Zong and Hu SpringerPlus (2016)5:1733 : .
DOI 10.1186/540064-016-3419-3 ® SpringerPlus

RESEARCH Open Access
@ CrossMark

Infinite time interval backward
stochastic differential equations
with continuous coefficients

Zhaojun Zong' and Feng Hu ™'

hi?érnegsg%] wd 6eanccsm Abstract

"Zhacjun Zong and Feng In this paper, we study the existence theorem for [P (1 < p < 2) solutions to a class of
Shlﬁscﬁgfrk'bured equallyto 1-dimensional infinite time interval backward stochastic differential equations (BSDEs)
School of Statistics, under the conditions that the coefficients are continuous and have linear growths. We
Qufu Normal University, also obtain the existence of a minimal solution. Furthermore, we study the existence

fu 273165, Chi : . T
Quiu 273165, China and uniqueness theorem for [P (1 < p < 2) solutions of infinite time interval BSDEs

with non-uniformly Lipschitz coefficients. It should be pointed out that the assump-
tions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704—
718,2013).

Keywords: Backward stochastic, Differential equation (BSDE), Linear growth condition,
Comparison theorem

Mathematics Subject Classification: 60H10

Background

The theory of nonlinear backward stochastic differential equations (BSDEs for short)
was developed by Pardoux and Peng (1990), from which we know that there exists a
unique adapted and square integrable solution to a BSDE of the type

T T
ye =& +/ g(s,y5,z5)ds —/ z,dW, tel0,T], (1)
t t

provided the function g (also called the generator) is Lipschitz in both variables y and z,
and & and (g(¢,0,0))o<;<T are square integrable. The theory of BSDEs is very useful, due
to the connection of this subject with mathematical finance, stochastic control, partial
differential equation, stochastic game and stochastic geometry and mathematical eco-
nomics. Later, many researchers developed the theory of BSDEs and their applications in
a series of papers (for example, see Briand et al. (2003), Lepeltier and San Martin (1997),
Pardoux (1997, 1998), Karoui et al. (1997) and the references therein) under some other
assumptions on the coefficients but for a fixed terminal time 7" > 0. Let us mention the
contribution of Lepeltier and San Martin (1997). In Lepeltier and San Martin (1997), the
authors got the existence of a solution for a 1-dimensional BSDE where the coefficient
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was continuous, it had linear growth, and the terminal condition was square integrable.
They also obtained the existence of a minimal solution.

Chen and Wang (2000) obtained the existence and uniqueness theorem for L? solu-
tions of BSDEs with non-uniformly Lipschitz coefficients when T = oo, by the mar-
tingale representation theorem and fixed point theorem. In fact, such a problem has
been investigated by Peng (1990), Pardoux (1997), Darling and Pardoux (1997) and
other researchers under the assumption that terminal value & = 0 or E[e??T|£[P] < oo
for some constant p and random terminal time 7 (i.e., T is a stopping time). But in L”
(I < p < 2), there is no the martingale representation theorem. Zong (2013) studied L?
solutions to infinite time interval BSDEs with non-uniformly Lipschitz coefficients. She
gave a new a priori estimate. By using this a priori estimate, she got the existence and
uniqueness of L solutions to infinite time interval BSDEs.

In this paper, we study the existence theorem for L” (1 < p < 2) solutions to a class of
1-dimensional infinite time interval BSDEs under the conditions that the coefficients are
continuous and have linear growths. We also obtain the existence of a minimal solution.
Furthermore, we study the existence and uniqueness theorem for L” (1 < p < 2) solu-
tions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should
be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in
Zong (2013).

This paper is organized as follows. In “Preliminaries” section, we introduce some nota-
tions, assumptions and lemmas. In “Main results and proofs” section, we give our main

results including the proofs.

Preliminaries
In this section, we shall present some notations, assumptions and lemmas that are used
in this paper.

Notation. The Euclidean norm of a vector x € R* will be denoted by |x|, and for a
k x d matrix A, we define||A|| = v/ TrAA*, where A* is the transpose of A.

