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Introduction and preliminaries
Suppose that X = R is the set of all real numbers and that we consider the binary opera-
tion (R,−) where “−” is the usual subtraction. Then (x − y)− z �= x − (y− z) = x − y+ z 
in general, i.e., (R,−) is not a semigroup. Since (x − y)− z = x − (y− (−z)), if we define 
u := x, v := −z, then we have (x − y)− z = u− (y− v), which looks like that “−” satis-
fies a version of the associative law in R, i.e., there exists a map ϕ : R2 → R

2 such that 
ϕ(x, z) = (x,−z) = (u, v) and (x − y)− z = u− (y− v). Thus, we obtain a “twisted” 
associated law for (R,−), with the function ϕ defining the “nature” of the “twisted semi-
group” of a particular type. Obviously, a twisted semigroup need not be a semigroup. 
However, semigroups are twisted semigroups where the twist is ϕ(x, y) = (x, y). Twisted 
semigroups of several types will be the topic of investigation in the following. As alge-
braic objects they include many familiar examples of groupoids which are definitely not 
semigroups but whose study benefits from the approach taken in what follows.

In particular, if (X ,+, ·) is a field and if x ∗ y = �x + µy, �,µ ∈ X, defines a (linear) 
product, the resulting class of groupoids has a membership whose structure depends 
both on the nature of the formula as well as on properties of the field (X ,+, ·) itself. 

Abstract 

In this paper, we introduce the concept of several types of groupoids related to semi-
groups, viz., twisted semigroups for which twisted versions of the associative law hold. 
Thus, if (X , ∗) is a groupoid and if ϕ : X2 → X2 is a function ϕ(a, b) = (u, v), then (X , ∗) is 
a left-twisted semigroup with respect to ϕ if for all a, b, c ∈ X , a ∗ (b ∗ c) = (u ∗ v) ∗ c . 
Other types are right-twisted, middle-twisted and their duals, a dual left-twisted 
semigroup obeying the rule (a ∗ b) ∗ c = u ∗ (v ∗ c) for all a, b, c ∈ X . Besides a number 
of examples and a discussion of homomorphisms, a class of groupoids of interest is 
the class of groupoids defined over a field (X ,+, ·) via a formula x ∗ y = �x + µy, with 
�,µ ∈ X , fixed structure constants. Properties of these groupoids as twisted semi-
groups are discussed with several results of interest obtained, e.g., that in this setting 
simultaneous left-twistedness and right-twistedness of (X , ∗) implies the fact that (X , ∗) 
is a semigroup.
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Several conclusions are obtained. A main result is the conclusion that if (X , ∗) is a left-
twisted semigroup with respect to a map ϕ1 and if (X , ∗) is a right-twisted semigroup 
with respect to a map ϕ2, then (X , ∗) is already a semigroup. Homomorphisms of twisted 
semigroups of the various types are also discussed, and from a counterexample it fol-
lows that the class of dual left-twisted semigroups is not a variety, even though direct 
products and (groupoid) epimorphic images of any of the types of twisted semigroups 
are also of at least the same type. Although examples of certain twisted semigroups have 
long been studied in various settings, the notion of a groupoid (X , ∗) equipped with a 
twisting mapping ϕ : X2 → X2 to produce a twisted semigroup (X , ∗) of a certain type, 
appears to be new. For general references on semigroups we refer to Clifford et al. (1961), 
Howie (1995).

Kim and Neggers (2008) introduced the notion of Bin(X), the collection of all 
groupoids defined on a non-empty set X. Given arbitrary groupoids (X , ∗) and (X , •),  
we define a product (X ,�) := (X , ∗)�(X , •) where x�y := (x ∗ y)�(y ∗ x) for all 
x, y ∈ X. They showed that (Bin(X),�) is a semigroup and the left zero semigroup 
on X acts as an identity in (Bin(X),�). Let (R,+, ·) be a commutative ring with iden-
tity and let L(R) denote the collection of all groupoids (R, ∗) such that, for all x, y ∈ R, 
x ∗ y := ax + by+ c , where a, b, c (∈ R) are fixed constants. Such a groupoid (R, ∗) is said 
to be a linear groupoid. They showed that (L(R),�) is a semigroup with identity.

