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Background
Complex life phenomenon is the effect and regulatory mechanism of a large number 
of genes. To date, studies on complex biological systems have shifted from the local 
description of individual gene functions to quantitative analysis of complex gene regu-
latory networks (Plahte et  al. 2013; Ahmad et  al. 2012). Computer science and math-
ematical theory are combined to analyze the complex interactions among genes, which 
are simplified to a network to establish a theory model for the analysis of the structure, 
module and dynamic properties of a gene regulatory network (Smart et al. 2008; Patrik 
D’haeseleer SLaRS 1999; Raza and Parveen 2013).
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From 2000, when the first published in nature on the topological properties of bio-
logical networks based on complex network theory to now, there is a huge development 
and progress achieved in the gene network investigation (Stifanelli et al. 2013; Bowers 
et al. 2004; Araki et al. 2013; Raza and Parveen 2013). Complex networks including the 
construction and simulation of a gene regulatory network are widely used in biological 
networks. Evidence from past data collection and statistical analysis of large-scale gene 
network highlights the compatibility of the structural characteristics of gene regulatory 
networks with other complex network system. Focusing solely on the network topology 
of a complicated network system is no longer sufficient in the process of constructing 
artificial gene networks.

The artificial network simulates the real gene network though network characteristics 
such as the average path length, clustering coefficient, average degree, modularity, map 
density and et al. (Thurner 2009; Raza 2016). It has been developed a variety of mod-
els and algorithms to simulate the gene regulatory network (GRN) mainly including the 
Boolean (Lähdesmäki 2003; Faure et  al. 2006; Kim et  al. 2007; Stolovitzky et  al. 2008; 
Politano et  al. 2014; Comar et  al. 2015), Bayesian (Perrin et  al. 2003; Husmeier 2003; 
Friedman et al. 2000; Bansal et al. 2006; Chai et al. 2014; Lo et al. 2015), linear differ-
ential equation (Chen et al. 1999; de Jong and Ropers 2006; van Someren et al. 2000), 
relevance (Butte and Kohane 2000; Runcie et al. 2012; Parmigiani et al. 2003) and neural 
network model (Vohradsky 2001; Rui et al. 2007; Raza and Alam 2016). However, tradi-
tional models of gene regulatory networks often lack an effective method of solving the 
gene expression profiling data because of high time and spatial complexity.

An artificial neural network (ANN) usually dubbed as “neural network” (the term 
we adopted and defined in this paper), is a computational model originally intended to 
simulate the structural and/or function of biological neural networks (Marshall 1995). 
And it exhibited powerful modeling ability and yielded significant results in terms of 
network structure, training algorithm, approximation performance, and stability (Aus-
sem 1999; Mak et al. 1999). The use of recurrent neural network for constructing a gene 
regulatory network has achieved much better results than traditional models. However, 
the complexity of the recurrent neural network models makes it difficult and unsuita-
ble for analysis of biologically significant gene regulatory relationships based on high-
throughput microarray or sequencing data. Back propagation (BP) network as a kind of 
developed ANN is a multi-layered feed forward networks, in which the propagation is 
forward, error spreads reversely makes it faster and more powerful when used to model 
the high-throughput microarray or sequencing data than using the recurrent neural net-
work algorithms.

Recently, reverse network model was developed as a suitable analysis for high-
throughput data (such as microarray and high-throughput sequencing data) to mine 
regulatory mechanisms among the components of a system and has been extensively 
applied to examine various biological systems (Raza and Alam 2016; Werhli et al. 2006; 
Wang et al. 2010; Perkins et al. 2006). For increasing the accuracy of simulating GRN, 
we the first time mapped BP algorithm neural network based on sigmoid function into 
a common complex network with the microarray expression data. And thought the net-
work parameters, the differential genes were determined. Rest of the paper is organized 
as follows. In method part, BP network was described briefly and the genes networks 
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based on BP ANN was built. The result part is model application and comparison. Then 
discussions were presented and finally paper was concluded.

Methods
Reverse network model is built based on BP network combined with complex nonlin-
ear mapping and self-learning. An artificial network is simulated the real gene network 
according to the network characteristics: the average path length, average clustering 
coefficient, average degree, modularity, map’s density and et al.

