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Background
Lyapunov (1907) studied the following linear differential equation

and showed that if q ∈ C([a, b],R) and x(t) �≡ 0 (t ∈ [a, b]) is a solution of (1) with 
x(a) = x(b) = 0, then the following classical Lyapunov inequality holds:

Moreover, the above inequality is optimal.
Cheng (1983) investigated the following second-order difference equation

and showed that if x(n) �≡ 0 for n ∈ {a, a+ 1, . . . , b} is a solution of (2) and 
x(a) = x(b) = 0 (a, b ∈ Z with 0 < a < b), then 

∑b−2
n=a |q(n)| ≥

4(b−a)
(b−a)2−1

 if b− a− 1 is 
even and 

∑b−2
n=a |q(n)| ≥

4
b−a

 if b− a− 1 is odd.
Hilger (1990) introduced the theory of time scales with one goal being the unified 

treatment of differential equations (the continuous case) and difference equations (the 
discrete case). A time scale T is an arbitrary nonempty closed subset of the real numbers 

(1)x′′(t)+ q(t)x(t) = 0

∫ b

a
|q(t)|dt >

4

b− a
,

(2)�2x(n)+ q(n)x(n+ 1) = 0

Abstract 

The purpose of this work is to establish a Lyapunov-type inequality for the following 
dynamic equation 

on some time scale T under the anti-periodic boundary conditions Sk(a, x(a))+ 
Sk(b, x(b)) = 0 (0 ≤ k ≤ n− 1), where S0(t , x(t)) = x(t), Sk(t , x(t)) = ak(t)S

△

k−1
(t , x(t)) 

for 1 ≤ k ≤ n− 1 and Sn(t , x(t)) = an(t)[S
�
n−1(t , x(t))]

p, ak ∈ Crd(T, (−∞, 0)∪

(0,∞)) (1 ≤ k ≤ n) with an(a) = an(b) and u ∈ Crd(T,R), p is the quotient of two odd 
positive integers and a, b ∈ T with a < b.
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R, which has the topology that it inherits from the standard topology on R. The two 
most popular examples are R and the integers Z. For the time scale calculus and some 
related basic concepts, we refer the readers to the books by Bohner and Peterson (2001, 
2003) for further details.

Bohner et al. (2002) investigated the following Sturm–Liouville dynamic equation

on time scale T under the assumptions x(a) = x(b) = 0 (a, b ∈ T with a < b) and 
q ∈ Crd(T, (0,∞)) and showed if x(t) �≡ 0 for t ∈ [a, b]T is a solution of (3), then

where C = max{(t − a)(b− t) : t ∈ [a, b]T}.
Wong et al. (2006) investigated the following dynamic equation

on time scale T under the assumptions x(a) = x(b) = 0 (a, b ∈ T with a < b) and 
r ∈ Crd([a, b]T,R) is monotone and q ∈ Crd([a, b]T, (0,∞)), and showed that if 
x(t) �≡ 0 for t ∈ [a, b]T is a solution of (4), then

where C = max{(t − a)(b− t) : t ∈ [a, b]T}.
In this paper, we establish a Lyapunov-type inequality for the following higher order 

dynamic equation

on some time scale T under the following anti-periodic boundary conditions

where S0(t, x(t)) = x(t), Sk(t, x(t)) = ak(t)S
△

k−1(t, x(t)) for 1 ≤ k ≤ n− 1 and Sn(t, x(t))
= an(t)[S

�
n−1

(t, x(t))]p, ak ∈ Crd(T, (−∞, 0) ∪ (0,∞)) (1 ≤ k ≤ n) with an(a) = an(b) 
and u ∈ Crd(T,R), p is the quotient of two odd positive integers and a, b ∈ T with a < b.

For some other related results on Lyapunov inequality, see, for example, Çakmak 
(2013), He et al. (2011), Jiang and Zhou (2005), Liu and Tang (2014), Tang and Zhang 
(2012) and Yang et al. (2014).

Main result and its proof

Lemma 1 (Bohner and Peterson 2001)   Let a, b ∈ T with a < b and  
∑n

i=1 1/pi = 1 with 
pi > 1 (1 ≤ i ≤ n). Then for any functions fi ∈ Crd([a, b]T,R) (1 ≤ i ≤ n), we have

(3)x�
2
(t)+ q(t)xσ (t) = 0

∫ b

a
q(t)�t ≥

b− a

C
,

(4)(r(t)x�(t))� + q(t)xσ (t) = 0,

� b

a
max{q(t), 0}�t ≥







r(a)(b−a)
r(b)C

, if r is increasing,

r(b)(b−a)
r(a)C , if r is decreasing,

(5)S△n (t, x(t))+ u(t)xp(t) = 0

(6)Sk(a, x(a))+ Sk(b, x(b)) = 0 (0 ≤ k ≤ n− 1),
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Lemma 2  Let a, b ∈ T with a < b. Suppose that αj
i ∈ R and pi ∈ (1,+∞) with 

∑n
i=1 α

j
i/pi =

∑n
i=1 1/pi = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ m). Then for any functions 

fj ∈ Crd([a, b]T, (−∞, 0) ∪ (0,∞)) (1 ≤ j ≤ m), we have

Proof  Let Fi(t) = (
∏m

j=1 |fj(t)|
α
j
i )

1
pi. By Lemma 1 we have

This completes the proof of Lemma 2. � �

Remark 3  Let i = j, and αi
i = pi and αj

i = 0 if i �= j in Lemma 2, we obtain Lemma 1.