Let (2, F, P) be a completed probability space, (W;)¢>o be a d-dimensional standard
Brownian motion defined on this space and (F;);>¢ be the natural filtration generated by
Brownian motion (W;);>o, that is

Fii=0{Wss<tlVvN,

where N is the set of all P-null subsets. Furthermore, we define F := o (= F7).

We consider the following spaces:

IP(Q, F,P,RK) := {£ : £ is Rk-valued and F-measurable random variable such that
E[IIP] < oo,p = 1}

L(Q, F,P,R) :=J,., LF(Q, F,P,R");

SP(RKY:={V:V; is RKvalued and Fi-adapted  process such  that
E[sup;¢ [VelP] < 00,p > 1}

SR = Uy SPRY)

LP(RF*4Y :={V :V; is RF*dvalued and Fj;-adapted process such that
E[(f 1V51Pds) ] < o0, p = 1);

[,(RkXd) — Up>1 ﬁP(RkXd).

In the sequel, we assume that1 < p < 2.
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Consider the following infinite time interval BSDE
oo (o9)
Yt = E + / g(S, YS,ZS)CIS — / ZSdVVS (2)
t t

Let
g2:92x Ry x RF x RF*4 5 Rk

such that for any (y,z) € RK x R¥*, g(.,,2) is F;-progressively measurable. We make
the following assumptions:

(A.1) There exist two positive non-random functions «(¢) and S(t), such that for all

y1,)2 S Rkﬁ 21,22 € RkXd)

lg(t,y1,21) — g(t,y2,22)| < a(®)|y1 — y2| + B®)I|z1 — 2],

where a(¢) and B(¢) satisfy that [;° a(t)dt < oo, [, B2(H)dt < oc;
(A.ll) There exist two positive non-random functions «(¢) and S(¢), such that for all
y1,92 € RK, 21,25 € RK>4,

lg(t,y1,21) — g(t,2,20) | < a(®)|y1 — 32| + B®)llz1 — 2],

where «(¢) and B(¢) satisfy that [~ a()dt < oo, [~ B()dE < oo, [~ B2(t)dt < o5
(A2 E[(f5"12(2,0,0)/de)"] < oc;
(A.2)) There exists some constant T’ € [0, 00) such that

T p
El(/ |g(t,0,0)|dt> ] < 00,
0
oo 2
El(/ lg(t, 0,0)|dt) ] < 00;
T

(A.3) Linear growth: There exists a positive non-random function y (¢) such that
g@,t,9,2)| < y(OA + [yl + |lzl]), Y(@,t,9,2) € Q2 x Ry x R¥ x R4

where y (¢) satisfies that [~ y (£)dt < oo, [;° y2(¢)dt < o5;
(A.4) For fixed w and ¢, g(w, £, -, -) is continuous.

Lemma 1 (see Zong 2013) Under assumptions (A.ll) and (A.2/), ifE e [P(Q,F,P, Rb),
then BSDE (2) has a unique solution (Y,Z) € SP(RK) x LP(RF*%).

Main results and proofs

In this section, first we study the existence and uniqueness theorem for L? solutions
of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be
pointed out that the assumptions of this result is weaker than that of Lemma 1.

Theorem 2 Under assumptions (A.1) and (A.2), if € € [P (Q,F,P, RK), then BSDE (2)
has a unique solution (Y,Z) € SP(RF) x LP(R¥*).
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In order to prove Theorem 2, we give an a priori estimate.

Lemma 3 Suppose that (A.1) holds for g. Furthermore, each ¢; (i = 1, 2) satisfies that

(o]

ForanyT € [0,00], let & € LP (2, Fr, P, RY), (Y, Z%) € SP(RX) x LP(R**%) satisfy the fol-
lowing BSDEs:

Yi =&+ / [g(s, 1’;,2;) + ¢i(s)} ds — / Zidw,, i=1,2.
t t
Then there exists a positive constant C, depending only on p such that, for any t € [0, T'],
T 5
2
g + / ’ ds
T
o p
= Cp5{|§1 — &P+ (/ [p1(s) — ¢2(S)|d5> ]
0
» T
an
T

P
where ;1) = (frT()l(S)dS + frT ,32(S)ds> gt (frTa(s)ds)p.

