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Background
The main purpose of this paper is to investigate the convergence of Hermite interpolat-
ing processes based on the zeros of Chevyshev polynomials. Let I = [−1, 1] and Cp(I) be 
the space consisting of the p-times continuously differentiable real-valued function on I. 
For a given function f ∈ C1(I), define its norm by

where ‖f ‖1 denotes the Chevyshev norm on I. For a given nodal matrix 
M = {x(n)0 , . . . , x

(n)
n }, the Hermite interpolation operator H2n+1(f ; x) is defined 

to be the unique polynomial of degree at most 2n+ 1 satisfying the conditions: 
H2n+1

(

f ; x(n)i

)

= f
(

xni
)

, and H ′
2n+1

(

f ; x(n)i

)

= f ′
(

x
(n)
i

)

, i = 0, 1, 2, . . . , n. In what fol-
lows, all the functions, weight functions, and spaces of functions under consideration 
are defined in the interval I. Given a positive integer n, and a function f, we denote by 
En(f ) the error of best uniform approximation of f by algebraic polynomials of degree 
at most n. Pottinger (1976) proved that when the nodal matrix M consists of the Chevy-
shev nodes, the convergence

holds for f ∈ C2(I). There is an extensive literature on Hermite interpolation (see, 
for example Al-Khaled 2000; Agarwal and Wong 1991; Sababhah et  al. 2003, and the 

(1)�f �1 = max

{

max
|x|≤1

|f (x)|, max
|x|≤1

∣

∣f ′(x)
∣

∣

}

,

(2)lim
n→∞

∣

∣f −H2n+1(f ; .)
∣

∣

1
= 0

Abstract 

In this paper, we investigate the simultaneous approximation of a function f(x) and its 
derivative f ′(x) by Hermite interpolation operator H2n+1(f ; x) based on Chevyshev pol‑
ynomials. We also establish general theorem on extreme points for Hermite interpola‑
tion operator. Some results are considered to be an improvement over those obtained 
in Al‑Khaled and Khalil (Numer Funct Anal Optim 21(5–6): 579–588, 2000), while others 
agrees with Pottinger’s results (Pottinger in Z Agnew Math Mech 56: T310–T311, 1976).
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references therein) which has been studied from various points of view. Al-Khaled 
and Khalil (2000) studied the Hermite type interpolation, and gave some estimates for 
norms of certain interpolation operators on the space of continuously differentiable 
functions on I. The work in Varma and Prasad (1989) deals with mean convergence of 
H2n+1(f ; x) in the special case of interpolation based on zeros of the Chevyshev pol-
ynomials. It is proved that H2n+1(f ; x) converges in weighted Lp norms to f ∈ C1 at 
the rate of E2n+1(f ; x)/n. The Hermite–Fejer interpolating polynomial F2n+1(f ; x) is a 
polynomial of degree at most 2n+ 1 that agrees with f at the interpolating points, and 
whose first derivative vanishes there. It is closely related to Hermite interpolating poly-
nomial H2n+1(f ; x). Weighted mean convergence of F2n+1(f ; x) was studied in details in 
Nevai and Vertesi (1989), and Nevai and Vertesi (1976). In Nevai and Yuan (1994), the 
authors consider algebraic polynomials of degree at most 2n− 1 for Hermite interpola-
tion, more precisely, polynomials which interpolate a given function and its derivative at 
the n zeros of the so-called generalized Chevyshev polynomials. The convergence of the 
polynomials and their first derivatives is studied for weighted Lp-norms. Some applica-
tions to the Hermite interpolation problem on [−1, 1] are illustrated in Berriochoa et al. 
(2015). In Agarwal (1991), the authors give results for the weighted Lp-convergence of 
derivatives of extended Hermite interpolation on the zeros of Chevyshev polynomials 
plus additional points. Finally, results on convergence and norm estimation of Hermite 
and other type of interpolation processes in one or several variables are given in Agar-
wal and Wong (1993), Costabile and DellAccio (2007), and Mastroianni and Milovanovi 
(2008), and more recently in the framework of scattered data interpolation (Caira et al. 
2012; Costabile et al. 2012, 2013; DellAccio and Tommaso 2016). The aim of this paper 
is to prove results analogous to (2) using different node system and involving endpoints 
of the interval too. We shall prove that when the nodal matrix M consists of the mixed 
Chevyshev nodes, the formula (2) also holds for f ∈ C2[−1, 1]. In the last section, we 
establish a general theorem on extreme points for Hermite operator that agrees with a 
known result by Pottinger (1976).