Some researchers studied on linear groupoids and quadratic groupoids in several alge-
bras. Neggers et al. (2001) introduced the notion of a Q-algebra, and showed that every 
quadratic Q-algebra (X , ∗, e), e ∈ X, has of the form x ∗ y = x − y+ e when X is a field 
with |X | ≥ 3. Moreover, Kim and So (2012) investigated some properties of β-algebras 
and they obtained linear β-algebras.

Twisted semigroups
Let (X , ∗) be a groupoid for which there exists a function ϕ : X2 → X2 such that, for all 
a, b, c ∈ X,

where ϕ(a, b) = (u, v), i.e., u = u(a, b), v = v(a, b) are functions of two variables. Then 
(X , ∗) is said to be a left-twisted semigroup with respect to the map ϕ. Such a map ϕ is 
called an associator function of the groupoid (X , ∗).

We may think of a dual equation of (1) as follows:

where ϕ(a, b) = (u, v), i.e., u = u(a, b), v = v(a, b) are functions of two variables. Then 
(X , ∗) is said to be a dual left-twisted semigroup with respect to the map ϕ. The function 
ϕ is not necessarily unique.

Suppose we replace the Eq. (1) by

where ϕ(b, c) = (u, v), i.e., u = u(b, c), v = v(b, c) are functions of two variables. Then 
(X , ∗) is said to be a right-twisted semigroup with respect to the map ϕ.

(1)a ∗ (b ∗ c) = (u ∗ v) ∗ c

(2)(a ∗ b) ∗ c = u ∗ (v ∗ c)

(3)(a ∗ b) ∗ c = a ∗ (u ∗ v)
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We may think of a dual equation of (3) as follows:

where ϕ(b, c) = (u, v), i.e., u = u(b, c), v = v(b, c) are functions of two variables. Then 
(X , ∗) is said to be a dual right-twisted semigroup with respect to the map ϕ.

If we replace the Eq. (1) by

where ϕ(a, c) = (u, v), i.e., u = u(a, c), v = v(a, c) are functions of two variables. Then 
(X , ∗) is said to be a middle-twisted semigroup with respect to the map ϕ.

We may think of a dual equation of (5) as follows:

where ϕ(a, c) = (u, v), i.e., u = u(a, c), v = v(a, c) are functions of two variables. Then 
(X , ∗) is said to be a dual middle-twisted semigroup with respect to the map ϕ.

If ϕ : X2 → X2 is the identity map ϕ(a, b) = (a, b), then the Eqs. (1–6) reduce to the 
associative law and thus:

Proposition 1  If (X , ∗) is a semigroup, then it is a (dual) left(right, middle)-twisted 
semigroup.

Example 1  Consider (R,−), the real numbers R with the subtraction operation “−”. 
Since a− (b− c) �= (a− b)− c, the groupoid (R,−) is not a semigroup. Consider 
the expression ((a+ 1)− b)− (1− c) = (a− b)+ c = a− (b− c). Thus ϕ(a, c) =

(a+ 1, 1− c) produces (R,−) as a middle-twisted semigroup which is not a semigroup.

Example 2  Consider X := 2A where A �= ∅. If we define a ∗ b := a− b for any a, b ∈ X , 
then (a ∗ b) ∗ c �= a ∗ (b ∗ c). On the other hand, if we let ϕ(b, c) := (b ∪ c, ∅), then 
(a ∗ b) ∗ c = (a− b)− c = a− (b ∪ c), and a ∗ (u ∗ v) = a− (b ∪ c − ∅) = a− (b ∪ c), 
proving that (X , ∗) is a right-twisted semigroup w.r.t. ϕ.

Note that Example 2 is a typical example of a BCK-algebra which is also a right-twisted 
semigroup.

Example 3  In Example  1 if we define ψ(b, c) := (b+ c, 0), then a− ((b+ c)− 0) =

(a− b)− c and hence it is a right-twisted semigroup with respect to ψ.

Example 4  Let (R,+, ·) be a real field. Define a binary operation “∗” on R by

Given elements a, b, c ∈ R, define a map ϕ : R2 → R
2 by ϕ(a, b) := (u, v) where

(4)a ∗ (b ∗ c) = (a ∗ u) ∗ v

(5)(a ∗ b) ∗ c = u ∗ (b ∗ v)

(6)a ∗ (b ∗ c) = (u ∗ b) ∗ v

x ∗ y := x(x − y), ∀x, y ∈ R.