1 2
v} - Y

S

E| sup
selr,T]

zi -7

1 2
v} -

S

+ Cplr,iE | sup
selr,T]

zi -7

p
2 2
ds) , 3)

Proof Applying Itd’s formula to | Y} —v? 2, we have

) T
+ /]
a2 [ (02 (o(s 307 (5 Y272) + 1)~ ) ) s

—2/T<Ys1 -2 (7} - Z2)aws). 4)

From the Lipschitz assumption (A.1) on g, we have

2(x) = v2 (g(s 70, 20) —e(s12.22)) )

2

Yyl —y? ds

zy -2}

2
<20(s)|Y} — Y2| +2B()|Y! - Y2|||Z) — 22
2 2 1 2
<206y - 2] +ope|vl - 2| + ||z - 22
2 1 22 1 1 2 2
52@@+ﬁ@0s@ Yl - Y +ﬂ4—4 . )

selr,T]

Page 4 of 17
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It follows that
1/W
2 /e

T T
<& — &> +2 / OZ(S)dS-l-/ B%(s)ds sup
T T selt,T]

w2 [ (=2 (22 )

Since 2 [T Y2 = Y2|Ig1(s) — p2(9)lds < sup Y2 — V2> + (& Ig1(s) — da(s)lds)®,
we have selv. Tl

[
T . )
s4(|sl—sz|2+ (/0 |¢1(s>—¢2<s>|ds> )
T T
+4<1+/ a(s)ds+/ ,32(s)ds> sup
T T se(r,T]
T
| (vt v (2 - z2)aw)

Using the following fact: if b, @; >0 and b <> ", a; then b¥ <7 d’ for any
p € (0,1), we have

T 2 157
([l
oo p
<¢ <|~‘§1 — &P + (/0 lp1(s) — ¢2(S)|d8> )

p
2

T T
+ep |1+ (/ a(s)ds +/ ,Bz(s)ds> sup
T T selr,T]

r
2

2
Zs1 —ZS2 ds

2
1 2
Y} —Y;

N

vyl —y? ()

[p1(s) — P2(s)|ds + 2

2

zh - 72| ds

2
1 2
Yl -,

N

+4 Q)

zi -7

1 2|?
v} - Y

s

T
+e / (Y! - Y2z - 22dw,| |, ®)
T

where ¢, is a positive constant depending only on p. By the Burkholder—Davis—Gundy

inequality, we get

p
T p)
opE / @j—ﬁ(d—zamm>
T
r P
T 2 2 4
S@E(/ ﬁ—ﬁ‘z—ﬁ @)
T
- p
177 T 2 4
<dyE| sup |V} —V? / ‘ zl - 72| ds (©))
se[t,T] T
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and thus

14 r
T 2 1 T 2 2
opE / <YSI—Y52,(ZS1—ZS2)dWS> <E (/ 'Zsl—zf ds>

T T

d2
+ 5 E| sup Ysl—Yfp]’ (10)
selr,T]

where d), is a positive constant depending only on p. From (8) and (10), we have
p

T 2 2

E / ’ ds

T

00 b

< C(E[|§1 — 5] +E[</ lp1(s) — ¢2(S)|ds> D
0

zi -7}

)2
+C(1+1em)E| sup |Y!—Y2[ |, (11)
selr,T]
where C is a positive constant depending only on p.
On the other hand, we prove
p
E| sup YS1 - Y52
selr,T]
’ o0 p
< CE[|51 —&l+ </ 61(6) - ¢>2(s)|ds) ]
0
V4
, p r 2 \?
+ClenE| sup |Y) — Y2 + / ‘ zh =72\l ds | |, (12)
se[r,T] T

where C' is a positive constant depending only on p. Obviously,
{f: (Z!—Z2)dW; T <t < T} is an F;-martingale. Thus, it follows that

Y —Y:=E l(sl — &)+ /tT (g(s, Ysl,zj) —g(s, Yf,ZZ) + $1(s) — ¢2(S))ds|]:t‘|'

(13)