Interpolation with Chevyshev nodes
Let un(x) = sin((2n+1)/2)θ

sin θ/2 , where x = cos θ, be the Chevyshev polynomials. We call the 
zeros of w(x) = (1− x2)un(x) : x(n)k = cos θ

(n)
k , θ

(n)
k = kπ/n, k = 0, 1, 2, . . ., the nodes 

of the Chevyshev polynomials (see, Rivlin 1974). It is clear that

and

Passing a direct calculations, we obtain that

(3)w′(x) = −2xun(x)+
(

1− x2
)

u′n(x),

(4)w′′(x) = −2un(x)− 4xu′n(x)+
(

1− x2
)

u′′n(x).

(5)w′(1) = −2(1+ 2n), w′(−1) = 2(−1)n

(6)w′(xk) = 2(−1)k+1
[

(1+ n)− (2+ n) sin2 θk/2
]

, (1 ≤ k ≤ n− 1)
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For the sake of convenience, hereafter we replace x(n)k , θ
(n)
k  by xk , θk. For f (x) ∈ C1(I), the 

Hermite interpolation operators based on the Chevyshev nodes are

where

Using (5)–(8) we can get

Now, by (10), (11), we have

In view of | sin nθ | ≤ n| sin θ |, it is clear that

Again by a known result: 
∑n−1

k=1 ℓ
2
k(x) ≤ 2, Rivlin (1974) we get that

(7)w′′(1) = −2(2n+ 1)

[

2

3
n(n+ 1)+ 1

]

, w′′(−1) = (−1)n+1[4n(n+ 1)+ 2]

(8)w′′(xk) = (−1)k+1

[

2+ n

(

(n+ 3)− 1

2 sin2 θk/2

)]

, (1 ≤ k ≤ n− 1).

(9)H2n+1(f ; x) =
n

∑

k=0

f (xk)vk(x)ℓ
2
k(x)+

n
∑

k=0

f ′(xk)(x − xk)ℓ
2
k(x),

(10)

ℓk(x) =ak
w(x)

(x − xk)
,

(

ak = 1

w′(xk)

)

vk(x) =1− w′′(xk)

w′(xk)
(x − xk), 0 ≤ k ≤ n.

(11)ak =















−1

2(2n+1)
, k = 0

(−1)k+1

2
�

(1+n)−(2+n) sin2 θk/2
� , 1 ≤ k ≤ n− 1

(−1)n

2
, k = n,

(12)vk(x) =























1−
�

2

3
n(n+ 1)+ 1

�

(x − 1), k = 0

1−
2+n

�

(n+3)− 1

2 sin2 θk /2

�

2
�

(n+1)−(n+2) sin2 θk/2
� (x − xk), 1 ≤ k ≤ n− 1

1+ (2n(n+ 1)+ 1)(x + 1), k = n,

(13)

ℓ0(x) =
(1+ x) sin

(

2n+1
2

)

θ

2(2n+ 1) sin θ/2
, ℓn(x) =

(−1)n+1(1− x) sin
(

2n+1
2

)

θ

2 sin θ/2

ℓk(x) =
(−1)k+1 sin θ cos θ/2 sin

(

2n+1
2

)

θ
(

(1+ n)− (2+ n) sin2 θk/2
)

(x − xk)
, (1 ≤ k ≤ n− 1), x = cos θ .

(14)|ℓ0(x)| ≤ 1, |ℓn(x)| ≤ 1, (−1 ≤ x ≤ 1).

(15)|ℓk(x)| ≤
√
2 (1 ≤ k ≤ n− 1).
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On the other hand, from (3), (6) and | sin nθ | ≤ n| sin θ |, we have

Preliminaries
Before proving our main results, the following elementary inequalities will be useful:

Lemma 1 The following estimates hold for ak = 1

2
(

(n+1)−(n+2) sin2 θk/2
) = 1

n+(n+2) cos θk

1. |ak | ≤ 1
n , 1 ≤ k ≤ [n/2], or 0 ≤ θk ≤ π/2

2.  |ak | ≤
∣

∣

∣

1
n−(n+2)n/k

∣

∣

∣, [n/2] + 1 ≤ k ≤ n− 1, or π/2 < θk < π .

Also we shall require.

Lemma 2 The following inequality hold true for all n ≥ 1.

The first result in this paper is

Theorem  1 For f (x) ∈ C1[−1, 1], the estimation |H2n+1(f ; x)| = O(n2) holds true as 
n → ∞.

Proof By (1), (9), it follows that

To estimate J1, by (10) and (11), it follows that

We shall proceed to estimate each of these terms: For J (1)1 , by (14), we have

(16)

∣

∣a0w
′(x)

∣

∣ ≤ 1, x = cos θ
∣

∣anw
′(x)

∣

∣ ≤ 2n+ 1,
∣

∣akw
′(x)

∣

∣ ≤ 4, (1 ≤ k ≤ n− 1)

n

10
cos2 θk/2 ≤

∣

∣

∣(n+ 1)− (n+ 2) sin2 θk/2
∣

∣

∣.