(u, v) :=





(0, v) if a = b,
(0, v) if a = 0, b �= 0,

( v2

1−v2
, v) if a �= 0, a �= b
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with v3 = a(a− b)(v2 − 1). Then it is easy to show that (a ∗ b) ∗ c = u ∗ (v ∗ c). This 
shows that (R, ∗) is a dual left-twisted semigroup with respect to ϕ. Moreover, it can be 
shown that the function ϕ is the unique function for making (R, ∗) a dual left-twisted 
semigroup.

Proposition 2  There is no map ϕ : R2 → R
2 such that (R,−) is a left-twisted semigroup.

Proof  If we assume that there is a map ϕ : R2 → R
2 such that (R,−) is a left-twisted 

semigroup,

for the map ϕ(a, b) = (u, v). If we let c := 0, then a− b = u− v. Hence, by (7) we obtain 
c = −c, for all c ∈ R, a contradiction. � �

Note that Proposition 2 shows that (R,−) is a groupoid which can not be a left-twisted 
semigroup. Moreover, Proposition  2 shows that not every right(middle)-twisted semi-
group is a left-twisted semigroup. Examples 1 and 3 together show that a groupoid can 
fail to be a semigroup and yet be a middle-twisted as well as a right-twisted semigroup.

Theorem  1  If a left-twisted semigroup has a right identity element, then it is a 
semigroup.

Proof  Let c := e be the right identity element. Then by (1) we have 
a ∗ b = a ∗ (b ∗ e) = (u ∗ v) ∗ e = u ∗ v and thus (u ∗ v) ∗ c = (a ∗ b) ∗ c, so that 
a ∗ (b ∗ c) = (a ∗ b) ∗ c, i.e., the groupoid is a semigroup as claimed. � �

Dually, if a right-twisted semigroup has a left identity element, then it is a semigroup.
Notice that (R,−) has a right identity element 0, but it is not a semigroup. By Theo-

rem 1 it cannot be left-twisted, as shown in Proposition 2.

Proposition 3  The groupoid (R,−) is a middle-twisted semigroup with respect to ϕ if 
and only if u(a, c)+ v(a, c) = a− c for any a, c ∈ R.

Proof  Given a, b, c ∈ R, (a− b)− c = u− (b− v), where u = u(a, b), v = v(a, b), 
means that a− b− c = u− b+ v, and hence u(a, c)+ v(a, c) = a− c. The converse is 
straightforward.�  �

If we let u := a− α, v := −c + α where α = α(a, c), then (R,−) is a middle-twisted 
semigroup.

Twisted semigroups in a field
Let X = (X ,+, ·) be a field and �,µ ∈ X (not all zero). If we define a binary operation “∗”  
on X as follows:

(7)(a− b)+ c = (u− v)− c

x ∗ y := �x + µy
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for any x, y ∈ X, we call such a groupoid (X , ∗) a linear groupoid over a field X. We define 
its associator function ϕ(a, b) := (u, v), i.e., u = u(a, b), v = v(a, b) are functions of two 
variables a, b ∈ X.

Example 5  Let R = (R,+, ·) be a real field and � �= 0,µ ∈ R. We define a binary 
operation “∗” on R as follows: x ∗ y := �x + µy for any x, y ∈ R. If we define a map 
ϕ(a, b) := (a

�
, b) and µ2 = µ, then (R, ∗) is a left-twisted semigroup with respect to ϕ.

Proposition 4  Let (X , ∗) be a linear groupoid over a field X and its associator function 
defined by ϕ(a, b) := (�a, b). If (X , ∗) is a dual left-twisted semigroup with respect to ϕ, 
then it has the form x ∗ y = �x or x ∗ y = �x + y.

Proof  Since (X , ∗) is a dual left-twisted semigroup with respect to ϕ, 
(a ∗ b) ∗ c = �

2a+ �µb+ µc and u ∗ (v ∗ c) = �
2a+ µ�b+ µ2c for any a, b, c ∈ X. It 

follows that µ = µ2, proving the proposition. � �

In Proposition  4, if we let � := 2 and µ := 1, and we define ϕ(a, b) := (2a, b) , 
then (X , ∗) is certainly a dual left-twisted semigroup with respect to ϕ, but it is 
not a left-twisted semigroup with respect to ϕ, since a ∗ (b ∗ c) = 2a+ 2b+ c and 
(u ∗ v) ∗ c = 8a+ 2b+ c.