Structure and algorithm of the BP neural network

The neural network is a computational model which originally was used in the simu-
lation of the structure of biological neural network and used for other computational 
simulations lately, for example, evaluating the landslide susceptibility and predicting 
the liver injury (Sukumar et al. 2012; Rampone and Valente 2011). The algorithm of BP 
network we adopt in this paper has already been detailed before (Rampone and Valente 
2011; Cao et al. 2016; Liu et al. 2016). The classical artificial neural network structure is 
a feed forward network (Fig. 1) with multiple layers consists of an input layer, an output 
layer and a hidden layer with different roles. Each neuron of a given layer is connected to 
all the neurons of the next one and each connecting line has an associated weight. There 
are three procedures to build the whole structure with three equations. First, neuron 
receives the weighted sum of the input patterns and/or of the other neuron outputs as 
an input.

(1)ok = f
(

∑

n
wknon − bk

)

Fig. 1 Structure chart of the feed forward neural network
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wkn: The weight from neuron n to neuron k; on: the output of neuron n or of the nth 
input: bk: the neuron threshold.

The transfer function in our experiment is chosen the sigmoid function:

The training procedure adopted BP algorithm. During the training the weights and 
biases of the network are iteratively adjusted to minimize the difference (error) when 
the output value isn’t equal to or less than the desired output, until the mean square 
error (MSE) of the system is minimized. The error Ep of a given the pth pattern is calcu-
lated as

tj
p: the pth desired output value; oj

p: the output of the corresponding neuron.
The rule of the error BP algorithm used in this study as following.

a. Initialization: small random values are taken for weights of each layer and thresh-
olds of each neuron, the max cycle times and the min whole error are set as m and ɛ 
respectively;

b. Vector Xp
=

[

xP0 , x
P
1 , . . . , x

P
n−1

]

 is the inputted data pattern, where P means the Pth 
pattern, and n is the number of neurons of initial layer, xiP is the input of the given 
hidden layer;

c. The actual output of hidden layer Op
j = f

(

∑n−1
j=0 wijxji − Bi

)

 is calculated and 
regarded as an input to the next layer, f is the activation function;

d. If the layer is the last layer (output layer), the actual error EP is calculated as 
EP =

∑

j

(

tPj − oPj

)2
, otherwise the error calculation as (c);

e. The whole error E is calculated as E = 1/2×
∑

P

EP;
f. Weights are adjusted from the last layer and going backwards (BP), 

where η (0 < η < 1) and α (0 < α < 1) are constants named learning rate and momen-
tum, respectively; η measures the influence degree of the error; α determines the 
influence of the weight change.

When neuron j is output layer neuron and hidden layer neuron, the error term for 
pattern p is δpj = f ′

(

o
p
j

)(

t
p
j − o

p
j

)

 and δpj = f ′
(

o
p
j

)

(
∑

k Wkj × δ
p
k

)

 respectively;
g. If the cycle time is m or the whole error is less than ɛ, train is over, otherwise go to 

(b).

The weight adjusting in the above algorithm is aimed at minimizing the whole error 
E, which is performed with the gradient descent via weight changing to make the error 
steepest down (Bishop 1996). The η term is a measure of the influence degree for updat-
ing weights in the formula, whereas the α term determines the influence of the past his-
tory of weight changes in the same formula. The single-layer neural network structure is 
a two-layer network structure with input and output layer. It facilitates more easily the 

(2)f (x) = 1/(1+ e−x)

(3)Ep = 1/2×
∑

j

(

tPj − oPj

)2

(4)Wji(new) = Wji(old)+ η × δ
p
j o

p
j + α× (Wji(new)−Wji(old))
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mapping from the trained BP network to the gene regulatory network, so we will use the 
single-layer BP network in this paper.

Establishment of genes networks based on BP ANN

The architecture diagram of the proposed model is shown in Fig.  2. The model takes 
microarray data as input, and will be trained as described in flowchart: finding out the 
relationship between any one gene and other n −  1 genes, making adjacency matrix, 
building gene regulatory network and getting the final gene network according to the 
weight ratio λ. The training is carried on in each group respectively.

