10 RM467 LT-RILs Lemont/TeQing Zhang et al. (2014)

74 AAC-Cys/Leu/Ile/Phe 10 qAA.10 RM467-RM271 RILs RM271 Zhenshan97/ 
Nanyangzhan

Wang et al. (2008)
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2001; Wissuwa and Ae 2001a, b) and Mn on chromosome 
10 (Wang et  al. 2002) were reported. Lu et  al. (2008) 
observed 10 QTLs for Ca, Fe, Mn, and Zn accumulation 
in rice grains on seven chromosomes. Zhang et al. (2014) 
reported 134 QTLs for 16 elements in unmilled rice grain 
and among them, six were considered strongly associated 
and validated.

QTLs for phenolic compounds in rice grain
The Rc locus regulates pigmentation of the rice bran 
layer, and selection for the rc allele (white pericarp) 
occurred during domestication of the crop. Two loci, 
Rc and Rd were found to be responsible for the forma-
tion of pericarp colour (Sweeney et  al. 2006; Furukawa 
et al. 2007). Rc produces brown pericarp and seed coat, 
with Rd it develops red pericarp and seed coat, while 
Rd alone has no phenotype. Rc encodes a regulatory 
protein (Basic Helix-Loop-Helix Protein) that allows 
the accumulation of proanthocyanidins (Sweeney et  al. 
2006), while Rd encodes the enzyme DFR (dehydrofla-
vonolreductase), which is involved in anthocyanin and 
proanthocyanidins pathway (Furukawa et  al. 2007). 
Consequently, wild-type allele (Rc), the domestication 
allele (rc) and a mutant allele (Rc-s) were cloned and 
sequenced. The allele rc was found to be null with 14-bp 
deletion, responsible for frame shift mutation and a pre-
mature stop codon (Brooks et al. 2008). Through classi-
cal genetic approaches, Yoshimura et al. (1997) identified 
two loci, Pb (Prp-b) and Pp (Prp-a), located on chromo-
somes 4 and 1, respectively for the pericarp pigmenta-
tion with anthocyanin of black rice. Further, Wang and 

Shu (2007) mapped Pb gene responsible for purple peri-
carp on chromosome 4 and suggested that, the gene 
Pb may be a mutant of gene Ra caused by a two bases 
deletion (GT) within exon 7 of the Ra. Bres-Patry et al. 
(2001) identified two QTLs controlling rice pericarp 
and it was located on chromosomes 1 and 7. By associa-
tion mapping Yafang et al. (2011) and Shao et al. (2011) 
reported that RM339 and RM316 were the common 
markers for antioxidant, flavonoids and phenolic con-
tent. Ra and Rc were main effect loci for pericarp color 
and phenolic compounds.

Associated QTLs for phytic acid
In rice, phytic acid (PA) is a major source of P for sup-
port of seedling growth on P-deficient soil and important 
role of anti-nutritional factor. Liu et  al. (2005) reported 
the amount of PA and protein content (PC) in 24 cul-
tivars of rice and found to be no significant correlation 
between them. Among the cultivars, PA content ranged 
from 0.68% for Xiu217 to 1.03% for Huai9746, with a 
mean of 0.873%, and PC ranged between 6.45% for Xiu52 
and 11.10% for K45, with a mean of 8.26%. The molecu-
lar mechanism and genetic trait of phytate accumulation 
in rice grain is necessary to understand for designing a 
breeding program. James et  al. (2007) identified two 
QTLs for phytate concentration on chromosomes 5 and 
12 with LOD score of 5.6 and 3.5 explaining 24.3 and 
15.4% of PV, respectively. In addition, they reported sig-
nificant positive correlation of phytate with inorganic P 
and total P (R = 0.99), indicating that the majority of P in 
grain was stored in the form of phytate.