Example 6  Let (R,+, ·) be a real field. Define a binary operation “∗” on R as fol-
lows: x ∗ y := x + 2y, ∀x, y ∈ R. If we define a map ϕ(b, c) := (b, c

2
),∀a, b ∈ R, then 

(R, ∗) is a right-twisted semigroup with respect to ϕ, but not a (dual) left-twisted 
semigroup with respect to ψ(a, b) := (a, b

2
), since (a ∗ b) ∗ c = a+ 2b+ 2c, while 

u ∗ (v ∗ c) = a+ b+ 4c and (u ∗ v) ∗ c = a+ b+ 2c.

Note that Examples 5 and 6 show that twisted-semigroups may have role to play in the 
theory of linear groupoids in various algebraic structures (see Kim and Neggers 2008; 
Kim and So 2012; Neggers et al. 2001).

Proposition 5  Let (X , ∗) be a linear groupoid over a field (X ,+, ·), i.e., x ∗ y := �x + µy 
for all x, y ∈ X where �,µ are not all zero in X. If (X , ∗) is a right-twisted semigroup with 
respect to ϕ(b, c) = (u, v), then it has one of the forms: (i) x ∗ y = x; (ii) x ∗ y = µy, µ �= 0 
and u = b, v = c

µ
; (iii) x ∗ y = x + µy, µ �= 0 and u = b, v = c

µ
.

Proof  Since (X , ∗) is a linear groupoid over X, there exist �,µ ∈ X (not all zero) such that 
x ∗ y = �x + µy for all x, y ∈ X. Let (X , ∗) be a right-twisted semigroup with respect to 
ϕ(b, c) = (u, v). Then (a ∗ b) ∗ c = (�a+ µb) ∗ c = �(�a+ µb)+ µc = �

2a+ �µb+ µc 
and a ∗ (u ∗ v) = a ∗ (�u+ µv) = �a+ µ(�u+ µv) = �a+ �µu+ µ2v. It follows that

Assume that µ �= 0. If we let u := b, v := c
µ

, then

(8)�
2a+ �µb+ µc = �a+ �µu+ µ2v

(9)�
2a+ µc = �a+ µc
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and hence �2a = �a, i.e., � = 0 or � = 1. If � = 0, then x ∗ y = µy. If � �= 0, then 
x ∗ y = x + µy. Assume µ = 0. Then x ∗ y = �x and hence

It follows that � = 0 or � = 1, which shows that x ∗ y = x, since (X , ∗) is a linear groupoid. 
� �

Proposition 6  Let (X , ∗) be a linear groupoid over a field X. If we define a map 
ϕ(b, c) := (b,µc),∀b, c ∈ X, then (X , ∗) is a dual right-twisted semigroup with respect to 
ϕ when �2 = �.

Proof  Straightforward. � �

Theorem 2  Let (X , ∗) be a linear groupoid over a field X, i.e., x ∗ y := �x + µy for all 
x, y ∈ X and let �µ �= 0. If (X , ∗) is both a left-twisted semigroup with respect to a map 
ϕ(a, b) = (a

�
, b) and a right-twisted semigroup with respect to a map ψ(b, c) = (b, c

µ
), 

then (X , ∗) is an additive group of the field X.

Proof  Since it is a left-twisted semigroup, given a, b, c ∈ X, a ∗ (b ∗ c) = �a+ �µb+ µ2c 
and (u ∗ v) ∗ c = �

2u+ �µv + µc for some u = u(a, b), v = v(a, b). Hence we have

Similarly, since it is a right-twisted semigroup, we have

for some u′ = u′(a, b), v′ = v′(a, b). If we put u := a
�
, v := b in (11), then µ2c = µc. It 

follows that µ = 1. If we put u′ := b, v′ := c
µ

 in (12), then �2a = �a, proving that � = 1 . 
Hence x ∗ y = x + y, i.e., (X , ∗) is an additive group of the field X. � �

Proposition 7  Let (X , ∗) be a linear groupoid over a field X, i.e., x ∗ y = �x + µy for all 
x, y ∈ X where �,µ are not all zero. If we define a map ϕ(a, c) := (�a, 1

µ
c),∀a, c ∈ X where 

µ �= 0, then (X , ∗) is a middle-twisted semigroup with respect to ϕ.