∣

∣H2n+1(f ; x)
∣

∣ ≤ �f �1

{

n
∑

k=0

∣

∣

∣vk(x)ℓ
2
k(x)

∣

∣

∣+
n

∑

k=0

∣

∣

∣(x − xk)ℓ
2
k(x)

∣

∣

∣

}

= �f �1{J1 + J2}

n
∑

k=0

∣

∣

∣vk(x)ℓ
2

k
(x)

∣

∣

∣ ≤
∣

∣

∣v0(x)ℓ
2

0(x)

∣

∣

∣+
[n/2]
∑

k=1

∣

∣

∣vk(x)ℓ
2

k
(x)

∣

∣

∣

+
n−1
∑

k=[n/2]+1

∣

∣

∣vk(x)ℓ
2

k
(x)

∣

∣

∣+
∣

∣

∣vn(x)ℓ
2

n(x)

∣

∣

∣

= J
(1)
1

+ J
(2)
1

+ J
(3)
1

+ J
(4)
1

.

J
(1)
1

=
∣

∣

∣
v0(x)ℓ

2
0(x)

∣

∣

∣
≤ ℓ20(x)+

(

2

3
n(n+ 1)+ 1

)

(1− x
2)
(1+ x2) sin2

(

2n+1

2

)

θ

4(2n+ 1)2 sin2 θ/2

≤ 1+ 1

12
(2n+ 1)2

(

4 sin2 θ/2 cos2 θ/2
)(

2 cos2 θ/2
)

sin2
(

2n+1

2

)

θ

(2n+ 1)2 sin2 θ/2
≤ 5

3
.
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For J (4)1 , we have

For J (2)1 , we have

where in the last inequality we used |w(x) ≤ 2. Now using the first part of Lemma 1, and 
sin2 θk/2 = sin2 θk/(4 cos

2 θk/2), we obtain

Using the Jordan inequality: sin θ ≥ 2θ/π , 0 ≤ θ ≤ π/2, we have

For J (3)1 , we have

J
(4)
1 =

∣

∣

∣
vn(x)ℓ

2
n(x)

∣

∣

∣
≤ ℓ2n(x)+ {2n(n+ 1)+ 1}(1+ x)

(1− x2) sin2(2n+ 1/2)θ

4 sin2 θ/2

≤ 1+
(

4n2 + 4n+ 2
)

= 4n2 + 4n+ 3.

J
(2)
1 =

[n/2]
∑

k=1

∣

∣

∣
vk(x)ℓ

2
k(x)

∣

∣

∣
≤

[n/2]
∑

k=1

∣

∣

∣
ℓ2k(x)

∣

∣

∣
+

√
2

[n/2]
∑

k=1

∣

∣

∣

∣

∣

∣

akw(x)
(

2+ n(n+ 3)− 1

2 sin2 θk/2

)

2
(

(n+ 1)− (n+ 2) sin2 θk/2
)

∣

∣

∣

∣

∣

∣

≤ 2+ 2
√
2

[n/2]
∑

k=1

∣

∣

∣

∣

∣

2(n+ 1)(n+ 2) sin2 θk/2− n

4
(

(n+ 1)− (n+ 2) sin2 θk/2
)2

sin2 θk/2

∣

∣

∣

∣

∣

,

J
(2)
1 = 2+ 2

√
2

[n/2]
∑

k=1

∣

∣

∣

∣

4 cos2 θk/2(2(n+ 1)(n+ 2)+ n)

n2 sin2 θk

∣

∣

∣

∣

≤ 2+ 2
√
2

[n/2]
∑

k=1

∣

∣

∣

∣

4(2(n+ 1)(n+ 2)+ n)

n2 sin2 θk

∣

∣

∣

∣

.

J
(2)
1 ≤2+ 2

√
2

[n/2]
∑

k=1

∣

∣

∣

∣

4(2(n+ 1)(n+ 2)+ n)n2

4n2k2

∣

∣

∣

∣

≤2+ 2
√
2
(

2n2 + 7n+ 4
)

[n/2]
∑

k=1

1

k2

≤2+ 2
√
2
(

2n2 + 7n+ 4
)

∞
∑

k=1

1

k2
≤ 2+ 2

√
2
(

2n2 + 7n+ 4
)π2

3
.