Applying Doob’s inequality, we can deduce that

1 2P
E| sup |Y, =Y,
telr,T]

sup (E
telr,T]

p T »
< <1ﬁ> E (I& —§z|+/r o (57,2 ) — g (s, v2 22) +¢1(s)—¢2(s)‘ds> }

00 P T
61— £ + (/0 |¢1<s>—¢2(s>|ds> + (/

<E 61— &al + /T lo(s7,2)) —g(s7227) + 0r5) - ¢2<s>)ds|f¢} ),,]

< D,E

(s v 2) —g(sv222)

(14)

Page 6 of 17
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where D, is a positive constant depending only on p. From the Lipschitz assumption
(A.1) on g, we have

([ o) ez

T p
<E (/ (e = v2|+po)||z - 2! )ds> 1
T p »
<M, </ a(s)ds) E| sup YS1 — YS2
T selr,T]
T % T 2 %
+M, (/ ﬁZ(s)ds) E (/ |zt - 22 ds) , (15)

where M, is a positive constant depending only on p. From (14) and (15), we have

1 2|
v} - Y

S

E| sup
selr,T]

’ o0 p
= CE{I& — &+ </0 p1(s) — ¢2(S)|d8) ]

» T
s ( /]
T
where C'is a positive constant depending only on p.
Combining (11) with (16), we get
4

T )
i + (/ 2ds)
0o p
= CPE[El - 6P + (/o |p1(s) — ¢2(S)|d8> ]
- ?
2 2
i + (/ ’ dS) 5 (17)

where C, is a positive constant depending only on p. The proof of Lemma 3 is complete.
O

+ C/l(f,T]E sup
selr,T]

1 2
vl -

N

zi -7}

Y
ds) , (16)

1 2
v} -

s

E| sup ZS1 — 232

se[r,T]

1 2
v -y

s

z; -2}

+ Cpl(f,T]E sup
se[r,T]

Proof of Theorem 2 Let &":=(§ An)Vv (—n) and g,(t,y,2) :=g(t,9,2z) —g(t,0,0)
—t

~+h,(g(t,0,0)), where 4, (g(t,0,0)) := %. By Theorem 1.2 in Chen and Wang

(2000), BSDE

(o.¢] o
Yt”=$”+/ gn(s,YS",Zs”)ds—/ Z"dw,

t t

has a unique solution (Y”, Z") € S? (RKY x L£2(Rk*4), Since

Page 7 of 17
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00 e’} L [e’e) p
(/ a(s)ds +/ ﬂz(s)ds) ’ + </ oz(s)ds> < 00,
0 0 0

we can choose a strictly increasing sequence 0 =ty < t; < --- < tN < In4+1 = 00, such
that
lgpog < —, i=0,1,2...,N.
@itiv1]l = ZCI,

Applying Lemma 3, we have

tit1 5 %
g s yreovp ([ )z - zpas)
s€ltitit] t
!

00 P
+ cpEK / i ((5,0,0)) — Fn(g(s,0, 0)>|ds> ]
0

i1 Liy1

S CpEHYm-H’I _ YVI

1 li41 2 5
+-E| sup Y-y + </ ||z — z7| ds) : (18)
ti

seltitit]

Thus

tit1 2 '%
B s frrerowrp ([T iz - 22 Pe)
ti

s€(titiy1]
!

= 2GE||vi - vy
00 p
+ 2CpE {(/ |hn+m(g(sx 0,0)) — hn(g(s, 0, 0))|d5> ]
0

Liy1 tiv1

li+2 2 5
<2GE| sup |YT"-YIf+ (/ ||z — Z2|| ds>

s€[tiy1,tiv2] i1

oo p
+2CPEK/ |hn+m(g(s,0,0))—h,,(g(s,0,0))|ds> ] i=01,2...,N—1.
0

(19)
In particulary, we have
. P
2 2
E[sup |y — y P 4 (/ ||z — Z2|| ds) ]
S>IN IN
S chE[|§-m+n _ E}’l‘p:|
00 p
+ chzs[( / i m(8(5,0,0)) — ha(g(s, 0, 0>>|ds) } (20)
0