Table 2 continued

S. no Grain traits Chr QTLs Markers Type Peak marker Populations References

75 PC 10 qPC-10 RM184-RM3229B RILs Xieqingzao B/Milyang Yu et al. (2009)

76 PC 10 qPro-10 RM24934-RM25128 DHs RM24934 Cheongcheong/Nag-
dong

Yun et al. (2014)

77 MAC-Mg 11 qMg.11 RM332 LT/TL-RILs Lemont/TeQing Zhang et al. (2014)

78 MIC-Cu 11 qCu.11 RM167 LT-RILs

79 PC 11 qPC1.11 1027-RM287 DHs RM287 Samgang and Nagdong Qin et al. (2009)

80 Fe 11 qFe.11 RZ536-TEL3 RILs Zhenshan 97/Minghui 
63

Kaiyang et al. (2008)

81 PC 11 qPC1.11 RM287-RM26755 DHs RM287 Samgang and Nagdong Qin et al. (2009)

82 PA 12 qPA.12 RM247-RM179 DHs IR64/Azucena James et al. (2007)

83 Fe 12 qFe.12 RM270-RM17 DHs

84 Zn 12 qZn.12 RM235-RM17 DHs

85 Fe 12 qFe12.2 RM260-RM7102 RILs Madhukar/Swarna Anuradha et al. (2012)

86 Fe 12 qFe12.1 RM17-RM260 RILs

87 Zn 12 qZn12.2 RM260-RM7102 RILs

RB rice bran (%), NF nutrition factors, PC protein content, PA phytic acid, AAC amino acid content, CPB crude protein brown rice, CPH crude protein head rice, MIC 
micro-element, MAC macro-element, LC lipid content, FC fat content
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Achievements through transgenic approaches 
to enhance nutritional values
Genetic engineering, an alternative approach to enhance 
nutritional values, has been considered to be the poten-
tial tool for the sustainable and efficient strategy for 
increasing the nutritional quality traits in target area of 
plants (Uzogara 2000; Lucca et al. 2001; Zimmerman and 
Hurrel 2002; Dias and Ortiz 2012). The world popula-
tion would likely to reach 8 billion by 2030. Therefore, the 
problem of malnutrition would further exaggerated to 
93% (Khush 2005, 2008). Numerous evidences are piling 
up showing significant increase of bioavailable content 
in rice grains by transfer of biofortfication genes through 
biolistic and Agrobacterium-mediated transformation 
method (Table  3). Through the transgenic approaches, 
Goto et  al. (1999) first observed 3-fold enhancement of 
Fe in the starchy endosperm of rice by transferring the 
ferritin gene of soybean. Similarly, in 2001 Lucca et  al. 
introduced ferritin gene from common bean into rice 
showed 2-fold concentration of Fe in seeds as compared 
to controls. Vasconcelos et al. (2003) transferred soybean 
ferritin gene into rice and observed 3-fold increase of Fe 
in milled rice and 2-fold in rough rice. Similarly, Khale-
kuzzaman et al. (2006) observed increase in Fe T1 brown 
seeds and T2 polish rice seeds compared to control. Thus, 
the Fe content increased more than 2-fold in transgenic 
lines. Subsequently many researchers have attempted to 
increase Fe content in rice endosperm by over expressing 
genes involved in Fe uptake from the soil and transloca-
tion from root, shoot, flag leaf to grains, and by increas-
ing the efficiency of Fe storage proteins (Kobayashi and 
Nishizawa 2012; Lee et al. 2012; Bashir et al. 2013; Mas-
uda et al. 2013; Slamet-Loedin et al. 2015). Several stud-
ies exhibited the associated increase in Fe and Zn content 
in rice grain obtained by over expression or activation of 
the Nicotianamine Synthase (NAS) genes or influenced 
with other transporters genes (Table  3). Masuda et  al. 
(2009) transferred NAS gene of Hordeum vulgare to rice 
observed significant enhancement of the target trait, 
which accumulated 2- to 3-fold higher iron and zinc in 
polished rice grain. Zheng et  al. (2010) observed 5-fold 
iron accumulation in polished rice grain through the 
over expression of endosperm specific endogenous NAS 
gene. Through the higher expression of three rice NAS 
homologous proteins, (OsNAS1, OsNAS2, and OsNAS3), 
Johnson et al. (2011) observed 2-fold increase in Fe and 
Zn concentration in polished rice (Table 4). Similarly, Lee 
et al. (2009) observed transfer of NAS gene (OsNAS3-D1) 
increases the expression of Fe (2.9-fold), Zn (2.2-fold), 
and Cu (1.7-fold) compared to wild type grain at seedling 
stage. Soumitra et  al. (2012) observed 7.8-fold increase 
of Fe content in a line 276-1-2 and six lines showed a 4.1 
to 4.5-fold increment over control by over expression of 