J
(3)
1 =

n−1
∑

[ n2 ]+1

∣

∣

∣vk(x)ℓ
2
k(x)

∣

∣

∣

≤
n−1
∑

k=[ n2 ]+1

ℓ2k(x)+
√
2

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

∣

∣

akw(x)
(

2+ n
(

(n+ 3)− 1

2 sin2 θk/2

))

2
(

(n+ 1)− (n+ 2) sin2 θk/2
)

∣

∣

∣

∣

∣

∣

≤2+ 2
√
2

[ n2 ]
∑

k=1

∣

∣

∣

∣

∣

2(n+ 1)(n+ 2) sin2 θk/2− n

4
(

(n+ 1)− (n+ 2) sin2 θk/2
)2

sin2 θk/2

∣

∣

∣

∣

∣

.
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Now by the second part of Lemma 1, and sin2 θk/2 = sin2 θk/
(

4 cos2 θk/2
)

 we obtain

Since sin θk = sin θk−n, we can apply Jordan inequality again, so that

But,

Therefore,

Combining the estimates of J (1)1 , J
(2)
1 , J

(3)
1  and J (4)1 , there is a constant K1 such that

To estimate J2, by (13), (15) and Lemma 2, we have

Because

and sin θn−k = sin θk, using the Jordan inequality: sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2, we 
obtain

J
(3)
1 ≤

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

∣

∣

∣

4(2(n+ 1)(n+ 2)+ n) cos2 θk/2

n2
(

k−(n+2)
k

)2
sin2 θk

∣

∣

∣

∣

∣

∣

∣

.

J
(3)
1 ≤ 2+ 2

√
2

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

∣

∣

∣

4(2(n+ 1)(n+ 2)+ n)n2

4n2
(

k−(n+2)
k

)2
k2

∣

∣

∣

∣

∣

∣

∣

≤ 2+ 2
√
2

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

2(n+ 1)(n+ 2)+ n

(k − (n+ 2))2

∣

∣

∣

∣

.

n−1
∑

k=[ n2 ]+1

1

(k − (n+ 2))2
=

−3
∑

k=[ n2 ]+1

1

k2
=

[ n2 ]+1
∑

k=3

1

k2
≤ π2

6
.

J
(3)
1 ≤ 2+ π2

√
2

3

(

2n2 + 7n+ 4
)

.

(17)J1 ≤ K1

(

11+ 22n+ 5n2
)

.

n−1
∑

k=1

∣

∣

∣
(x − xk)ℓ

2
k(x)

∣

∣

∣ =
n−1
∑

k=1

√
2

[

w(x)

2(n+ 1)− (n+ 2) sin2 θk/2

]

≤
n−1
∑

k=1

∣

∣

∣

∣

∣

10
√
2

n cos2 θk/2

∣

∣

∣

∣

∣

≤ 40
√
2

n−1
∑

k=1

1

n sin2 θk
.

n−1
∑

k=1

1

n sin2 θk
=

[ n2 ]
∑

k=1

1

sin2 θk
+

n−[ n2 ]−1
∑

k=1

1

sin2 θn−k

n−1
∑

k=1

1

n sin2 θk
≤

[ n2 ]
∑

k=1

n

4k2
+

n−[ n2 ]−1
∑

k=1

n

4k2
<

n

2

∞
∑

k=1

1

k2
= π2n

12
.
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Therefore,

Again, by (13), we have |(x − 1)ℓ2
0
(x)| + |(x + 1)ℓ2n(x)| ≤ |x − 1| + |x + 1| = 2,

(−1 < x < 1). Therefore,

From this and (17), we obtain the desired result.  �

Theorem  2 For f (x) ∈ C1[−1, 1], the estimation |H ′
2n+1(f ; x)| = O(n2) holds true as 

n → ∞.

Proof By (9) and d
dx

∑n
k=0(vk(x)ℓ

2
k(x)) = 0, we have

Since |f (x)− f (xk)| ≤ max|x|≤1 |f ′(x)||x − xk |, the above formula implies that

For I1, by (12), we know that

n−1
∑

k=1

∣

∣

∣(x − xk)ℓ
2
k(x)

∣

∣

∣ ≤
√
2π2

3
n.

(18)J2 ≤ 50n+ 2.

H ′
2n+1(f ; x) =

n
∑

k=0

(

f (xk)− f (x)
)

(

vk(x)ℓ
2
k(x)

)′
+

n
∑

k=0

f ′(xk)
(

(x − xk)ℓ
2
k(x)

)′

=
n

∑

k=0

(

f (xk)− f (x)
)

(

v′k(x)ℓ
2
k(x)+ 2vk(x)ℓk(x)ℓ

′
k(x)

)

+
n

∑

k=0

f ′(xk)
(

ℓ2k(x)+ 2(x − xk)ℓk(x)ℓ
′
k(x)

)

.

∣

∣H ′
2n+1(f ; x)

∣

∣ ≤max
|x|≤1

|f ′(x)|
{

n
∑

k=0

∣

∣

∣(x − xk)v
′
k(x)ℓ

2
k(x)

∣

∣

∣+
n

∑

k=0

ℓ2k(x)

+ 2

n
∑

k=0

∣

∣(x − xk)vk(x)ℓk(x)ℓ
′
k(x)

∣

∣+ 2

n
∑

k=0

∣

∣(x − xk)ℓk(x)ℓ
′
k(x)

∣

∣

}

=max
|x|≤1

|f ′(x)|{I1 + I2 + 2I3 + 2I4}.