From (19) and (20), it follows that

Page 8 of 17
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00 L
E sup}Ys”er—Ys”|p+</ HZ;Hm_ZSnHZdS>2
>0 0

tiy1 2

N
SZE sup |Ysm+”—YS”|p+ (/
i=0

s€ltitiv1] ;
4

||z — Z:‘||2ds>
< (26, + (@GP + -+ GV HDE g7 — |
=) p
+ (N +1)2Cy + 2Cp)* + - + QC)NTHE l (/ B (g5, 0,0)) — (g (s, 0, 0))|ds) ]
0
< EE[I%.WH—;« _ %.n|17}
0 p
+CE l (/ 1hntm (g (s,0,0)) — hn(g(s, 0, 0))|d3) ] , (2D
0
where C = (N + 1)(2C, + (2Cp)2 + -+ (2CP)N+1). The right-hand side of Inequality
(21) clearly tends to 0, as n — oo, uniformly in m, so we have a Cauchy sequence and the

limit is a solution to BSDE (2). Let us consider (Y, Z) and (Y, Z) to be two solutions to
BSDE (2). In a similar manner to the proof of Inequality (21), we can obtain

b
/P o0 /112 2
E|sup|Ys — Y +(/ ‘ZS—ZS ds) <0.
5>0 0
Thus, we get immediately (Y, Z) = ', Z/). The proof of Theorem 2 is complete. O

Theorem 4 (Comparison Theorem) Assume that k = 1. We make the same assump-
tions on &, g and &, g as in Theorem 2. Let (Y, Z) be a solution of BSDE

_ _ S o oo
Yt=g+/ g(s Ys,Zs)ds—/ ZdW;.
t t

If we suppose that:

E ::5 _g S 0, Qz :Zg(tthxzt) _§<t1Ytrzt) S 01 a.s., (22)

then
Y,:=Y,—-Y, <0, as., Vt € [0,00).

Moreover, Yy = Yy a.s., ifand only if§ = Ea.s, g(t, Y, Zy) = g(t, Y, Zy) as.

Proof Suppose that W, = (W}, W2,..., WH)T,Vt e [0, 00), where W} is the ith compo-
nents of W;. Let us consider the following BSDEs

o oo
Yi=§ +/ g(s, Y5, Zs)ds —/ ZsdWs,
t t

_ _ 0 _ oo
Yt=g+/ g(s Ys,Zs)ds—/ ZdWs,
t t

Page 9 of 17
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where Z; = (z},7%,...,2H7, Z, = (Zi,f?, ) ..,Zf)T, vt €[0,00) and [ ZdW;
. . —_— <X)7: .
= [P ZIAW], [P ZdW, = YL, [ Z,dW]. Then, we have
t

V, =&+ /too (asf’s + <bs,Zs> +§s)ds - /tOo Z,dWw,, (23)

where

2 = =1 =2 d
Zy=Zs—Zs= (2} —Z,,2> - 7Z,,..., 28 = ZHT,

zO =z, 7z, zhT, i=1,2,...,d -1,
zO0 =z, =zl 722,...,zH7,
79 =7, =Z,72,..., 77,
_ g(s, Y5, Zy) —g(s,?s,Zs)

: 2 {Tro}’
. g(S, Ys: Zsi_1)> _g<5y Ys: Zs(l))
b;z n 1 P ) l_]~)2;- )d’
i i Zt—Z .#0
Zi -7, {z-Ziz0}

by = (b4, b2, ..., bHT,
which imply|a,| < a(s), |bs| < B(s).
Solving (23), we know that the unique solution of BSDEs (23) can be represented as

o0
Y;=E [gxoo + / ngsdslft], (24)
t

where

S 1 S
X5 = exp {/ (a, - 2|hr|2) dr —|—/ brdWr], s> t.
t t

From (24), we can obtain ¥; <0, as. and if€ =&as., g(t, Yy, Zy) = g(t, Y, Zy) as., then
Y:= Y;as..

Choosing t = 0 in (24) and from the strict monotonicity of E[-], we can obtain that if
Yo = Yy, then &€ = £ as., g(t, Yy, Zy) = g(t, Yz, Zy) a.s.. The proof of Theorem 4 is com-
plete. O

Now we prove the existence theorem for L? solutions of 1-dimensional infinite time
interval BDSDEs which generalizes Theorem 1 in Lepeltier and San Martin (1997).