ferritin gene. Masuda et  al. (2013) introduced multiple 
genes viz., OsSUT1 promoter-driven OsYSL2, ferritin 
gene under the control of endosperm-specific promoter, 
barley IDS3 genome fragment and NAS over expres-
sion and observed significant increase in 1.4-fold, 2-fold, 
6-fold, 3-fold of Fe concentration respectively as com-
pared to polished rice seeds. These results suggest that, 
targeting multiple genes would be more successful in 
enhancing nutritional values of rice.

Rice lacks the ability to produce β-carotene, the precur-
sor of Vitamin A. Ye et al. (2000) developed golden rice 
that yields 1.6–2.0 μg g−1 of β-carotene of dry rice which 
is very beneficial for retina (Vitamin A) to create visual 
pigment and ultimately leads decreasing of night blind-
ness and particularly useful for people in developing 
countries. It was possible by introgression of major four 
genes phytoene synthase, phytoene desaturase, β-carotene 
desaturase, and lycopene β-cyclase into rice.

Advanced genomic technologies
The ever-increasing demand for rice production with 
higher quality drives to the identification of superior 
and novel rice cultivars. To meet these challenges, plant 
breeders and biotechnologist together has to explore 
efficient breeding strategies that integrate genomic tech-
nologies by using available germplasm resources to a 
new revolution in the field of plant breeding for better 
understanding of genotype and its relationship with the 
phenotype, in particular for complex traits. Genomic 
approaches are particularly useful when working with 
complex traits having multigenic and environmental 
effects. In this new plant breeding era, genomics will be 
an essential aspect to develop more efficient nutritional 
rich rice cultivars for reducing human health problems 
relating to mineral nutrition (Perez-de-Castro et  al. 
2012).

Sequenced rice genome has provided new technolo-
gies and tools in functional genomics, transcriptomics 
and proteomics of important agronomic traits in rice. At 
present, trends in molecular biology are fully updated. 
Therefore, by availing the different molecular approaches 
as, whole genome sequencing of 3000 rice accessions 
(Li et  al. 2014), Genome-wide association mapping 
(Huang et al. 2010; Zhao et al. 2011; Varshney et al. 2014; 
McCouch et al. 2016; Yano et al. 2016; Wang et al. 2016; 
Edzesi et  al. 2016; Biscarini et  al. 2016; Si et  al. 2016); 
Whole Genome SNP Array (Hu et al. 2013; Yu et al. 2014; 
Singh et al. 2015; Malik et al. 2016), Genomic-based gen-
otyping platforms and re-sequencing (Gao et  al. 2013; 
Han and Huang 2013; Chen et al. 2013; Barabaschi et al. 
2016; Guo et al. 2014; Xu and Bai 2015), Genome-guided 
RNA-seq (Loraine et  al. 2013; Szczesniak et  al. 2013; 
Biselli et  al. 2015; Peng et  al. 2016; Badoni et  al. 2016), 
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Map-based cloning approach (Salvi and Tuberosa 2005; 
Price 2006; Shomura et al. 2008; Zhang et al. 2013), Tran-
scriptome profiling (Mochida and Shinozaki 2010; Chan-
del et  al. 2011; Venu et  al. 2011), Genomics approaches 
(Mochida and Shinozaki 2010; Swamy and Kumar 2013; 
Varshney et  al. 2014; Spindel et  al. 2015; Okazaki and 
Saito 2016) Sequencing-By-Synthesis (SBS) (Venu et  al. 
2011; Sun et al. 2015), Next generation sequencing (NGS) 
technologies (Uchida et al. 2011; Miyao et al. 2012; James 
et  al. 2013; Guo et  al. 2014; Wang et  al. 2016; Matsu-
moto et al. 2016) and etc. could be strategically exploited 
to understand molecular mechanism and their relation 
between the genotypes and phenotypic traits.