I1 =
�

�

�

�

(x − 1)

�

2

3
n(n+ 1)+ 1

�

ℓ20(x)

�

�

�

�

+
�

�

�(x + 1)(2n(n+ 1)+ 1)ℓ2n(x)

�

�

�

+
[ n2 ]
�

k=1

�

�

�

�

�

�

(x − xk)





2+ n

�

(n+ 3)− 1

2 sin2 θk/2

�

2
�

(n+ 1)− (n+ 2) sin2 θk/2
�



ℓ2
k
(x)

�

�

�

�

�

�

+
n−1
�

k=[ n2 ]+1

�

�

�

�

�

�

(x − xk)





2+ n

�

(n+ 3)− 1

2 sin2 θk/2

�

2
�

(n+ 1)− (n+ 2) sin2 θk/2
�



ℓ2
k
(x)

�

�

�

�

�

�

= I
(1)
1

+ I
(2)
1

+ I
(3)
1

+ I
(4)
1

.
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Again by (13), we have

Similarly, we can show that I (2)1 ≤ 4n2 + 4n+ 2. For I (3)1 , with the aid of the first part of 
Lemma 1, we have

For I (4)1 , with the aid of the second part of Lemma 1, we have

Since sin θk = sin θk−n, we can apply Jordan inequality to obtain

Summarizing these estimates for I1, we get I1 ≤ O(n2), (n → ∞). For I2, using the fact 
that I2 =

∑n−1
k=1 ℓ

2
k(x) ≤ 2 and (2.12) we get I2 ≤ 4. For I3,

I
(1)
1 =

∣

∣

∣

∣

∣

∣

(1− x)

(

2

3
n(n+ 1)+ 1

)

+
(1+ x)2 sin2

(

2n+1
2

)

θ

4(2n+ 1)2 sin2 θ/2

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

3
(2n2 + 2n+ 1)

2

(2n+ 1)2

∣

∣

∣

∣

≤ 1

3
.

I
(3)
1 =

[ n2 ]
∑

k=1

∣

∣

∣

∣

∣

(x − xk)

(

2(n+ 1)(n+ 2) sin2 θk/2− n

4
(

(n+ 1)− (n+ 2) sin2 θk/2
)

sin2 θk/2

)

ℓ2k(x)

∣

∣

∣

∣

∣

≤
√
2

[ n2 ]
∑

k=1

∣

∣

∣

∣

∣

2(n+ 1)(n+ 2)+ n

4
(

(n+ 1)− (n+ 2) sin2 θk/2
)2

sin2 θk/2

∣

∣

∣

∣

∣

≤
√
2

[ n2 ]
∑

k=1

∣

∣

∣

∣

2(n+ 1)(n+ 2)+ n

n2 sin2 θk/2

∣

∣

∣

∣

≤
√
2
(

2n2 + 7n+ 4
)

∞
∑

k=1

1

k2

≤
√
2
(

2n2 + 7n+ 4
)π2

6
.

I
(4)
1 ≤

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

∣

2(n+ 1)(n+ 2)+ n

4
(

(n+ 1)− (n+ 2) sin2 θk
)2

sin2 θk/2

∣

∣

∣

∣

∣

≤
√
2

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

∣

∣

∣

4(2(n+ 1)(n+ 2)+ n) cos2 θk/2

n2 sin2 θk

(

k−(n+2)
k

)2

∣

∣

∣

∣

∣

∣

∣

.

I
(4)
1

≤
√
2

n−1
∑

k=[ n2 ]+1

∣

∣

∣

∣

2(n+ 1)(n+ 2)+ n

(k − (n+ 2))2

∣

∣

∣

∣

=
√
2(2(n+ 1)(n+ 2)+ n)

n−1
∑

k=[ n2 ]+1

1

(k − (n+ 2))2
=

√
2(2(n+ 1)(n+ 2)+ n)

[
n

2 ]+1
∑

k=3

1

k2

≤
√
2(2(n+ 1)(n+ 2)+ n)

π2

6
.
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Note that |a0w′(x)| ≤ 1, so that

and

For I (3)3 , we have,

Similar to the estimate in I (2)3 , we can show that I (4)3 = |vn(x)ℓ2n(x)| ≤ 4n2 + 4n+ 3. For 
I
(5)
3 : By using |w′(x)| ≤ 2(2n+ 1) and part one of Lemma 1, we obtain

I3 =
n

∑

k=0

∣

∣(x − xk)vk(x)ℓk(x)ℓ
′
k
(x)

∣

∣

≤
n

∑

k=0

∣

∣vk(x)ℓk(x)
{

akw
′(x)− ℓk(x)