Theorem 5 Assume that k = 1. Under assumptions (A.3) and (A.4), if§ € L (2, F,P,R),
then BSDE (2) has a solution (Y,Z) € SP(R) x LP(R?). Also, there is a minimal solution
(Y, Z) of BSDE (2), in the sense that for any other solution (Y, Z) of (2), we have Y <Y.

In order to prove Theorem 5, we need the following lemmas.

Lemma6 Supposethat (A.3) and (A.4) hold for g. Foreach(w,t,y,z) € 2 X Ry x R x R4,
define the sequence of functions

Page 10 of 17
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gn(w,t,y,2) := inf {g(a), t,yl,z/) + ny(t)(’y —y/‘ + ‘z — z/l) },
¥2)eQ

where Q is the set of all rational numbers in R, Then g, satisfies
(i) Linear growth:V(w,t,y,z) € @ X Ry X R X R \g(w,t,%,2)| < y () A + |y| + lz]);

(ii) Monotonicity in n:V(w,t,y,z) € @ X Ry X R X R4, (o, t,9,2)
(iii) Lipschitz condition: ¥(w,t,9,2), (0, t,y ,Z ) € 2 x Ry x R x RY,

):

gn(w, 8,9, 2) — gn(w, t,y’,z')) < ny(t)(‘y —y” + ‘z —z

(iv) Strong convergence: if (Yn,zn) — (,2), asn — oo, then

gn(w, t,yn,2y) = g(w,t,9,2), as n — o0.

The proof of Lemma 6 is very similar to that of Lemma 1 in Lepeltier and San Martin
(1997), so we omit it.
We also define the function

G, t,y,2) = y(t)(L+ |yl + |z]), V(w,t,5,2) € 2x Ry x R x R%.

For each given & € [P (2, F,P,R), by Theorem 2, there exist two pair of processes
(Y",Z")and (U, V), which are the solutions to the following BSDEs

00 0
Y/ =£+ / (s, Y, Z{)ds — / ZgdWs, (25)
t t

[e¢] o
u, =¢ +/ G(s, Us, V)ds — / Ved Wy, (26)
t t

respectively. From Theorem 4 and Lemma 6, we get
Vu>m, Y" <Y"<U, as. 27

Lemma 7 There exists a constant A > 0 independent of n, such that

00 p
E(sup|U4iP| <A, E (/ |Vt|2dt> <A,
t>0 0
o Nk
Elsup|Y/'f'| <A, E </ |z} dt) <A, VneN.
t>0 0

Proof Since (U, V) is the solution of BSDE (26), there exists a constant B > 0 independ-

ent of #, such that

E |[sup |Us P

t>0

% 5
< B, El(/ |Vt|2dt) ]53.
0

From Inequality (27), we can obtain that for eachn € N,
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e = 27 (1P + ).

Thus, there exists a constant C > 0 independent of #, such that

<C, VneN.
£>0

E [sup b

V4
At last, we prove the boundedness of E {( fOOO | Z{'th) 2}, Applying Itd’s formula to

2
|Yt” , we have

72 2
|Y3|” + | |Z}|"dt

o0 o0
=P+ [ vy zae—2 [ veziaw, 08)

By Lemma 6 (i), we know |g, (£, ¥,2)| < y (£)(1 + |y| + |z|). Thus, we have
2| gu (6, Y1, 2})| < 2y(t)(|Y[‘] + 77" + |Y;’Zt”})
< y(t)(l + \Y[’]z) +2y 0|y
+2.20|Y [ + %\zﬂz
=y +3(y +v*0) swp |7+ 5|2 @9

It follows that

o0 2 o0
/ |z "de <21g* + 2/ y()de
0 0

o0 o0 ) o0
+6</ y(t)dt+/ yz(t)dt> sup |Y7'| +4‘/ Y/'Z!dW,
0 0 0

t>0

(30)
Using the following fact: if b, a; >0 and b <) !, a; then b’ < Z?:M’f for any
p € (0,1), we have

0 2 0o 2
(/0 |Z;“|2dt> <¢ <|5|P + </0 y(t)dt) >
00 oo %
+ ¢ (/ y(@®)dt + / yz(t)dt>
0 0