In the network, the gene is simplified as a node, the regulation is simplified as the con-
nection between nodes (edge), and the gene regulatory network is composed of nodes 
set V and the set of edges between nodes in E: 

Given that the adjacency matrix can be used to describe the relationships between 
nodes in a network, the topology of the network is represented by adjacency matrix A: 

G = (V , E)

An×n =







0 a21 · · · a1n
a12 0 · · · a2n
· · · · · · · · · · · ·

an1 an1 · · · 0







Fig. 2 The flowchart of model architecture and the structure of the paper. The model takes microarray data 
as input, and will be trained as described in flowchart: finding out the relationship between any one gene 
and other n − 1 genes, making adjacency matrix, building gene regulatory network and getting the final 
gene network according to the weight ratio λ. The training is carried on in each group respectively. The net-
work is compared with the common relevant network by the value of parameters and the differential genes 
determined by the network are compared with that determined by fold_change
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where aij and aji in A represents the regulation between gene i and j. Assuming that the 
state changes of genes in a real regulatory network mainly depend on the effect of other 
genes, the self-regulation of a gene can be ignored. Then, the diagonal elements in A are 
0, i.e. aij = 0. Two kinds of regulatory relationships exist between genes, activation and 
inhibition which indicated by the negative or positive value of aij.

First, a single-layer BP neural network with (n − 1) − 1 structure is adopted to con-
struct the model (Fig.  3a). The n −  1 neurons in the input layer are used as the tem-
porary storage for the input data corresponding to the n − 1 genes. The neuron in the 
output layer is corresponding to the nth genes. Self-correlation is not considered in this 
model which means network weight wii doesn’t exist. So, the input samples for the net-
work are Xp = x

p
1 , · · · , x

p
n−1, and the target sample is Tp = x

p
1. The training samples are 

{Xp, Tp}, i.e., the input samples are the same as the target samples. The p training samples 
are inputted to the network to train the network until the error or the operating cycle 
reaches the set value. Therefore, a weight vector Wi can be obtained. This process is reit-
erated form x1 to xn, and then, a weight matrix W is obtained.

(5)X = F
(

WTX
)

Fig. 3 Structure chart of a linear neural network, b initial gene regulatory network and c final gene regula-
tory network



Page 7 of 15Liu et al. SpringerPlus  (2016) 5:1911 

 oi = f
(

w1ix1 + · · ·wijxj + · · ·wnixn
)

, j �= i. When the training error is very small 
[Eq.  (4), E < 10−2], oi ≈ xi can be considered; That is, any gene among the n genes can 
become a sigmoid function of the linear combination of the other n − 1 genes.

Second, the trained BP neural network is mapped into a gene regulatory network. 
The trained neural network is mapped into a directed gene regulatory network (Fig. 3b). 
A = W, weight wij

(

i �= j
)

 denotes the edge weight from neuron i to neuron j in the gene 
regulatory network, whereas wji

(

i �= j
)

 denotes the edge weight from neuron j to neuron 
i.

Third, a reasonable weight threshold is selected to choose the highly relevant genes 
and finally determine the gene regulatory network. The process of choosing threshold is 
very important. The threshold can be set according to the weight ratio � =

∣

∣wij

∣

∣

/
∑

i

∣

∣wij

∣

∣ 
or by other methods. In the regulatory network, the edges with weight ratio which is less 
than the threshold are removed to obtain the final gene regulatory network. The weight 
ratios corresponding to weight w1i and w21 are assumed to be less than the threshold 
and are deleted, and then the corresponding edges in the regulatory network are also 
removed (Fig. 3c).

Structural parameters of network

The network statistics used to describe the network structure are briefly explained in 
this section. G = (V, E) is assumed to be a complex network with node set V = {1,2,…N} 
and edge set E. The parameters are determined according to the network statistics as 
following:

1. Average path length (L)

The distance dij between nodes i and j in V is defined as the minimal number of 
edges connecting nodes i and j. The average path length of the network is defined as 
L =

∑

i>j dij/(0.5N(N− 1)).

2. Average clustering coefficient (C)

The clustering coefficient Ci of node I is the ratio of the number of actually existing edges 
to that of possible existing edges among the adjacent nodes of i. The clustering coeffi-
cient of the network C is the average of the clustering coefficients of all nodes.