Theorem  4  Let αi ∈ R (1 ≤ i ≤ n), p1 = p+ 1 and pj ∈ (1,+∞) (2 ≤ j ≤ n) with 
∑n

i=1 αi/pi =
∑n

i=1 1/pi = 1. If  (5) has a solution x(t) �≡ 0 for t ∈ [a, b]T satisfying the 
anti-periodic boundary conditions (6), then

Proof  For any 1 ≤ i ≤ n− 1, write

and

Since x(t) satisfies Si(a, x(a))+ Si(b, x(b)) = 0 (0 ≤ i ≤ n− 1), we know that for any 
t ∈ [a, b]T,

∫ b

a

n
∏

i=1

|fi(t)|△t ≤

n
∏

i=1

{

∫ b

a
|fi(t)|

pi△t

}
1
pi

.

� b

a

m
�

j=1

|fj(t)|△t ≤

n
�

i=1







� b

a

m
�

j=1

|fj(t)|
α
j
i△t







1
pi

.

� b

a

m
�

j=1

|fj(t)|△t =

� b

a

n
�

i=1

Fi(t)△t

≤

n
�

i=1

�

� b

a
F
pi
i △t

�
1
pi

=

n
�

i=1







� b

a

m
�

j=1

|fj(t)|
α
j
i△t







1
pi

.

∫ b

a
|u(t)|

p+1
p �t ≥

2
[(n−1)p+1](p+1)

p

(b− a)
1
p

[

∫ b
a

�t

|an(t)|
1
p

]p+1
∏n−1

i=1

{

∏n
j=1

[

∫ b
a

�t
|ai(t)|

αi

]
1
pj

}p+1
.

wi =

n
∏

j=1

[

∫ b

a

�t

|ai(t)|αi

]
1
pj

ui =

n
∏

j=1

[

∫ b

a

|Si(t, x(t))|

|ai(t)|
αj

�t

]
1
pj

.
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Using Lemma 2, we obtain that for 0 ≤ i ≤ n− 2,

and

and

which implies

and

and

Combining (7), (8) and (9), it follows

Si(t) = Si(a, x(a))+

∫ t

a

Si+1(τ , x(τ ))

ai+1(τ )
�τ = Si(b, x(b))−

∫ b

t

Si+1(τ , x(τ ))

ai+1(τ )
�τ .

(7)

|Si(t, x(t))| =
1

2
|Si(a, x(a))+

∫ t

a

Si+1(τ , x(τ ))

ai+1(τ )
�τ + Si(b, x(b))−

∫ b

t

Si+1(τ , x(τ ))

ai+1(τ )
�τ |

≤
1

2

∫ b

a
|
Si+1(t, x(t))

ai+1(t)
|�t ≤

1

2
ui+1.

|Sn−1(t, x(t))| ≤
1

2

∫ b

a

|an(t)|
1
p1

|an(t)|
1
p1

|S�n−1(t, x(t))|�t

≤
1

2

[

∫ b

a

�t

|an(t)|
1
p

]

p
p1
[

∫ b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t

]
1
p1

(t ∈ [a, b]T)

|Sn−1(σ (t), x(σ (t)))| ≤
1

2

[

∫ b

a

�t

|an(t)|
1
p

]

p
p1

[

∫ b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t

]
1
p1

(t ∈ [a, b)T),

(8)

ui =

n
∏

j=1

[

∫ b

a

|Si(t, x(t))|

|ai(t)|
αj

�t

]
1
pj

.

≤
1

2
ui+1wi (1 ≤ i ≤ n− 2)

(9)|Sn−1(t, x(t))|
p1 ≤

1

2p1

[

∫ b

a

�t

|an(t)|
1
p

]p
∫ b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t (t ∈ [a, b]T)

(10)

|Sn−1(σ (t), x(σ (t)))|
p1 ≤

1

2p1

[

∫ b

a

�t

|an(t)|
1
p

]p
∫ b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t (t ∈ [a, b)T).