P
sup|Yt"‘p—|—cp ’
£>0

’ (3D

o
/ Y Z! AW,
0

where c, is a positive constant depending only on p. By the Burkholder—Davis—Gundy

inequality, we get
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00 g 00 L \§
cpE ’ / Y/Z!'dW,| | <d,E ( / |Y/z}| dt>
0 0
p o 2 %
< d,E |sup |7} / |22 ds (32)
t>0 0
and thus
£ p
00 1 o 2 2
cpE ’/ Y/Z!'dW;| | < -E </ |Z}| dt>
0 2 0
d2
+-2F sup|Yt”]p1, (33)
2 |0

where d,, is a positive constant depending only on p. From (31) and (33), we have

o)

(SIS}

<G

EllEP] + ( /0 y(t)dt)
1+ </oo y()dt + /Oo yz(t)dt>
0 0

where C,, is a positive constant depending only on p. Thus, there exists a constant A > 0

14
2

+G

E [sup Y/ |p] , (34)
£>0

independent of #, such that

o 3
E|sup|UslP| <A, E </ |Vt|2dt> <A,
=0 0
P = 2 :
Elsup|Y/|’| <A, E </ |z} dt) <A, VneN.
=0 0
The proof of Lemma 7 is complete. O

Lemma8 {(Y",Z")}>2, converges in SP(R) x LP (RY).

Proof Since {Y"}72, is increasing and bounded in S?(R), we deduce from the domi-
nated convergence theorem that Y” converges in S (R). We shall denote by Y the limit of

2
, we get for any n,m € N,

Y". Applying It&'s formula to | Y} — Y}"

o0
-+ [z -z fa
o0
—9 /0 (Y2 = Y) (gt Y 20) — g6, Y7, 227) )t

) / (Y2 — ¥ (20— Z")dW,. (35)
0

Page 13 of 17
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Thus, we have
e 2
/ |z} — z"|"de
0 o0 o0
< 2sup |Y[’ — th| / |gn(t, Y[’,Zf) |dt +2sup |Y/ — th‘ / |gm (t, Y[”,Z[”)!dt
t>0 0 t>0 0

2 (36)

oo
| vz - zmaw,

Using the following fact: if b, a; >0 and b <) !, a; then b’ < Z;’zlaf for any
p € (0, 1), it follows that

EK/OOO |Zf—Ztm|2dt)g]

r o p
sup 17 = 77| ([ Jeu(e, 7. 20) e
t>0 0

< ¢E

+ cpE

p o0 5
supyy;_ytmp( / ‘gm(t,th,Z{”)]dt> ]
t>0 0

4

. .

ok ‘ |-y -zmaw) |, (37)
0

where c, is a positive constant depending only on p. From Schwarz’s inequality, we have
i o & ok 5
sup|Yt”—th{2</ ’gk(t, Yt,Zt)‘dt>
=0 0
1 1
2 0 p 2
< <E sup |17 — Y;"|”D (EK/ & (1Y, 21) ‘dt) D , k=mm.  (38)
=0 0

By Lemma 6 (i), we can obtain

([ o]
00 " k p
§EK/O y(t)(l—l—‘Yt‘—F’Ztht) ]
o0 p o0 P p
<d, </ y(t)dt> +d, (/ y(t)dt) E [sup )Ytk’ ]
0 0 t>0
+dp(/oo yz(t)dt>gEl(/oo ‘Zf‘zdty], k = n,m (39)
0 0

where d, is a positive constant depending only on p. Thus, by Lemma 7, there exists a

§D<E

E

constant D > 0 independent of #, m such that

1
2

sup | Y/ — Y}" ’ﬂ) , (40)
>0

r
2

E

P o0
SUP|Ytn_ th’2</ ’gn(t, Yt",Zt”)|dt>
>0 0
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1
00 4 2
E|sup Y/ — th|’§’ </ g (&, th’Ztm)|dt> 2] : D<E lsup vt - thd) -
20 0 £>0