3. Average degree (K)

The degree of a node is the number of other nodes connecting to this node. The average 
degree K of the network is the average of degrees of all nodes.











o1

o2

· · ·

on











= F

















0 w12 · · · w1n

w21 0 · · · w2n

· · · · · · · · · · · ·

wn1 wn2 · · · 0

















x1

x2

· · ·

xn




















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4. Modularity (Q)

Network G is supposed to contain k communities as G1, G2, …Gk. A symmetric matrix 
H = (hij)k × k is defined, where hij denotes the ratio of the number of edges between two 
communities Gi and Gj to the number of total edges of the network.

Modularity is defined as 

where αi denotes the sum of elements in the ith row of matrix H, which represents the 
ratio of the number of edges connecting to community Gi to the number of total edges.

5. Density of map (D)

Density of map is the ratio of the total path length to the area of the map.

Results
In this section, we applied the network model on the microarray data to determine the 
differentially expressed genes and to assess how the model works. We chose the sea 
urchin (Strongylocentrotus purpuratus) mRNA microarray data in the GPL13644 plat-
form from NCBI database in our analysis (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL13644).

Data sources

In this experiment, mRNA microarray data of Sea Urchin was used to investigate if the 
gene expression responses characterize molecular signatures of temperature stress, and 
as a result to know how stress responses alter gene expression. There were totally 191 
samples divided into three groups according to the different temperature: 64 samples 
at 12  °C (T12), 63 samples at 15  °C (T15), and 64 samples at 18  °C (T18), respectively 
(Runcie et al. 2012). We applied the microarray data, 336 transcripts totally, to the net-
work model to build gene networks and to analyze what genes responding to different 
growing temperature stress are significantly differential expressed.

Data processing

To remove the impact of the differences of the original gene records on the model, each 
gene record is normalized to [0, 1] using the following formula:

1. If xmin �= xmax, then x′ = x− xmin
xmax − xmin

;
2. If xmin = xmax, then x′ = xmin.

where, x represents the element of each sample. xmin and xmax represent the minimum 
and maximum of all the samples elements, respectively, and x′ represents the normal-
ized sample element.

To further reduce the noise from the different experimental conditions of the samples, 
the samples of each group were divided into two different blocks and the mean value of 

Q =
∑

i
Qi =

∑

i

(

hij − α2
ij

)

.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13644
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13644
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each sample was computed. So, a total of 32, 31, and 32 samples were observed in the 
T12, T15, and T18 groups.

Establishment of gene networks

The model of a single-layer feed forward neural network with the structure of 335-1 was 
shown in Fig.  3a. The 335 neurons in the input layer (temporary storage) correspond 
to the data of 335 genes, whereas the neuron in the output layer corresponds to the 
data of another gene of the 335 genes. Therefore, the input sample of the network is 
Xp = x

p
1 , . . . , x

p
335, the target sample is Tp = x

p
i , and the training sample is {Xp, Tp}. The 

transfer function of neurons is sigmoid function with learning rate 0.7 and the threshold 
−1.

First, the 32 normal samples of the T12 group are considered as the training set to train 
the network until the error or operating cycle reaches the set value (the initial values of 
all weights are set to be identical for comparability). Then trained BP neural network is 
mapped into a gene regulatory network. There were 10 different weight thresholds with 
weight ratio λ of 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95 selected to construct 
10 gene regulatory networks with different relevance, respectively (Fig. 4a). Finally, the 
parameters of the 10 gene regulatory networks are counted (according to the given five 
parameters we mentioned). The samples from the T15 and T18 are subjected to the 
same treatment (Table 1; Fig. 4b ,c).

Fig. 4 Structure chart of the networks with the weight ratio of 0.85 based on a T12 group, b T15 group and 
c T18 group
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Comparison of gene networks