(11)|x(t)| ≤ M ≡

∏n−1
i=1 wi

2n−1

[

∫ b

a

�t

|an(t)|
1
p

]

p
p1
[

∫ b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t

]
1
p1

.
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From (1), we have

Thus, we obtain

Integrating (12) from a to b, it follows

Thus, we obtain from (10), (11) and (13) that

Since x(t) �≡ 0 (t ∈ [a, b]T), it follows from (11) that

S�n (t, x(t)) = −u(t)x(t)p.

(12)S�n (t, x(t))S
σ
n−1(t, x(t)) = −u(t)xp(t)Sσn−1(t, x(t)).

(13)
∫ b

a
S�n (t, x(t))S

σ
n−1(t, x(t))�t =

∫ b

a
−u(t)xp(t)Sσn−1(t, x(t))�t.

� b

a
an(t)|S

�
n−1(t, x(t))|

p+1�t

=

� b

a
an(t)(S

�
n−1(t, x(t)))

p+1�t

=

� b

a
[(Sn(t, x(t))Sn−1(t, x(t)))

�
− S�n (t, x(t))S

σ
n−1(t, x(t))]�t

= an(b)S
p
n−1

(b, x(b))Sn−1(b, x(b))− an(a)S
p
n−1

(a, x(a))Sn−1(a, x(a))

−

� b

a
S�n (t, x(t))S

σ
n−1(t, x(t))�t

≤

� b

a
|u(t)xp(t)Sσn−1(t, x(t))|�t

≤ Mp

� b

a
|u(t)||Sn−1(σ (t), x(σ (t)))|�t

≤ Mp

�

� b

a
|u(t)|

p1
p �t

�

p
p1
�

� b

a
|Sn−1(σ (t), x(σ (t)))|

p1�t

�
1
p1

≤ Mp

�

� b

a
|u(t)|

p1
p �t

�

p
p1 (b− a)

1
p1

2

�

� b

a

�t

|an(t)|
1
p

�

p
p1
�

� b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t

�
1
p1

=







�n−1
i=1 wi

2n−1

�

� b

a

�t

|an(t)|
1
p

�

p
p1
�

� b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t

�
1
p1







p

×

�

� b

a
|u(t)|

p1
p �t

�

p
p1 (b− a)

1
p1

2

�

� b

a

�t

|an(t)|
1
p

�

p
p1
�

� b

a
|an(t)||S

�
n−1(t, x(t))|

p1�t

�
1
p1

=
[
�n−1

i=1 wi]
p

2(n−1)p+1
(b− a)

1
p1

�

� b

a
|u(t)|

p1
p �t

�

p
p1
�

� b

a

�t

|an(t)|
1
p

�p

×

�

� b

a
|an(t)||S

�
n−1(t, x(t))|

p+1�t

�

p+1

p+1

.

∫ b

a
|an(t)||S

�
n−1(t, x(t))|

p+1�t > 0.
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Thus, we obtain

This completes the proof of Theorem 4.� �

Let αi = 1+ ripi (1 ≤ i ≤ n) in Theorem 4, we obtain the following corollary.

Corollary 5  Let ri ∈ R (1 ≤ i ≤ n), p1 = p+ 1 and pj ∈ (1,+∞) (2 ≤ j ≤ n) with 
∑n

i=1 1/pi = 1 and 
∑n

i=1 ri = 0. If (5) has a solution x(t) �≡ 0 for t ∈ [a, b]T satisfying the 
anti-periodic boundary conditions (6), then

Set αi = 1 (1 ≤ i ≤ n) in Theorem 4, we obtain the following Corollary 6.

Corollary 6  If (5) has a solution x(t) �≡ 0 for t ∈ [a, b]T satisfying the anti-periodic 
boundary conditions (6), then

Examples and applications

Example 1  Suppose that αi ∈ R (1 ≤ i ≤ n), p1 = p+ 1 and pj ∈ (1,+∞) (2 ≤ j ≤ n) 
with 

∑n
i=1 αi/pi =

∑n
i=1 1/pi = 1. Let T = [−2,−1] ∪ [1,∞), ak(t) = t for 

1 ≤ k ≤ n− 1 and an = t2m for some positive integer m, and

Set x(t) = t2m+1. It is easy to check that

(1)	 � � �� Sk(t, x(t)) = (2m+ 1)k t2m+1 (0 ≤ k ≤ n− 1), Sn(t, x(t)) = (2m+ 1)npt2m(p+1) and  
S
△
n (t, x(t)) = (2m+ 1)np2m(p+ 1)t2m(p+1)−1 for t �= −1.