By the Burkholder—Davis—Gundy inequality, we get

% 5
ot | [0 - v - zmyav] |
0
V4
o n m 2 n m 2 *
<eE |y =Yz} = Z"|"de
0
p
p © 2 4
< eyE sup‘Y[‘—Y{”P(/ |z} — z"| dt) ] (42)
£>0 0
and thus
00 % 1 0 2 1%
cpE / (Y =Y (Z! —Z/")dW;| | < SE (/ |z —z"| dt)
0 0
2
+ 2E|sup [Y — Y7, (43)
2 |0

where e, is a positive constant depending only on p. From (37), (40), (41) and (43), we
have

o , \%
E </ |z -z dt)
0
1
2
<G (E ) +E

where Cj, is a positive constant depending only on p. Thus, {Z"

, (44)

sup |Ytn _ }/tWI!p
t>0

sup ‘Yt” — th|p
£>0

]

»—1 is a Cauchy sequence

in L7 (R%), from which the result follows. The proof of Lemma 8 is complete.

Proof of Theorem 5 For all n € N, we have Y” < U, and {Y” }f,ozl converges in S”(R),
dt x dP-as.toY € SP(R).

On the other hand, since Z” converges in £? (Rd ) to Z, we can assume, choosing a sub-
sequence if needed, that Z" — Z, d¢ x dP-a.s., as n — oo and G := sup,, |[Z"|is dt x dP
integrable. Therefore, by Lemma 6 (i) and (iv), we get for almost all w,

@Y Z)) - gt, Yy, Zy), dt —ae, as n— oo,
e (6, Y1, Z7)| < v o (1+ |Y7'| +[27])

<y@® (1 + sup | Y| + Gt> € L1 ([0, 00); dt). (45)

Thus, for almost all @ and uniformly in ¢, it holds that

Page 150f 17
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o0 o0
/ (s Y], Z!ds — / 2(s,Y;, Z)ds, as n— oc.
t t

From the continuity properties of the stochastic integral, it follows that

o o
/ ZMAW, —/ Zd W,
t t

Choosing again, a subsequence, we can assume that the above convergence is P-a.s.

sup
>0

— 0 in probability, as n — oc.

Finally,

o
e = [ e 0.20) g 20

oo
+ / (20— z")aw), (46)
t
and taking limits on 7 and supremum over ¢, we get
oo
sup |/ — Y| < / lgn(s, Y, Z]') — g(s, Y5, Zo)|ds
>0 0
geel
+ sup / (z! — Z)dW;|, P —as. (47)
20 |/t

from which it follows that Y” converges uniformly in ¢ to Y (in particular, Y is a continu-
ous process). Note that {Y”}52 | is monotone; therefore, we actually have the uniform
convergence for the entire sequence and not just for a subsequence. Taking limits in
Equation (25), we deduce that (Y, Z) is a solution of BSDE (2).

Let (Y, Z) € SP(R) x LP(R?) be any solution of BSDE (2). From Theorem 4, we get
that Y” < Y, Vu € N and therefore Y < Y proving that Y is the minimal solution. The
proof of Theorem 5 is complete. O

Remark 9 By Theorem 5, we have: Under the assumption (A.3) and (A.4), for each
given & € L(Q,F,P,R), BSDE (2) has a solution (Y,Z) € S(R) x L(R?). Also, in
S(R) x L(R?), there is a minimal solution (Y, Z) of BSDE (2), in the sense that for any
other solution (Y, Z) of (2), we have Y < Y.

Conclusion

In this paper, we have solved two problems on infinite time interval BSDEs. Firstly, by
using an a priori estimate (Lemma 3), we studied the existence and uniqueness theorem
for L7 (1 < p < 2) solutions of infinite time interval BSDEs with non-uniformly Lipschitz
coefficients (Theorem 2). It should be pointed out that the assumptions of Theorem 2
is weaker than that of Theorem 3.1 in Zong (2013). Secondly, applying comparison theo-
rem for 1-dimensional infinite time interval BSDEs (Theorem 4), we studied the exist-
ence theorem for L” (1 < p < 2) solutions of 1-dimensional infinite time interval BSDEs
under the conditions that the coefficients are continuous and have linear growths (Theo-
rem 5). In Theorem 5, the existence of a minimal solution was also obtained.
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