}∣

∣

≤
∣

∣v0(x)ℓ0(x)a0w
′(x)

∣

∣+
∣

∣vn(x)ℓn(x)anw
′(x)

∣

∣+
∣

∣

∣
v0(x)ℓ

2

0(x)

∣

∣

∣
+

∣

∣

∣
vn(x)ℓ

2

n(x)

∣

∣

∣

+
[
n

2 ]
∑

k=1

∣

∣vk(x)ℓk(x)akw
′(x)

∣

∣+
n−1
∑

k=[ n2 ]+1

∣

∣vk(x)ℓk(x)akw
′(x)

∣

∣+
[
n

2 ]
∑

k=1

∣

∣

∣
ℓ2
k
(x)vk(x)

∣

∣

∣

+
n−1
∑

k=[ n2 ]+1

∣

∣

∣
ℓ2
k
(x)vk(x)

∣

∣

∣

= I
(1)
3

+ I
(2)
3

+ I
(3)
3

+ I
(4)
3

+ I
(5)
3

+ I
(6)
3

+ I
(7)
3

+ I
(8)
3

.

I
(1)
3

≤
∣

∣

∣

∣

ℓ0(x)

(

1−
(

2

3
n(n+ 1)+ 1

))

(x − 1)

∣

∣

∣

∣

≤|ℓ0(x)| +

∣

∣

∣

∣

∣

∣

(

2

3
n(n+ 1)+ 1

)

(

1− x2
)

sin

(

2n+1

2

)

θ

2(2n+ 1) sin θ/2

∣

∣

∣

∣

∣

∣

≤ 1+ 1

3
(n+ 1),

I
(2)
3 ≤

√
2(2n+ 1)+

∣

∣

∣

∣

∣

∣

(2n(n+ 1)+ 1)(x + 1)
(1− x2)(1+ x) sin2

(

2n+1
2

)

θ

2(1+ x) sin θ/2

∣

∣

∣

∣

∣

∣

≤ 2n2 + 7n+ 3.

I
(3)
3 ≤ ℓ20(x)+

(

2

3
n(n+ 1)+ 1

)

(1− x)
(1+ x)2 sin2

(

2n+1
2

)

θ

2(1+ x) sin θ/2
≤ 5

3
.

I
(5)
3 ≤ 4

[ n2 ]
�

k=1

2(2n+ 1)

�

2+ n(n+ 3)− n

sin2 θk/2

8((n+ 1)− (n+ 2) sin2 θk/2)
3
+ ℓk(x)

�

≤ 2(2n+ 1)






n





[ n2 ]
�

k=1

ℓ2k(x)





1/2

+
[ n2 ]
�

k=1

2(n+ 1)(n+ 2)+ n

n3 sin2 θk/2







≤ 2(2n+ 1)





√
2n+

[ n2 ]
�

k=1

n2(2(n+ 1)(n+ 2)+ n)

n3k2





≤
�

4
√
2+ 4π2/3

�

n2 +
�

2
√
2+ 4π2

�

n+ 5π2/3.
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For I (6)3 , we have

Since sin θk = sin θk−n, we can apply Jordan inequality to obtain

It is easy to show that I (7)3 ≤ 2+ π2
√
2

3 (2n2 + 7n+ 4) and I (8)3 ≤ 2+ K2(2n
2 + 7n+ 4) 

for some constant K2. Combining all the estimates for I (1)3  till I (8)3 , we observe that 
� I3 �= O(n2). For I4:

In view of 
∑n

k=0 ℓ
2
k(x) ≤ 4; and using Lemma 2, we have

Therefore,

Combining all the estimates of I1, I2, I3, I4, we complete the proof of Theorem 2.  �

I
(6)
3

≤ 2(2n+ 1)





n−1
�

k=[ n2 ]+1

�

2(n+ 1)(n+ 2) sin2 θk/2− n

8((n+ 1)− (n+ 2) sin2 θk/2)
3 sin2 θk/2

+ ℓk (x)

�





≤ 2(2n+ 1)






n





n−1
�

k=[ n2 ]+1

ℓk (x)





1/2

+
n−1
�

k=[ n2 ]+1

�

�

�

�

�

2(n+ 1)(n+ 2) sin2 θk/2− n

8
�

(n+ 1)− (n+ 2) sin2 θk/2
�3

sin2 θk/2

�

�

�

�

�







≤ 2(2n+ 1)





√
2n+

n−1
�

k=[ n2 ]+1

�

�

�

�

�

20(n+ 1)(n+ 2) sin2 θk/2− 10n

n cos2 θk/2 sin
2 θk/2(n− n(n+ 2)/k)2

�

�

�

�

�





≤ 2(2n+ 1)





√
2n+

n−1
�

k=[ n2 ]+1

40k2(2(n+ 1)(n+ 2) sin2 θk/2− n)

n3 sin2 θk (k − (n+ 2))2



.