In 2011, Zhao et  al. genotyped 413 diverse accessions 
of O. sativa with 44,100 SNP and phenotyped them for 
34 traits including grain quality parameters. Deep tran-
scriptional analysis by MPSS and SBS brought out several 
differentially expressed genes that affect milling yield and 
eating quality trait in rice (Venu et  al. 2011). The genes 
that expressed were identified to be involved in biosyn-
thesis of starch, aspartate amino acid metabolism, seed 
maturation and storage proteins.

Peng et  al. (2016) developed a stable variant line 
(YVB) having greatly improved grain quality traits using 
restriction-site associated DNA sequencing technology 
(RADseq) from a BC1F5 backcross population derived 

Table 3 Incorporation of various nutritional genes into rice cultivars through genetic engineering approaches

S. no Nutrient Gene Increases to fold expression  
(compare to wild type/ 
non-transformed)

References

1 Vit A Nppsy1, EucrtI 1.6-fold Ye et al. (2000)

2 Fe Osnas2 4.2-fold Johnson et al. (2011)

Gm ferritin, Af phytase, and Osnas1 4 to 6.3-fold Wirth et al. (2009)

Activation tagging of Osnas3 2.9-fold Lee et al. (2009)

3 Zn Activation tagging of Osnas2 2.9-fold Lee et al. (2011)

Osnas2 2.2-fold Johnson et al. (2011)

Gm ferritin, Af phytase, and Osnas1 1.6-fold Wirth et al. (2009)

4 Fe Ferritin gene 4.4-fold Fe Vasconcelos et al. (2003)

5 Fe and Zn Nicotianamine synthase (NAS) gene 2.0-fold Fe and 3.0-fold Zn Masuda et al. (2009)

6 Fe and Zn OsNAS1, OsNAS2, and OsNAS3 2.0-fold Fe and Zn Johnson et al. (2011)

7 Fe and Zn Barley genes 1.40-fold Fe and 1.35-fold Zn Masuda et al. (2008)

8 β-carotene content Daffodil phytoene synthase and Erwinia 
phytoene desaturase

2.3-fold Beyer et al. (2002), Paine et al. (2005)

9 Fe SoyferH1 3.0-fold Fe Goto et al. (1999)

10 Fe and Zn SoyFerH1 3.0-fold Fe and 1.1-fold Zn Qu et al. (2005)

11 Fe PyFerritin, rgMT 2.0-fold Lucca et al. (2002)

12 Fe and Zn OsIRO2 2.8-fold Fe and 1.4-fold Zn Ogo et al. (2011)

13 Fe and Zn OsYSL15 1.1-fold Fe and 1.0-fold Zn Lee et al. (2009)

14 Fe and Zn HvNAS1, HvNAS1, HvNAAT, and IDS3 1.2-fold Fe and 1.4-fold Zn Suzuki et al. (2008)

15 Fe and Zn OsNAS1 1.0-fold Fe and 1.3-fold Zn Zheng et al. (2010)

16 Fe and Zn SoyFerH1 2.5-fold Fe and 1.5-fold Zn Paul et al. (2014)

17 Fe and Zn OsNAS2 3.0-fold Fe and 2.7-fold Zn Lee et al. (2012)

18 Fe and Zn HvNAS1 2.5-fold Fe and 1.5-fold Zn Higuchi et al. (2001)

19 Fe OsYSL2 4.4-fold Fe Ishimaru et al. (2010)

20 Fe and Zn AtNAS1, Pvferritin, and Afphytase 6.3-fold Fe and 1.6-fold Zn Wirth et al. (2009)

21 Fe and Zn SoyFerH2, HvNAS1, and OsYSL2 3.4-fold Fe and 1.3-fold Zn Aung et al. (2013)

22 Fe and Zn SoyFerH2, HvNAS1, HvNAAT-A, -B and IDS3 
genome fragments

2.5-fold Fe and 1.4-fold Zn Masuda et al. (2013)