The parameters of the three networks (10 each) constructed based on the samples from 
T12, T15, and T18 are compared. Table 1 presents the parameters of the gene regulatory 
networks from different time groups with weight ratio 0.85. All the parameters of the three 
networks we compared are different from each other. To further clarify the differences of 
three networks, the parameters of T12 and T18 networks are compared to T15 in different 
weight ratios as showed in Fig. 2. The horizontal axes represent the weight ratios; ten dif-
ferent weight ratios were increase distributed from 0.5 to 0.95 (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 
0.8, 0.85, 0.9, and 0.95) (Fig. 5a–e). The vertical axe represents the value of the parameters 
in different figures. From Fig. 5a–e are the average degree, average path length, modularity, 
average clustering coefficient and density of map, respectively. The light gray lines in the 
figures denote the differences of the network parameters between the training samples of 
T18 and T15, whereas the dark gray lines denote the parameter difference between T15 
and T12. Evident differences are observed in different weights and in the different parame-
ters. The smallest differences in the parameters of the average path lengths and modularity 
are nearly at the weight ratio of 0.75, while the smallest differences of other three param-
eters are at the weight ratio of 0.95. The differences indicate that difference group has its 
suitable weight ratio and also proved the effectiveness of the model.

To compare the new model with the common relevance network, the same samples 
were used to construct the relevance network based on Pearson’s coefficient. Table  2 
shows the parameters of relevance network with correlation coefficient 0.85. Compared 
with the parameters with weight ratio 0.85 based on BP algorithm (Table 1), parame-
ters of average clustering coefficient and density of the map based on the relevance net-
work are zero, and parameter of average degree is close to zero, much lower that from 
BP algorithm. There are 113, 130 and 180 genes in T12, T15 and T18 groups with zero 
degree in relevance network. Evidently, it’s not reasonable that more than one-third 
genes with zero degree and moreover that the zero degree of average clustering coef-
ficient and map’s density in all three groups from the common relevant network makes 
parameters no sense and consequently decrease the accuracy. So BP neural network 
tends to be more suitable for reconstructing the network than the relevance network 
based on Pearson’s coefficient.

Differentially expressed genes determination

Another distinguishing function of our model is differentially expressed genes determi-
nation, in which η was introduced and defined as degree difference ratio:

η =

∣

∣Ti − T ′
i

∣

∣+
∣

∣T0 − T ′
0

∣

∣

(Ti + T0)+
(

T ′
i + T ′

0

)

Table 1 The parameters of 3 networks constructed based on samples of T12, T15 and T18 
group, respectively

Samples Average path 
length (L)

Average clustering 
coefficient (C)

Average 
degree (K)

Modularity (Q) Density 
of map(D)

T12 3.74 0.082 6.875 0.273 0.021

T15 3.833 0.049 5.765 0.287 0.017

T18 3.256 0.109 7.426 0.264 0.022
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where Ti and T0 denote the input and output degrees of a gene in the network of one 
group; T ′

i  and T ′
0 denote the input and output degrees of a gene in the network of another 

group.
The gene regulatory networks are constructed based on the samples from the T12, 

T15, and T18 groups with weight ratio λ of 0.85. The degree difference ratio η of 
each gene is calculated using samples from T15 and T12 group. The genes are ranked 

Fig. 5 Difference of the different parameters and comparison of differential genes. Parameters of a average 
degree, b average Path, c modularity, d average clustering coefficient and e map’s density; f Venn diagram 
between differential genes determined by network and fold_change

Table 2 Parameters of relevance network with correlation coefficient 0.85

Samples Average path 
length (L)

Average clustering 
coefficient (C)

Average 
degree (K)

Modularity (Q) Density of map (D)

T12 1 0 0.006 0 0

T15 1.167 0 0.03 0.72 0

T18 1 0 0.024 0.75 0
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according to η in descending order. And the same process is performed using samples 
from T18 and T15 groups. In this experiment, 13 differentially expressed genes are found 
(Table  3). At the same time, we calculate the significantly differential expressed genes 
(DEGs) using the same data after normalization and outlier removal. The significantly 
differential genes are defined as |log2FC| ≥ 0.05 and p value <0.05 by z-test. There are 22 
DEGs in common between T12 and T18 compared with T15 (Two groups of differential 
genes were calculated between T12 and T15, and between T18 and T15, the same as 
network.). Comparison is carried on between DEGs calculated by BP algorithm and by 
fold change (Fig. 5f ). There were 7 DEGs (APOBEC,FoxG,FoxO,gataC,Gsk-3,OTX,SM30-
E) significantly overlapped indicating that the BP network model we build has capability 
of finding a large part of the significantly differential genes based on the high-through-
put sequencing data or microarray data determined by experimental method.