Proof  Straightforward. � �

Example 7  Let (R,+, ·) be a real field. Define a binary operation “∗” on R by 
x ∗ y := x − y, ∀x, y ∈ R and define a map ϕ(a, c) := (a,−c),∀a, c ∈ R. Then (R, ∗) is a 
dual middle-twisted semigroup with respect to ϕ.

Twisted semigroups on groups

Proposition 8  Let (G, ·) be a group and n ∈ N (fixed). Define a binary operation “∗” on 
G by a ∗ b := anb, ∀a, b ∈ G. If we define a map ϕ(a, b) := (anb, e),∀a, b ∈ G where e is 
the identity of G, then (G, ∗) is a dual left-twisted semigroup with respect to ϕ.

(10)�a = a ∗ (u ∗ v) = (a ∗ b) ∗ c = �
2a

(11)�a+ �µb+ µ2c = �
2u+ �µv + µc

(12)�
2a+ �µb+ µc = �a+ �µu′ + µ2v′
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Proof  Given a, b, c ∈ G, we have (a ∗ b) ∗ c = (anb)nc. Since ϕ(a, b) := (anb, e), if we let 
u := anb, v := e, then u ∗ (v ∗ c) = un(vnc) = (anb)n(enc) = (anb)nc, proving the propo-
sition. � �

Let n be a natural number. A group (G, ·) is said to have the nth power property if there 
are a, b ∈ G such that anbn = xn has no solution x in G. For example, consider the dihe-
dral group D4 = {r0, r1, r2, r3, h, v, d, t} in (Hungerford 1990,  p.158). It is easy to show 
that r33 · v

3 = d, but there is no element x ∈ D4 such that x3 = d.

Proposition 9  Let (G, ·) be a group having the nth power property. Define a binary oper-
ation “∗” on G by a ∗ b := anb, ∀a, b ∈ G. Then (G, ∗) is not a left-twisted semigroup with 
respect to any mapping ϕ.

Proof  Assume that (G, ∗) is a left-twisted semigroup with respect to some mapping ϕ. 
Then for any a, b, c ∈ G, there exist u = u(a, b), v = v(a, b) in G such that ϕ(a, b) = (u, v) 
and a ∗ (b ∗ c) = (u ∗ v) ∗ c. This means that anbnc = (unc)nc. Since (G, ·) is a group, we 
obtain anbn = (unv)n. If we let x := unv, then anbn = xn has a solution x = unv, a con-
tradiction. � �

Proposition 10  Let (G, ·) be a group having the nth power property. Define a binary 
operation “∗” on G by a ∗ b := abn, ∀a, b ∈ G. Then (G, ∗) can not be a right-twisted semi-
group with respect to any mapping ϕ.

Proof  Assume that (G, ∗) is a right-twisted semigroup with respect to ϕ. Since (G, ·) has 
the nth power property, there are b, c ∈ G such that bncn = xn has no solution in G. Since 
(G, ∗) is a right-twisted semigroup, for any a ∈ G, there exist u = u(b, c), v = v(b, c) in G 
such that (a ∗ b) ∗ c = a ∗ (u ∗ v). Hence (abn)cn = a(uvn)n, i.e., bncn = (uvn)n. If we let 
x := uvn, then bncn = xn has a solution, a contradiction. �

Homomorphisms of twisted semigroups

Theorem 3  Let (X , ∗) be a left-twisted semigroup with respect to a map ϕ : X2 → X2. If 
f : (X , ∗) → (Y , •) is an epimorphism of groupoids, i.e., f (x ∗ y) = f (x) • f (y),∀x, y ∈ X , 
then there exists a map ψ : Y 2 → Y 2 such that (Y , •) is a left-twisted semigroup with 
respect to the map ψ.

Proof  Given α,β ∈ Y , since f : X → Y  is onto, there exist a, b ∈ X such that 
α = f (a),β = f (b). Since (X , ∗) is a left-twisted semigroup with respect to a map ϕ, for 
all c ∈ X, there exist u0 = u0(a, b), v0 = v0(a, b) ∈ X such that a ∗ (b ∗ c) = (u0 ∗ v0) ∗ c 
and ϕ(a, b) = (u0, v0). We define a set Ŵ(α,β) as follows:

If we let v := f (u0),w := f (v0), then (v,w) ∈ Ŵ(α,β). We define ψ : Y 2 → Y 2 by 
ψ(α,β) := (v,w). Then it is well-defined. In fact, if we assume ψ(α,β) = (v,w) 
and ψ(α,β) = (p, q), then there exist u1, v1 ∈ X such that p = f (u1), q = f (v1) and 

Ŵ(α,β) := {(f (u), f (v)) | ∃a, b ∈ X s.t. α = f (a),β = f (b),ϕ(a, b) = (u, v)}
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(p, q) ∈ Ŵ(α,β). It follows that ϕ(a, b) = (u1, v1) and ϕ(a, b) = (u0, v0). Since ϕ is a map-
ping, we obtain p = v, q = w, which proves that ψ : Y 2 → Y 2 is a mapping.