23 Zn, Cu, and Ni OsNAS3 2.1, 1.5, and 1.3-fold Lee et al. (2009)

24 Fe and Zn OsNAS3-D1 1.7-fold Fe in shoots, 1.6-fold in Fe roots 
and 2.0-fold Zn in shoots, 1.6-fold Zn 
in roots

Lee et al. (2009)

25 Fe Ferritine gene 2.0-fold Fe Khalekuzzaman et al. (2006)

26 Fe and Zn Osfer2 2.09-fold Fe and 1.37-fold zinc Soumitra et al. (2012)
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from an indica hybrid rice maintainer line V20B and 
YVB line. The YVB is a stable variant line derived from 
V20B by transferring the genomic DNA of O. minuta 
into V20B using SIM method (Zhao et  al. 2005). The 
deep re-sequencing of genomes of both the parents V20B 
and YVB showed read coverage of 89.04 and 93.13% and 
depth of sequencing 41.26-fold and 87.54-fold respec-
tively. A total of 322,656 homologous SNPs were iden-
tified between V20B and YVB. A total of 17 QTLs for 
rice grain quality were detected on chromosomes 3, 5, 6, 
8, and 9 through genetic map analysis with PV ranging 
from 5.67 to 35.07%. Invention of SIM technology ena-
bling introduction of exogenous DNA helped in creating 
a large number of new rice germplasm accessions and the 
variants were analyzed using molecular markers (Pena 
et al. 1987; Zhao et al. 2005).

Conclusion
The nutritional value enrichment of rice grain is very 
much essential to reduce malnutrition of developing 
countries in the post green revolution era. The current 
gain in knowledge on the nutritional value related genes 
and QTLs will help into develop desired genotypes for 
the humankind. The availability of gene based markers 
and advanced tool will assist breeders to accumulate spe-
cific alleles of genes known to play a role in nutritional 
grain quality traits in rice. In recent years, significant 
achievement has been made in genetic studies on grain 
protein and amino acid content, vitamins and minerals, 
glycemic index value, phenolic and flavinoid compounds, 

phytic acid, zinc and iron content along with QTLs linked 
to these traits but needs more research for processing 
and curative properties. Recent release of high protein 
and zinc rich rice varieties in India gives the positive note 
on progressive move in crop improvement program in 
rice. The, transgenic approach will further strengthen to 
enrich grain nutrition to desired level rapidly. The recent 
development of genomic technologies may augment for 
improving the nutritional quality in rice when it goes 
hand in hand with breeding program.
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Table 4 Utilization of micronutrient traits related genes in rice for the improvement

S. no Gene Functions References

1 OsZIP1 Vascular bundles, Epidermis and mesophyll celss Lee et al. (2010), Ishimaru et al. (2011)

2 OsZIP3 Vascular bundles, Epidermal cells in stem Ishimaru et al. (2011)

3 OsZIP4 Meristem, Vascular bundles, Epidermis and mesophyll celss Lee et al. (2010), Ishimaru et al. (2011)

4 OsNAS3 Vascular bundles, Epidermis Lee et al. (2010), Ishimaru et al. (2011)

5 OsYSL15 Fe transporters Masuda et al. (2013)

6 OsYSL2, OsNAAT1 and OsNAC High grain Zn content Chandel et al. (2011)

7 OsNAC, OsZIP8a, OsZIP8c and OsZIP4 grain zinc content Gande et al. (2014)

8 OsZIP8 Leaf blade, root, stem, anther, ovary and embryo Bashir et al. (2012)

9 OsNRAMP7 High grain Zn content Chandel et al. (2011)

10 OsNRAMP75 Mid grain filling stage

11 OsNAAT1 High grain zn content Chandel et al. (2011)

12 OsVIT1 High grain zn content Chandel et al. (2011)

13 OsAAP6 grain protein content and nutritional quality Peng et al. (2014)

14 Osfer2 Increases of iron content in grain Paul et al. (2012)

15 MOT1(molybdenum transporter 1) grain molybdenum concentration Norton et al. (2014)

16 COPT1 and COPT2 (copper transport) grain copper concentration Norton et al. (2014)

17 Lsi1(arsenic transport) inter and extra cellular transporters of arsenic Ma et al. (2008), Norton et al. (2014)
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