Discussion
To date, most gene regulatory networks are small networks for hundreds of genes. Tra-
ditional models of gene regulatory networks often lack an effective method of solving 
gene expression profiling data because of high time and space complexity. Based on pre-
dictive function construction and network topology, a new model for constructing gene 
regulatory networks using a BP neural network was tested in this paper. Combined with 
complex nonlinear mapping and self-learning, the BP neural network was mapped into a 
complex network. Since ANN can easily implement parallel processing, building a large-
scale gene regulatory network model with different layers and modules is possible. Con-
cretely, the internal characteristics and operation mechanism of the function modules of 
the network should be investigated. And the function and robustness under the outside 
interference of a sub-network should be discussed according to the classification of a 
regulatory network structure as well.

Mathematical theory has shown that multilayer feed forward BP networks can carry 
on any complex nonlinear functions, making it particularly suitable for solving problems 
with complex internal mechanism. BP networks have the ability of self-learning and 
generalization, but are also limited by slow learning speed, difficulty in determining the 

Table 3 List of differentially expressed genes

ID ORF SEQUENCE

1776 APOBEC ATAAGAACCAGTGGGGCCCACCCAGTTTCACCCTCCTCTCTCAT

5123 Otp ACCCGCATCGCAATCTCCTCCCGCATGAAGATATCAGGATAGT

2789 Gsk-3 GTCCTAGGAACCCCAAGCCGTGACCAGATCAAGGAGATGAAC

1078 Nk1 GCCATCATCACCCGACCCAACTGCAGCAGCTATTCATACAT

6021 gataC TAGTTCAGCACCTCATCCCGGTCCAACAAGTTCCTACACGTTACC

3972 FoxG TCATGATGGCTATTCGCTCGAGTCCAGAGAAAAGACTAACTCTAAATG

4071 G-cadherin GTGCGAGGAGACCAGCCTTTCCATCGAGTTCATCACAGAGACTC

5397 Blimp1-Krox ACCTATGTATGGCCTGTCACCAAACTACATCAGTACTGCAGGTGGT

3498 FoxO CGATCATGACCACACATCCAGAAATCGACATGCATGACAATGAAGTC

265 APOBEC ACAACAGCTCCTCCCCTCACCCCTACCAGTCAGGCTACCACC

2208 SM30-E TCAACCTGGTTTTGGACAACCCGGTGTTGGTCAACCCAATAGA

5073 otx GCACTTTCTGATCTTGCTAGTCGTGAAATCAAGATGGAATCACATTCT

1987 P16 AAGTGATGACGACGGCAGCAGCGATGATGACGGTAGCAGTGAT
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number of hidden layer nodes, and falling into local minima. In this study, we adopt a 
single-layer network structure, in which there is no hidden layer. Thus, selection of ini-
tial values of the network parameters is performed more frequently and the local min-
ima are more likely avoided. Without changing the network structure, the data is added 
to the training set directly. With the training of the neural networks, network weights 
and the mapped gene regulatory networks are changed.

Through statistical analysis and comparison of differential genes based on the mRNA 
microarray data from Sea Urchin growing in different temperatures, parameters of 
diverse average degrees, average path lengths, modularity, average clustering coeffi-
cients, and map densities were obtained. Differentially expressed Sea Urchin genes asso-
ciated with temperature were determined by calculating the difference in the degree of 
each gene from different networks. To check the effectiveness of BP network, compari-
son of the parameters with the common relevance network based on Pearson’s coeffi-
cient and significantly overlapped differential genes showed that the parameters of BP 
network were more efficient to build gene regulatory network. The remain un-over-
lapped genes reminded us that the gene regulatory network built based on BP network 
still need to improve maybe though improving some algorithm.

Besides, the convergence of a network is important that reducing, maintaining, or 
increasing the training error of the network within a specific controlled range allows the 
retention of newly added samples in the training set by the convergence of a network 
and should be ensured. If the error is large, the sample is regarded as a singular point 
and cannot be retained in the training set. Therefore, the dynamic property and stability 
of the network should be guaranteed.

Conclusion
In this paper, we developed a new model for constructing gene regulatory networks 
based on back propagation neural network. The application of the new model to the 
mRNA microarray data and the comparison with the common reverse network and dif-
ferential genes indicated that the new model is suitable to simulate gene regulatory net-
work and has capability of determining differentially expressed genes.
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