Given γ = f (c) ∈ Y , since f is an epimorphism, we have

This proves that (Y , •) is a left-twisted semigroup with respect to a map ψ : Y 2 → Y 2. �

Let (X , ∗) and (Y , •) be groupoids. A map f : (X , ∗) → (Y , •) is said to be left-twisted-
injective if f (a ∗ (b ∗ c)) = f ((u ∗ v) ∗ c), then there exist u′ and v′ in X such that 
a ∗ (b ∗ c) = (u′ ∗ v′) ∗ c and f (u) = f (u′), f (v) = f (v′) where a, b, c,u, v ∈ X. For exam-
ple, the canonical group homomorphism π : G → G/N  is left-twisted-injective.

Proposition 11  Let (Y , •) be a left-twisted semigroup with respect to a map ψ. If 
f : (X , ∗) → (Y , •) is a left-twisted-injective epimorphism, then there exists a map 
ϕ : X2 → X2 such that (X , ∗) is a left-twisted semigroup with respect to the map ϕ.

Proof  For any a, b, c ∈ X, since f : X → Y  is onto, there exist α,β , γ ∈ Y  
such that f (a) = α, f (b) = β , f (c) = γ. Since (Y , •) is a left-twisted semigroup, 
there exist v,w ∈ Y  such that α • (β • γ ) = (v • w) • γ and ψ(α,β) = (v,w) . 
Since f is onto, there exist p, q ∈ X such that f (p) = v, f (q) = w and hence 
f (a) • (f (b) • f (c)) = (f (p) • f (q)) • f (c). Since f is left-twisted-injective, we have

for some p′, q′ ∈ X where f (p) = f (p′), f (q) = f (q′). Given a, b ∈ X, we obtain p′, q′ ∈ X 
satisfying (13), which means that p′, q′ ∈ X are determined by choosing a, b ∈ X, i,e., 
there exists a map ϕ : X2 → X2 such that ϕ(a, b) = (p′, q′). Hence (X , ∗) is also a left-
twisted semigroup with respect to ϕ. � �

In Theorem 3, given a, b, c ∈ X, there exist u, v ∈ X such that a ∗ (b ∗ c) = (u ∗ v) ∗ c 
where ϕ(a, b) = (u, v). Since f : (X , ∗) → (Y , •) is an epimorphism, we have 
f (a) • (f (b) • f (c)) = f (a ∗ (b ∗ c)) = f ((u ∗ v) ∗ c) = (f (u) • f (v)) • f (c). Now, 
since (Y , •) is a left-twisted semigroup with respect to ψ, we obtain p, q ∈ Y  such 
that f (a) • (f (b) • f (c)) = (p • q) • f (c) where ψ(f (a), f (b)) = (p, q). It follows that 
(p • q) • f (c) = (f (u) • f (v)) • f (c).

Using the notion of this concept, we introduce an equivalence relation on the Carte-
sian product Y × Y  of any groupoid (Y , •) (not necessarily a (left-twisted) semigroup). 
Let (X , ∗) and (Y , •) be groupoids and let f : X → Y  be a map. Define a relation “≡” on 
Y 2 using f by

α • (β • γ ) = f (a) • (f (b) • f (c))

= f (a ∗ (b ∗ c))

= f ((u0 ∗ v0) ∗ c)

= (f (u0) • f (v0)) • f (c)

= (v • w) • γ .

(13)a ∗ (b ∗ c) = (p′ ∗ q′) ∗ c

(14)(α,β) ≡ (γ , δ)(mod f ) ⇐⇒ (α • β) • f (x) = (γ • δ) • f (x), ∀ x ∈ X
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where α,β , γ , δ ∈ Y . Then it is easy to show that ≡ (mod f ) is an equivalence relation on  
Y 2. Hence Y 2 is partitioned into equivalence classes [(α,β)] := {(γ , δ) | (α,β) ≡

(γ , δ)(mod f )}.