(2)	 � � ��S0(−1, x(−1)) = S1(−1, x(−1)) = −1, Sk(−1, x(−1)) = −[1/2k−1 +
∑

k−1
i=1 (2m+

1)k−i/2i] (0 ≤ k ≤ n− 1), Sn(−1, x(−1)) = [1/2n−1 +
∑n−1

i=1 (2m+ 1)n−i/2i]p and  
S
△
n (−1, x(−1)) = {(2m+ 1)np − [1/2n−1 +

∑

n−1
i=1 (2m+ 1)n−i/2i]p]}/2. Let a = −2 

and b = 2. Then x(t) �≡ 0 is a solution of (5) satisfying the anti-periodic boundary 
conditions (6). Thus we have 

∫ b

a
|u(t)|

p+1
p �t ≥

2
[(n−1)p+1](p+1)

p

(b− a)
1
p

[

∫ b
a

�t

|an(t)|
1
p

]p+1
∏n−1

i=1

{

∏n
j=1

[

∫ b
a

�t
|ai(t)|

αi

]
1
pj

}p+1
.

∫ b

a
|u(t)|

p+1
p �t ≥

2
[(n−1)p+1](p+1)

p

(b− a)
1
p

[

∫ b
a

�t

|an(t)|
1
p

]p+1
∏n−1

i=1

{

∏n
j=1

[

∫ b
a

�t

a
1+ripi
i (t)

]
1
pj

}p+1
.

∫ b

a
|u(t)|

p+1
p �t ≥

2
[(n−1)p+1](p+1)

p

(b− a)
1
p

[

∫ b
a

�t

|an(t)|
1
p

]p+1
∏n−1

i=1

[

∫ b
a

�t
ai(t)

]p+1
.

u(t) =

{

−(2m+ 1)2m(p+ 1)/tp+1−2m, if t �= −1,

{(2m+ 1)np − [1/2n−1 +
∑n−1

i=1 (2m+ 1)n−i/2i]p]}/2, if t = −1.
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Example 2  Suppose that αi ∈ R (1 ≤ i ≤ n), p1 = p+ 1 and pj ∈ (1,+∞) (2 ≤ j ≤ n) 
with 

∑n
i=1 αi/pi =

∑n
i=1 1/pi = 1. Let T = {±2n : n = 0, 1, 2, . . .}, ak(t) = t for 

1 ≤ k ≤ n− 1 and an = t2 and u(t) = −(σ (t)+ t)/tp. Write x(t) = t. It is easy to check 
that Sk(t, x(t)) = t (0 ≤ k ≤ n− 1), Sn(t, x(t)) = t2 and S△n (t, x(t)) = σ(t)+ t.

Let a = −2r and b = 2r for some positive integer r. Then x(t) �≡ 0 is a solution of (5) 
satisfying the anti-periodic boundary conditions (6). Thus we have

Now, we give an application of Lyapunov-type inequality of Theorem 4 for the following 
eigenvalue problem

on time scale [a, b]T for some a, b ∈ T with a < b, where S0(t, x(t)) = x(t),

Sk(t, x(t)) = ak(t)S
△

k−1
(t, x(t)) for 1 ≤ k ≤ n− 1 and Sn(t, x(t)) = an(t)[S

�
n−1

(t, 
x(t))]p, ak ∈ Crd([a, b]T, (−∞, 0) ∪ (0,∞)) (1 ≤ k ≤ n) with an(a) = an(b) and u ∈ Crd

([a, b]T,R), p is the quotient of two odd positive integers. It is easy to see the lower 
bound of the eigenvalue r in (14)

where αi ∈ R (1 ≤ i ≤ n), p1 = p+ 1 and pj ∈ (1,+∞) (2 ≤ j ≤ n) with 
∑

n

i=1 αi/pi =
∑

n

i=1 1/pi = 1.

Conclusions
In this paper, we establish a Lyapunov-type inequality for the following higher order 
dynamic equation

on some time scale T under the anti-periodic boundary conditions (6). Our results com-
plement with some previous ones.
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∫ 2

−2
|u(t)|

p+1
p �t ≥

2
(n−1)(p+1)+1− 1

p

[

∫ 2
−2

�t

|t|
2m
p

]p+1
∏n−1

i=1

{

∏n
j=1

[

∫ 2
−2

�t
|t|αi

]
1
pj

}p+1
.

∫ 2r

−2r
|
σ(t)+ t

tp
|
p+1
p �t ≥

2
(n−1)(p+1)+1− r

p

[

∫ 2r

−2r
�t

|t|
2
p

]p+1
∏n−1

i=1

{

∏n
j=1

[

∫ 2r

−2r
�t
|t|αi

]
1
pj

}p+1
.

(14)S△n (t, x(t))+ ru(t)xp(t) = 0

|r| ≥
2(n−1)p+1

[

∫ b
a |u(t)|

p+1
p �t

]

p
p+1

(b− a)
1

p+1

[

∫ b
a

�t

|an(t)|
1
p

]p
∏n−1

i=1

{

∏n
j=1

[

∫ b
a

�t
|ai(t)|

αi

]
1
pj

}p
,

S△n (t, x(t))+ u(t)xp(t) = 0
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