I
(6)
3 ≤ 2(2n+1)





√
2n+

n−1
�

k=[ n2 ]+1

10
�

2n2 + 7n+ 3
�

π2n(k − (n+ 2))2



 ≤ 2(2n+1)

�√
2n+ 20n+ 70

6

�

.

I4 ≤
n

∑

n=0

ℓ2k(x)+
n

∑

k=0

|akw′(x)ℓk(x)|.

n
∑

k=0

|akw′(x)ℓk(x)| ≤ |a0w′(x)ℓ0(x)| +
n−1
∑

k=0

|akw′(x)ℓk(x)| + |anw′(x)ℓn(x)|

≤ 1+
√
2

n−1
∑

k=1

2(2n+ 1)

2((n+ 1)− (n+ 2) sin2 θk/2)
+ 2n+ 1

≤ 2+ 2n+ 2
√
2(2n+ 1)

n−1
∑

k=1

5

n cos2 θk/2

≤2+ 2n+ 40
√
2(2n+ 1)

(

nπ2

12

)

.

I4 ≤ 6+
(

2+ 10
√
2π2

3

)

n+
(

20
√
2π2

3

)

n2.
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The main convergence result
The norm estimates obtained in the previous section are used to prove convergence of 
the interpolation functions in the C2-norm, and that error estimates are given in terms 
of the modulus of continuity of the second derivative. Before we state our theorem, we 
define E1

n(f ) = infp∈Hn �f − p�1 where Pn is the space of all polynomials of degree ≤ n. 
(this definition is stated in Pottinger 1978, p. 272).

Theorem 3 If f (x) ∈ C2[−1, 1] and ω(f (2); δ) is the modulus of continuity of f (2), then

Hereafter M̄ denote different constants which are independent of n.

Proof Since Hermite interpolation is a projection operator, we have the standard 
inequality

where the term E2n+1(f ) = min{�f − p�1 | p ∈ Pn+1(f )} and Hk is the space of all poly-
nomials of degree at most k. Using Theorems 1 and 2, we have

here E1
n(f ) = infp∈Hn � f − p �1. By (1.1) and the formula E2

n(f ) = En−2(f
(2)) (see, Pot-

tinger 1978, p. 272),where En−2(f
(2)) is the best approximation to f (2), we have

In view of f ∈ C2[−1, 1], using Jackson’s theorem (Natanson 1965, p. 86), we have

which completes the proof of Theorem 3.  �

Results of some interpolation operators
Let f be a continuously differentiable function on I = [−1, 1]. Let Cp(I) be the space 
consisting of the p−times continuously differentiable real-valued functions on I. For 
f ∈ C(I), define �f �∞ = supx∈I |f (x)|. Set X = C(I)× C(I) with the usual operations

  – (f1, g1)+ (f2, g2) = (f1 + g1, f2 + g2), for all fi, gi ∈ C(I), i = 1, 2.

 – �(f , g) = (�f , �g), where � ∈ field, and f , g ∈ C(I)

Then X is a vector space. For (f , g) ∈ X, one can define different types of norms. We are 
interested in two norms:

�H2n+1 − f �1 ≤ M̄ω

(

f (2); 1/n
)

(n ≥ 2).

�H2n+1(f ; .)− f �1 ≤ (1+ �H2n+1�1)E2n+1(f )

|H2n+1(f ; x)− f (x)| ≤ M̄n2E1
2n+1(f ), |H ′

2n+1(f ; x)− f ′(x)| ≤ M̄n2E1
2n+1(f )

�H2n+1(f ; .)− f �1 ≤ Mn2E2n−1

(

f (2)
)

E2n−1

(

f (2)
)

≤ M

n2
ω

(

f (2); 1/n
)

, n ≥ 2

(19)�(f , g)�∞ = max
{

�f �∞, �g�∞
}

(20)�(f , g)�p =
(

�f �p∞ + �g�p∞
)1/p

, 1 ≤ p < ∞.
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It is known that X is a Banach space under such norms. Let P2n+1 denote the space of all 
polynomials of degree less than or equal to 2n+ 1. Now define the operator

where xi are some nodes on I, and vi(x), ℓi(x) are functions associated with some weight 
function w(x) corresponding to the nodes x′is. Let

and

where, w(x) =
∏n

i=0(xi − xj). The operator Hn is the same as the Hermite interpolation 
operator if g = f ′ in Eq. (21). Al-Khaled and Khalil (2000), also Pottinger (1976), they 
studied the Hermite type interpolation and gave some estimates for norms of certain 
interpolation operators on the space of continuously differentiable functions on I. In 
this section, we study the Hermite interpolation operator given by Eq. (21), and estab-
lish general theorem on extreme points of some interpolation operators. The following 
known result will be needed in this paper.