Example 8  Consider a d-algebra (X , ∗, 0) and a BCK-algebra (Y , •, 0) as follows:

∗ 0 1 2
0 0 0 0
1 1 0 2
2 1 2 0

• 0 a b
0 0 0 0
a a 0 a
b b b 0

If we define a map f : X → Y  by f (0) = 0, f (1) = b, f (2) = a, then 
Y 2 = {[(0, 0)], [(a, 0)], [(b, a)]} where [(0, 0)] = {(0, 0), (0, a), (0, b), (a, a), (b, b)}, 
[(a, 0)] = {(a, 0), (a, b)}, [(b, a)] = {(b, a), (b, 0)}.

Thus, let f : (X , ∗) → (Y , •) be an epimorphism of groupoids, where (X , ∗) and 
(Y , •) are left-twisted semigroups with respect to ϕ and ψ respectively, and let 
ϕ(a, b) = (u, v) for some u, v ∈ X and ψ(f (a), f (b)) = (p, q) for some p, q ∈ Y . Then 
a ∗ (b ∗ c) = (u ∗ v) ∗ c and f (a) • (f (b) • γ ) = (p • q) • γ for any c ∈ X , γ ∈ Y . Since 
f is an epimorphism, we have f (a) • (f (b) • f (c)) = (f (u) • f (v)) • f (c) and hence 
(f (u) • f (v)) • γ = (p • q) • γ for any γ ∈ Y . It follows that (f (u), f (v)) ≡ (p, q)(mod f ). 
We summarize:

Proposition 12  Let f : (X , ∗) → (Y , •) be an epimorphism of groupoids, where 
(X , ∗) and (Y , •) are left-twisted semigroups with respect to ϕ and ψ respectively. If 
ϕ(a, b) = (u, v), then ψ(f (a), f (b)) ≡ (f (u), f (v))(mod f ).

Given an epimorphism f : (X , ∗) → (Y , •) as in Proposition 12, we define a new map 
f̃ : X2 → Y 2 by f̃ (x1, x2) := (f (x1), f (x2)),∀x1, x2 ∈ X . Using this map we obtain (ψ ◦ f̃ ) 
(a, b) = ψ(f̃ (a, b)) = ψ(f (a), f (b))) = (p, q) and (f̃ ◦ ϕ)(a, b) = f̃ (ϕ(a, b))) = f̃ (u, v) =

(f (u), f (v)) where “◦” is a composition of functions. Hence ψ ◦ f̃ (a, b) ≡ f̃ ◦ ϕ(a, b)(mod f ),  
i.e., the following diagram is a commuting diagram:

X2 f

ϕ

Y 2

ψ

X2

f
Y 2

For the other types of twisted semigroups we have similar situations. In the case of a 
dual left-twisted semigroup, we obtain the following results.

Theorem  3′ . Let (X , ∗) be a dual left-twisted semigroup with respect to a 
map ϕ : X2 → X2. If f : (X , ∗) → (Y , •) is an epimorphism of groupoids, i.e., 
f (x ∗ y) = f (x) • f (y),∀x, y ∈ X, then there exists a map ψ : Y 2 → Y 2 such that (Y , •) is 
a dual left-twisted semigroup with respect to the map ψ.
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Let (X , ∗) and (Y , •) be groupoids. A map f : (X , ∗) → (Y , •) is said to be dual left-
twisted-injective if f ((a ∗ b) ∗ c)) = f (u ∗ (v ∗ c)), then there exist u′ and v′ in X such 
that (a ∗ b) ∗ c = u′ ∗ (v′ ∗ c) and f (u) = f (u′), f (v) = f (v′) where a, b, c,u, v ∈ X.

Proposition 11′ . Let (Y , •) be a dual left-twisted semigroup with respect to ψ. If 
f : (X , ∗) → (Y , •) is a dual left-twisted-injective epimorphism, then there exists a map 
ϕ : X2 → X2 such that (X , ∗) is a dual left-twisted semigroup with respect to the map ϕ.

The corresponding relationship on Y 2 is now the following. Let (X , ∗) and (Y , •) be 
groupoids and let f : X → Y  be a map. Define a relation “≡” on Y 2 using f by

where α,β , γ , δ ∈ Y . Then it is easy to show that ≡ (mod f )∗ is an equiva-
lence relation on Y 2. Hence Y 2 is partitioned into equivalence classes 
[(α,β)]∗ := {(γ , δ) | (α,β) ≡ (γ , δ)(mod f )∗}.

The other four types go in entirely the same way. We list the relevant information. 

(1)	� right-twisted semigroups: ψ(α,β) is defined as previous cases, and the 
equivalence relation on Y 2 is (α,β) ≡ (γ , δ)[mod f ] provided for all x ∈ X, 
f (x) • (α • β) = f (x) • (γ • δ).

(2)	� dual right-twisted semigroups: ψ(α,β) is defined as previous cases, and the 
equivalence relation on Y 2 is (α,β) ≡ (γ , δ)[mod f ]∗ provided for all x ∈ X, 
(f (x) • α) • β = (f (x) • γ ) • δ.

(3)	� middle-twisted semigroups: ψ(α,β) is defined as previous cases, and the 
equivalence relation on Y 2 is (α,β) ≡ (γ , δ) < mod f > provided for all 
x ∈ X , α • (f (x) • β) = γ • (f (x) • δ).

(4)	� dual middle-twisted semigroups: ψ(α,β) is defined as previous cases, and 
the equivalence relation on Y 2 is (α,β) ≡ (γ , δ) < mod f >∗ provided for all 
x ∈ X, (α • f (x)) • β = (γ • f (x)) • δ.

Given one of the six types of twisted semigroups, let {(Xα , ∗α ,ϕα)}α∈I be an indexed 
family of one of these types of twisted semigroups. Let X =

∏
α∈I Xα be the direct prod-

uct and let πα : X → Xα be the canonical surjection. Let X be equipped with the prod-
uct binary operation given by the formula (xα) ∗ (yα) = (xα ∗α yα). If we define a map 
ϕ((aα), (bα)) = (ϕα(aα , bα)) = ((uα , vα)), then it follows that (X , ∗) is a twisted semi-
group of the same type with respect to the map ϕ.

In order to obtain varieties we must be able to claim that if (X , ∗) is a twisted semi-
group of a given (one of the six) type(s) with respect to a map ϕ and if (A, ∗) is a sub-
groupoid of (X , ∗), then it is also of the same type, i.e., there is a function ψ : A2 → A2 
(rather than ψ : A2 → X2,ψ = ϕ | A2) which satisfies the required identity belonging to 
the special type in question. We give a counter-example that a subgroupoid (A, ∗) of a 
dual left-twisted semigroup (X , ∗) need not be a dual left-twisted semigroup.

Example 9  In Example 4, let Z be the collection of all integers. Then (Z, ∗) is a sub-
groupoid of (R, ∗) and (R, ∗) is a dual left-twisted semigroup with respect to ϕ. If we 
let a := 13, b := 12, then v3 = 13(13− 12)(v2 − 1) = 13(v2 − 1). Assume v is an inte-
ger. Then v = 13k for some integer k. This means that (13)2k2(1− k) = 1, which is 

(15)(α,β) ≡ (γ , δ)(mod f )∗ ⇐⇒ α • (β • f (x)) = γ • (δ • f (x)),∀x ∈ X
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impossible for an integer k. Hence there is no mapping ϕ : Z2 → Z2 such that (Z, ∗) is a 
dual left-twisted semigroup with respect to ϕ.

Conclusions
In this paper, we introduced the concept of several types of groupoids related to semi-
groups, viz., twisted semigroups for which twisted versions of the associative law hold. 
Besides a number of examples and a discussion of homomorphisms, a class of groupoids 
of interest was the class of groupoids defined over a field (X ,+, ·) via a formula 
x ∗ y = �x + µy, with �,µ ∈ X, fixed structure constants. Properties of these groupoids 
as twisted semigroups were discussed with several results of interest obtained, e.g., that 
in this setting simultaneous left-twistedness and right-twistedness of (X , ∗) implies the 
fact that (X , ∗) is a semigroup.

In the investigation of “residual associativity” in groupoids one encounters a number 
of levels. The strongest version of such residual associativity is “associativity” itself. Mak-
ing a study of twisted semigroups, besides being of interest in itself, is also relevant in 
several other ways. One may wish to determine as precisely as possible how different 
twisted semigroups may differ from semigroups. Accordingly we note that the study of 
twisted semigroups, commenced in this paper, will prove to be a rich area for research 
both in itself and as embedded in the area of the study of “general theory of groupoids”.
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