Lemma 3 Let {x1, x2, . . . , xk} ⊂ I be pairwise distinct real numbers and let 
y1, y2, . . . , yk ⊂ R be arbitrary real numbers. Then there exists f ∈ C(I) such that 
f (xi) = yi.

Proof The points (xi, yi) can be connected, in order with their indices, by a polygonal 
chain, which is the graph of a continuous function provided that x1 < x2 < · · · < xn.  �

Note that Hn defined as in Eq. (21) is a finite rank operator. Further:

where B(X) is the unit ball of X under the norm (19). Now (f (x0), f (x1), . . . , f (xn)) ∈ R
n+1 , 

where Rn+1 = {(α0,α1, . . . ,αn) : αi ∈ R}, and for z ∈ R
n+1 we have �z�∞ = sup0≤i≤n |zi|. 

Similarly for (g(x0), g(x1), . . . , g(xn)). By Lemma 3, we have

Lemma 4 {f (xi) : f ∈ C(I)} = R
n+1, where equality is isometry equality.

By Lemma 3, we obtain

where the supremum is taken over all (ai), (bi) in the unit ball of Rn+1. Hence we can 
look at Hn as an operator

(21)

Hn : C(I)× C(I) → P2n+1

Hn(f , g)(x) =
n

∑

i=0

vi(x)ℓ
2
i (x)f (xi)+

n
∑

i=0

(x − xi)ℓ
2
i (x)g(xi),

ℓi(x) =
∏n

i=0(x − xj)
∏n

j=0(xi − x)
,

vi(x) = 1− w′′(x)

w′(x)
(x − xi),

�Hn� = sup
{

�Hn(f , g)�∞, (f , g) ∈ B(X)
}

�Hn� = sup �
n

∑

i=0

vi(x)ℓ
2
i (x)ai +

n
∑

i=0

(x − xi)ℓ
2
i (x)bi�∞
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Let Y = R
n+1 × R

n+1, then Y is a finite dimensional normed space. Hence Hn attains its 
norm at some point in B(Y ). Again P2n+1 is finite dimensional, thus P2n+1 is reflexive, 
so P2n+1 = [(P2n+1)

∗]∗. Let G = P∗
2n+1. From the theory of tensor products of Banach 

spaces (see, Khalil 1990), we have

Taking E = Y , F = P∗
2n+1, we get

Thus, we can look to Hn as a linear functional in (Y ⊗̂G). But a bounded linear func-
tional on a Banach space, if it attains its norm, it is attains at some extreme point (see, 
for example Khalil 1990). Consequently:

Lemma 5 Hn attains its norm at some extreme point of Rn+1 × R
n+1.

Proof Follows from the fact that Ext(E⊗̂F) = Ext(E)⊗Ext(F). Now, if E and F are 
Banach spaces, and W = E × F , with the ∞−norm. Then (x, y) ∈ W  is extreme if and 
only if �x� = �y� = 1, and x ∈ Ext(E), y ∈ Ext(F). But extreme points of Rn+1 are those 
of the form (xi) = ∓1 for all i. Hence  �

Lemma 6 �Hn� = sup �
∑n

i=0 vi(x)ℓ
2
i (x)ai +

∑n
i=0(x − xi)ℓ

2
i (x)bi� where the supre-

mum is taken over all ai = ∓1 and bi = ∓1, for all i.

Also, since vi(x) ≥ 0 and ℓ2i (x) > 0, we get

Theorem 4 

Thus, to estimate (or calculate) ‖ Hn ‖ we have to work with (22). A simple conse-
quence of equation (22) is:

Theorem 5 �Hn� ≤ 5.

Proof Since 
∑n

i=0 vi(x)ℓ
2
i (x) = 1 and |x − xi|ℓ2i (x) ≤ 2ℓ2i (x), using the fact that 

∑n
i=0 ℓ

2
i (x) ≤ 2, the result follows, which agrees with Pottinger’s estimate (Pottinger 

1976).  �

Conclusions
The fundamental goal of this paper is to prove convergence of the interpolation func-
tions in the C2-norm, where the error estimates are given in terms of the modulus of 
continuity of the second derivative. Some results agrees with Pottinger’s estimate 

Hn : Rn+1 × R
n+1 → P2n+1.

(E⊗̂F)∗ = L(E, F∗).

Hn ∈ L(Y ,P2n+1) = (Y ⊗̂G)∗.

(22)�Hn� = sup

(

n
∑

i=0

vi(x)ℓ
2
i (x)+

n
∑

i=0

|x − xi|ℓ2i (x)
)

.
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(Pottinger 1976), and some are considered to be an improvement over those obtained in 
Al-Khaled and Khalil (2000). We also establish a general theorem on extreme points for 
Hermite operator.
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